【課題を解決するための手段】
【0007】
いくつかの実施形態では、光学システムは、複数のユニットセルを含む格子を含むメタ表面を含む、光学的に透過性の基板を含む。各ユニットセルは、第1の幅を有する、側方に伸長の第1のナノビームと、間隙によって第1のナノビームから離間される、側方に伸長の第2のナノビームとを含み、第2のナノビームは、第1の幅より大きい第2の幅を有する。第1および第2のナノビームの高さは、10nm〜450nmであって、基板の屈折率は、3.3を上回り、10nm〜1μmであって、屈折率は、3.3またはそれ未満である。
【0008】
いくつかの他の実施形態では、光学システムは、複数のユニットセルを含む格子を含むメタ表面を含む、光学的に透過性の基板を含む。各ユニットセルは、第1の幅を有する、側方に伸長の第1のナノビームと、間隙によって第1のナノビームから離間される、側方に伸長の第2のナノビームとを含む。第2のナノビームは、第1の幅より大きい第2の幅を有する。光学システムはまた、反射体を含む。反射体および基板は、格子の反対側にある。
【0009】
さらに他の実施形態では、メタ表面を形成するための方法は、光学的に透過性の基板を提供することと、光学的に透過性の層を基板にわたって提供することと、光学的に透過性の層をパターン化し、複数のユニットセルを含む格子を画定することとを含む。各ユニットセルは、第1の幅を有する、側方に伸長の第1のナノビームと、間隙によって第1のナノビームから離間される、側方に伸長の第2のナノビームとを含み、第2のナノビームは、第1の幅より大きい第2の幅を有する。第1および第2のナノビームの高さは、10nm〜450nmであって、基板の屈折率は、3.3を上回り、10nm〜1μmであって、屈折率は、3.3またはそれ未満である。
【0010】
いくつかの他の実施形態では、メタ表面を形成するための方法は、光学的に透過性の基板を提供することと、複数のユニットセルを含む格子を形成することとを含む。各ユニットセルは、第1の幅を有する、側方に伸長の第1のナノビームと、間隙によって第1のナノビームから離間される、側方に伸長の第2のナノビームとを含み、第2のナノビームは、第1の幅より大きい第2の幅を有する。本方法はまた、反射材料の層を間隙内およびユニットセル間に提供することを含む。
【0011】
いくつかの他の実施形態では、メタ表面を形成するための方法は、光学的に透過性の基板を提供することと、複数のユニットセルを含む格子を形成することとを含む。各ユニットセルは、第1の幅を有する、側方に伸長の第1のナノビームと、間隙によって第1のナノビームから離間される、側方に伸長の第2のナノビームとを含み、第2のナノビームは、第1の幅より大きい第2の幅を有する。本方法はさらに、光学的に透過性のスペーサ材料の層を間隙内およびユニットセル間に堆積させることと、反射層をスペーサ材料の層上に堆積させることであって、スペーサ材料は、格子を反射層から分離する、こととを含む。
【0012】
さらに他の実施形態では、光学システムは、複数のユニットセルを含む格子を含むメタ表面を含む、光学的に透過性の基板を含む。各ユニットセルは、第1の幅を有する、側方に伸長の第1のナノビームと、間隙によって第1のナノビームから離間される、側方に伸長の第2のナノビームとを含み、第2のナノビームは、第1の幅より大きい第2の幅を有する。ユニットセルのピッチは、10nm〜1μmである。
【0013】
いくつかの他の実施形態では、メタ表面を形成するための方法は、光学的に透過性の基板を提供することと、光学的に透過性の層を基板にわたって提供することと、光学的に透過性の層をパターン化し、複数のユニットセルを含む格子を画定することとを含む。各ユニットセルは、第1の幅を有する、側方に伸長の第1のナノビームと、間隙によって第1のナノビームから離間される、側方に伸長の第2のナノビームとを含み、第2のナノビームは、第1の幅より大きい第2の幅を有する。ユニットセルのピッチは、10nm〜1μmである。
【0014】
さらに他の実施形態では、光学システムは、マルチレベルメタ表面を含む、光学的に透過性の基板を含む。マルチレベルメタ表面は、複数のマルチレベルユニットセルを含む、格子を含む。各ユニットセルは、ユニットセルの最下レベルには、第1の幅を有する、側方に伸長の第1の最下レベルナノビームと、第2の幅を有する、側方に伸長の第2の最下レベルナノビームとを含み、第2の幅は、第1の幅より大きい。ユニットセルの最上レベルには、第1の最下レベルナノビームの上方の側方に伸長の第1の最上レベルナノビームと、第2の最下レベルナノビームの上方の側方に伸長の第2の最上レベルナノビームとがある。
【0015】
いくつかの他の実施形態では、メタ表面を形成するための方法は、光学的に透過性の基板を提供することと、光学的に透過性の層を基板にわたって提供することと、光学的に透過性の層をパターン化し、複数の反復ユニットを画定することとを含む。各反復ユニットは、第1の幅を有する、側方に伸長の第1のナノビームと、間隙によって第1のナノビームから離間される、側方に伸長の第2のナノビームであって、第1の幅より大きい第2の幅を有する、第2のナノビームとを含む。本方法はまた、光学的に透過性の材料を第1および第2のナノビーム上およびナノビーム間の間隙の中に堆積させ、光学的に透過性の材料の離間されたプラトー(plateau)をナノビームの上方に形成することを含む。
【0016】
付加的例示的実施形態が、以下に提供される。
1.光学システムであって、
メタ表面を含む光学的に透過性の基板であって、メタ表面は、上下図に見られるように、
複数のユニットセルを含む格子であって、各ユニットセルは、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって第1のナノビームから離間される側方に伸長の第2のナノビームであって、第2のナノビームは、第1の幅より大きい第2の幅を有する、第2のナノビームと
を含み、第1および第2のナノビームの高さは、
10nm〜450nmであり、基板の屈折率は、3.3を上回り、
10nm〜1μmであり、屈折率は、3.3またはそれ未満である、格子
を含む、基板
を含む、光学システム。
2.ユニットセルは、側方に伸長かつ相互に平行である、実施形態1に記載の光学システム。
3.メタ表面は、可視波長の入射光を第1の回折次数に回折するように構成される、実施形態1に記載の光学システム。
4.第2の幅は、10nm〜1μmである、実施形態1に記載の光学システム。
5.第2の幅は、10nm〜300nmである、実施形態4に記載の光学システム。
6.ユニットセルのピッチは、10nm〜1μmである、実施形態1に記載の光学システム。
7.ユニットセルのピッチは、10nm〜500nmである、実施形態6に記載の光学システム。
8.第1のナノビームおよび第2のナノビームは、10nm〜1μmの間隙によって分離される、実施形態1に記載の光学システム。
9.間隙は、10nm〜300nm幅である、実施形態8に記載の光学システム。
10.光学的に透過性の基板は、ガラスを含む、実施形態1に記載の光学システム。
11.第1および第2のナノビームは、シリコンを含む、実施形態1に記載の光学システム。
12.第1および第2のナノビームは、窒化ケイ素を含む、実施形態11に記載の光学システム。
13.光学的に透過性の基板およびメタ表面は、偏光ビームスプリッタを形成する、実施形態1に記載の光学システム。
14.光学的に透過性の基板は、導波管プレートである、実施形態1に記載の光学システム。
15.光学的に透過性の基板のスタックをさらに含み、ユニットセルの特徴の寸法は、基板間で変動する、実施形態14に記載の光学システム。
16.メタ表面は、内部結合光学要素であり、光を内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、メタ表面は、光を再指向し、全内部反射によって基板を通して光を伝搬するように構成される、実施形態1に記載の光学システム。
17.メタ表面は、外部結合光学要素であり、メタ表面は、光を基板から抽出するように構成される、実施形態1に記載の光学システム。
18.光学システムであって、
メタ表面を含む光学的に透過性の基板であって、メタ表面は、
複数のユニットセルを含む格子であって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって第1のナノビームから離間される側方に伸長の第2のナノビームであって、第2のナノビームは、第1の幅より大きい第2の幅を有する、第2のナノビームと
を含む、格子
を含む、基板と、
反射体であって、反射体および基板は、格子の反対側にある、反射体と
を含む、光学システム。
19.反射体は、格子から離間される、実施形態18に記載の光学システム。
20.格子は、光学的に透過性の材料内に内蔵される、実施形態19に記載の光学システム。
21.光学的に透過性の材料は、反射体を格子から離間させる、実施形態20に記載の光学システム。
22.基板は、
メタ表面と反対の基板の側の第2のメタ表面であって、第2のメタ表面は、
複数の第2のユニットセルを含む第2の格子であって、各第2のユニットセルは、上下図に見られるように、
側方に伸長の第3のナノビームと、
間隙によって第3のナノビームから離間される側方に伸長の第4のナノビームであって、第4のナノビームは、第3のナノビームより広い、第4のナノビームと
を含む、第2の格子
を含む、第2のメタ表面
を含む、実施形態18に記載の光学システム。
23.ユニットセルは、側方に伸長かつ相互に平行である、実施形態18に記載の光学システム。
24.メタ表面は、可視波長の入射光を第1の回折次数に回折するように構成される、実施形態18に記載の光学システム。
25.第2の幅は、10nm〜1μmである、実施形態18に記載の光学システム。
26.第2の幅は、10nm〜300nmである、実施形態25に記載の光学システム。
27.ユニットセルのピッチは、10nm〜1μmである、実施形態18に記載の光学システム。
28.ユニットセルのピッチは、10nm〜500nmである、実施形態27に記載の光学システム。
29.第1のナノビームおよび第2のナノビームは、10nm〜1μmの間隙によって分離される、実施形態18に記載の光学システム。
30.間隙は、10nm〜300nm幅である、実施形態29に記載の光学システム。
31.光学的に透過性の基板は、ガラスを含む、実施形態18に記載の光学システム。
32.第1および第2のナノビームは、シリコンを含む、実施形態18に記載の光学システム。
33.第1および第2のナノビームは、窒化ケイ素を含む、実施形態32に記載の光学システム。
34.光学的に透過性の基板およびメタ表面は、偏光ビームスプリッタを形成する、実施形態18に記載の光学システム。
35.光学的に透過性の基板は、導波管プレートである、実施形態27に記載の光学システム。
36.光学的に透過性の基板のスタックをさらに含み、ユニットセルの特徴の寸法は、基板間で変動する、実施形態35に記載の光学システム。
37.メタ表面は、内部結合光学要素であり、光を内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、メタ表面は、光を再指向し、全内部反射によって基板を通して光を伝搬するように構成される、実施形態18に記載の光学システム。
38.メタ表面は、外部結合光学要素であり、メタ表面は、光を基板から抽出するように構成される、実施形態18に記載の光学システム。
39.メタ表面を形成するための方法であって、該方法は、
光学的に透過性の基板を提供することと、
光学的に透過性の層を基板にわたって提供することと、
光学的に透過性の層をパターン化し、複数のユニットセルを含む格子を画定することであって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって第1のナノビームから離間される側方に伸長の第2のナノビームであって、第2のナノビームは、第1の幅より大きい第2の幅を有する、第2のナノビームと
を含み、第1および第2のナノビームの高さは、
10nm〜450nmであり、基板の屈折率は、3.3を上回り、
10nm〜1μmであり、屈折率は、3.3またはそれ未満である、ことと
を含む、方法。
40.光学的に透過性の層をパターン化することは、
レジスト層を光学的に透過性の層にわたって提供することと、
パターンをレジスト層内に画定することと、
パターンをレジスト層から光学的に透過性の層に転写することと
を含む、実施形態39に記載の方法。
41.光学的に透過性の材料を格子間およびそれにわたって堆積させることをさらに含む、実施形態40に記載の方法。
42.反射層を光学的に透過性の材料上に形成することをさらに含む、実施形態41に記載の方法。
43.転写することは、異方性エッチングを実施することを含む、実施形態40に記載の方法。
44.メタ表面を形成するための方法であって、該方法は、
光学的に透過性の基板を提供することと、
複数のユニットセルを含む格子を形成することであって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって第1のナノビームから離間される側方に伸長の第2のナノビームであって、第2のナノビームは、第1の幅より大きい第2の幅を有する、第2のナノビームと
を含む、ことと、
反射材料の層を間隙内およびユニットセル間に提供することと
を含む、方法。
45.反射材料の層を提供することは、反射材料を第1および第2のナノビーム間およびそれにわたって堆積させることを含む、実施形態44に記載の方法。
46.反射材料は、アルミニウムを含む、実施形態45に記載の方法。
47.格子を形成することは、
光学的に透過性の層を基板にわたって堆積させることと、
光学的に透過性の層をパターン化し、格子を画定することと
を含む、実施形態44に記載の方法。
48.光学的に透過性の層をパターン化することは、
レジスト層を光学的に透過性の層にわたって提供することと、
パターンをレジスト層内に画定することと、
パターンをレジスト層から光学的に透過性の層に転写することと
を含む、実施形態47に記載の方法。
49.メタ表面を形成するための方法であって、該方法は、
光学的に透過性の基板を提供することと、
複数のユニットセルを含む格子を形成することであって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって第1のナノビームから離間される側方に伸長の第2のナノビームであって、第2のナノビームは、第1の幅より大きい第2の幅を有する、第2のナノビームと
を含む、ことと、
光学的に透過性のスペーサ材料の層を間隙内およびユニットセル間に堆積させることと、
反射層をスペーサ材料の層上に堆積させることであって、スペーサ材料は、格子を反射層から分離することと
を含む、方法。
50.スペーサ材料は、1〜2の屈折率を有する、実施形態49に記載の方法。
51.光学システムであって、
メタ表面を含む光学的に透過性の基板であって、メタ表面は、
複数のユニットセルを含む格子であって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって第1のナノビームから離間される側方に伸長の第2のナノビームであって、第2のナノビームは、第1の幅より大きい第2の幅を有する、第2のナノビームと
を含み、ユニットセルのピッチは、10nm〜1μmである、格子
を含む、基板
を含む、光学システム。
52.ピッチは、300nm〜500nmである、実施形態51に記載のシステム。
53.メタ表面は、可視波長の入射光を第1の回折次数に回折するように構成される、実施形態51に記載のシステム。
54.ユニットセルは、側方に伸長かつ相互に平行である、実施形態51に記載の光学システム。
55.第2の幅は、10nm〜1μmである、実施形態51に記載の光学システム。
56.第2の幅は、10nm〜300nmである、実施形態55に記載の光学システム。
57.ユニットセルのピッチは、10nm〜1μmである、実施形態51に記載の光学システム。
58.ユニットセルのピッチは、10nm〜500nmである、実施形態57に記載の光学システム。
59.第1のナノビームおよび第2のナノビームは、10nm〜1μmの間隙によって分離される、実施形態51に記載の光学システム。
60.間隙は、10nm〜300nm幅である、実施形態59に記載の光学システム。
61.光学的に透過性の基板は、ガラスを含む、実施形態51に記載の光学システム。
62.第1および第2のナノビームは、シリコンを含む、実施形態51に記載の光学システム。
63. 第1および第2のナノビームは、窒化ケイ素を含む、実施形態62に記載の光学システム。
64.光学的に透過性の基板およびメタ表面は、偏光ビームスプリッタを形成する、実施形態51に記載の光学システム。
65.光学的に透過性の基板は、導波管プレートである、実施形態51に記載の光学システム。
66.光学的に透過性の基板のスタックをさらに含み、ユニットセルの特徴の寸法は、基板間で変動する、実施形態65に記載の光学システム。
67.メタ表面は、内部結合光学要素であり、光を内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、メタ表面は、光を再指向し、全内部反射によって基板を通して光を伝搬するように構成される、実施形態51に記載の光学システム。
68.メタ表面は、外部結合光学要素であり、メタ表面は、光を基板から抽出するように構成される、実施形態51に記載の光学システム。
69.メタ表面を形成するための方法であって、該方法は、
光学的に透過性の基板を提供することと、
光学的に透過性の層を基板にわたって提供することと、
光学的に透過性の層をパターン化し、複数のユニットセルを含む格子を画定することであって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって第1のナノビームから離間される側方に伸長の第2のナノビームであって、第2のナノビームは、第1の幅より大きい第2の幅を有する、第2のナノビームと
を含み、ユニットセルのピッチは、10nm〜1μmである、ことと、
を含む、方法。
70.ピッチは、300nm〜500nmである、実施形態69に記載の方法。
メタ表面は、可視波長の入射光を第1の回折次数に回折するように構成される、実施形態51に記載の方法。
71.光学システムであって、
マルチレベルメタ表面を含む光学的に透過性の基板であって、マルチレベルメタ表面は、
複数のマルチレベルユニットセルを含む格子であって、各ユニットセルは、上下図に見られるように、
ユニットセルの最下レベルには、
第1の幅を有する側方に伸長の第1の最下レベルナノビームと、
第2の幅を有する側方に伸長の第2の最下レベルナノビームであって、第2の幅は、第1の幅より大きい、第2の最下レベルナノビームと、
ユニットセルの最上レベルには、
第1の最下レベルナノビームの上方の側方に伸長の第1の最上レベルナノビームと、
第2の最下レベルナノビームの上方の側方に伸長の第2の最上レベルナノビームと
を含む、格子
を含む、基板
を含む、光学システム。
72.第1および第2の最上レベルナノビームは、第1および第2の最下レベルナノビームと異なる材料を含む、実施形態71に記載の光学システム。
73.第1および第2の最下レベルナノビームは、フォトレジストを含む、実施形態71に記載の光学システム。
74.第1および第2の最下レベルナノビームは、シリコンを含む、実施形態73に記載の光学システム。
75.第1および第2の最下レベルナノビームは、窒化ケイ素を含む、実施形態74に記載の光学システム。
76.第1および第2の最下レベルナノビームは、酸化物を含む、実施形態73に記載の光学システム。
77.第1および第2の最下レベルナノビームは、酸化チタンを含む、実施形態76に記載の光学システム。
78.複数のユニットセルの第1および第2の最下レベルナノビームは、相互に平行に延在する、実施形態71に記載の光学システム。
79.第1の幅は、10nm〜250nmである、実施形態71に記載の光学システム。
80.第2の幅は、10nm〜300nmである、実施形態79に記載の光学システム。
81.ユニットセルのピッチは、300nm〜500nmである、実施形態71に記載の光学システム。
82.第1のナノビームおよび第2のナノビームは、10nm〜300nmの間隙によって分離される、実施形態71に記載の光学システム。
83.光学的に透過性の基板およびメタ表面は、偏光ビームスプリッタを形成する、実施形態71に記載の光学システム。
84.光学的に透過性の基板は、導波管プレートである、実施形態71に記載の光学システム。
85.メタ表面は、内部結合光学要素を形成し、光を内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、メタ表面は、光を再指向し、全内部反射によって基板を通して光を伝搬するように構成される、実施形態71に記載の光学システム。
86.光学的に透過性の基板のスタックをさらに含み、ユニットセルの特徴の寸法は、基板間で変動し、メタ表面は、内部結合光学要素であり、光を内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、メタ表面は、光を再指向し、全内部反射によって基板を通して光を伝搬するように構成される、実施形態84に記載の光学システム。
87.メタ表面は、外部結合光学要素であり、メタ表面は、光を基板から抽出するように構成される、実施形態71に記載の光学システム。
88.格子は、光学的に透過性の材料内に内蔵される、実施形態71に記載の光学システム。
89.メタ表面を形成するための方法であって、該方法は、
光学的に透過性の基板を提供することと、
光学的に透過性の層を基板にわたって提供することと、
光学的に透過性の層をパターン化し、複数の反復ユニットを画定することであって、各反復ユニットは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって第1のナノビームから離間される側方に伸長の第2のナノビームであって、第2のナノビームは、第1の幅より大きい第2の幅を有する、第2のナノビームと
を含む、ことと、
光学的に透過性の材料を第1および第2のナノビーム上およびナノビーム間の間隙の中に堆積させ、光学的に透過性の材料の離間されたプラトーをナノビームの上方に形成することと
を含む、方法。
90.光学的に透過性の材料は、パターン化されたレジストまたは基板のいずれかより高い屈折率を有する、実施形態89に記載の方法。
91.光学的に透過性の層をパターン化することは、レジストをパターン化することを含む、実施形態89に記載の方法。
92.レジストをパターン化することは、パターンをレジストの中にインプリントすることを含む、実施形態91に記載の方法。
93.光学的に透過性の材料を堆積させることは、光学的に透過性の材料をパターン化されたレジスト上にスピンコーティングすることを含む、実施形態91に記載の方法。
94.光学的に透過性の材料を堆積させることは、光学的に透過性の材料の共形性堆積または指向性堆積を実施することを含む、実施形態91に記載の方法。
95.共形性堆積は、光学的に透過性の材料の化学蒸着または原子層堆積を含む、実施形態94に記載の方法。
96.指向性堆積は、光学的に透過性の材料の蒸発またはスパッタリングを含む、実施形態95に記載の方法。
97.第1の幅は、10nm〜250nmである、実施形態89に記載の方法。
98.第2の幅は、10nm〜300nmである、実施形態97に記載の方法。
99.ユニットセルのピッチは、300nm〜500nmである、実施形態89に記載の方法。
100.第1のナノビームおよび第2のナノビームは、10nm〜300nmの間隙によって分離される、実施形態89に記載の光学システム。
101.光学的に透過性の基板は、導波管である、実施形態89に記載の方法。
【0017】
本発明の付加的および他の目的、特徴、および利点は、詳細説明、図、および請求項に説明される。
本発明は、例えば、以下を提供する。
(項目1)
光学システムであって、
メタ表面を含む光学的に透過性の基板であって、上記メタ表面は、上下図に見られるように、
複数のユニットセルを含む格子であって、各ユニットセルは、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって上記第1のナノビームから離間される側方に伸長の第2のナノビームであって、上記第2のナノビームは、上記第1の幅より大きい第2の幅を有する、第2のナノビームと
を含み、上記第1および第2のナノビームの高さは、
10nm〜450nmであり、上記基板の屈折率は、3.3を上回り、
10nm〜1μmであり、上記屈折率は、3.3またはそれ未満である、格子
を含む、基板
を含む、光学システム。
(項目2)
上記ユニットセルは、側方に伸長かつ相互に平行である、項目1に記載の光学システム。
(項目3)
上記メタ表面は、可視波長の入射光を第1の回折次数に回折するように構成される、項目1に記載の光学システム。
(項目4)
上記第2の幅は、10nm〜1μmである、項目1に記載の光学システム。
(項目5)
上記第2の幅は、10nm〜300nmである、項目4に記載の光学システム。
(項目6)
上記ユニットセルのピッチは、10nm〜1μmである、項目1に記載の光学システム。
(項目7)
上記ユニットセルのピッチは、10nm〜500nmである、項目6に記載の光学システム。
(項目8)
上記第1のナノビームおよび上記第2のナノビームは、10nm〜1μmの間隙によって分離される、項目1に記載の光学システム。
(項目9)
上記間隙は、10nm〜300nm幅である、項目8に記載の光学システム。
(項目10)
上記光学的に透過性の基板は、ガラスを含む、項目1に記載の光学システム。
(項目11)
上記第1および第2のナノビームは、シリコンを含む、項目1に記載の光学システム。
(項目12)
上記第1および第2のナノビームは、窒化ケイ素を含む、項目11に記載の光学システム。
(項目13)
上記光学的に透過性の基板および上記メタ表面は、偏光ビームスプリッタを形成する、項目1に記載の光学システム。
(項目14)
上記光学的に透過性の基板は、導波管プレートである、項目1に記載の光学システム。
(項目15)
上記光学的に透過性の基板のスタックをさらに含み、上記ユニットセルの特徴の寸法は、上記基板間で変動する、項目14に記載の光学システム。
(項目16)
上記メタ表面は、内部結合光学要素であり、光を上記内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、上記メタ表面は、上記光を再指向し、全内部反射によって上記基板を通して上記光を伝搬するように構成される、項目1に記載の光学システム。
(項目17)
上記メタ表面は、外部結合光学要素であり、上記メタ表面は、光を上記基板から抽出するように構成される、項目1に記載の光学システム。
(項目18)
光学システムであって、
メタ表面を含む光学的に透過性の基板であって、上記メタ表面は、
複数のユニットセルを含む格子であって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって上記第1のナノビームから離間される側方に伸長の第2のナノビームであって、上記第2のナノビームは、上記第1の幅より大きい第2の幅を有する、第2のナノビームと
を含む、格子
を含む、基板と、
反射体であって、上記反射体および上記基板は、上記格子の反対側にある、反射体と
を含む、光学システム。
(項目19)
上記反射体は、上記格子から離間される、項目18に記載の光学システム。
(項目20)
上記格子は、光学的に透過性の材料内に内蔵される、項目19に記載の光学システム。
(項目21)
上記光学的に透過性の材料は、上記反射体を上記格子から離間させる、項目20に記載の光学システム。
(項目22)
上記基板は、
上記メタ表面と反対の上記基板の側の第2のメタ表面であって、上記第2のメタ表面は、
複数の第2のユニットセルを含む第2の格子であって、各第2のユニットセルは、上下図に見られるように、
側方に伸長の第3のナノビームと、
間隙によって上記第3のナノビームから離間される側方に伸長の第4のナノビームであって、上記第4のナノビームは、上記第3のナノビームより広い、第4のナノビームと
を含む、第2の格子
を含む、第2のメタ表面
を含む、項目18に記載の光学システム。
(項目23)
上記ユニットセルは、側方に伸長かつ相互に平行である、項目18に記載の光学システム。
(項目24)
上記メタ表面は、可視波長の入射光を第1の回折次数に回折するように構成される、項目18に記載の光学システム。
(項目25)
上記第2の幅は、10nm〜1μmである、項目18に記載の光学システム。
(項目26)
上記第2の幅は、10nm〜300nmである、項目25に記載の光学システム。
(項目27)
上記ユニットセルのピッチは、10nm〜1μmである、項目18に記載の光学システム。
(項目28)
上記ユニットセルのピッチは、10nm〜500nmである、項目27に記載の光学システム。
(項目29)
上記第1のナノビームおよび上記第2のナノビームは、10nm〜1μmの間隙によって分離される、項目18に記載の光学システム。
(項目30)
上記間隙は、10nm〜300nm幅である、項目29に記載の光学システム。
(項目31)
上記光学的に透過性の基板は、ガラスを含む、項目18に記載の光学システム。
(項目32)
上記第1および第2のナノビームは、シリコンを含む、項目18に記載の光学システム。
(項目33)
上記第1および第2のナノビームは、窒化ケイ素を含む、項目32に記載の光学システム。
(項目34)
上記光学的に透過性の基板および上記メタ表面は、偏光ビームスプリッタを形成する、項目18に記載の光学システム。
(項目35)
上記光学的に透過性の基板は、導波管プレートである、項目27に記載の光学システム。
(項目36)
上記光学的に透過性の基板のスタックをさらに含み、上記ユニットセルの特徴の寸法は、上記基板間で変動する、項目35に記載の光学システム。
(項目37)
上記メタ表面は、内部結合光学要素であり、光を上記内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、上記メタ表面は、上記光を再指向し、全内部反射によって上記基板を通して上記光を伝搬するように構成される、項目18に記載の光学システム。
(項目38)
上記メタ表面は、外部結合光学要素であり、上記メタ表面は、光を上記基板から抽出するように構成される、項目18に記載の光学システム。
(項目39)
メタ表面を形成するための方法であって、上記方法は、
光学的に透過性の基板を提供することと、
光学的に透過性の層を上記基板にわたって提供することと、
上記光学的に透過性の層をパターン化し、複数のユニットセルを含む格子を画定することであって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって上記第1のナノビームから離間される側方に伸長の第2のナノビームであって、上記第2のナノビームは、上記第1の幅より大きい第2の幅を有する、第2のナノビームと
を含み、上記第1および第2のナノビームの高さは、
10nm〜450nmであり、上記基板の屈折率は、3.3を上回り、
10nm〜1μmであり、上記屈折率は、3.3またはそれ未満である、ことと
を含む、方法。
(項目40)
上記光学的に透過性の層をパターン化することは、
レジスト層を上記光学的に透過性の層にわたって提供することと、
パターンを上記レジスト層内に画定することと、
上記パターンを上記レジスト層から上記光学的に透過性の層に転写することと
を含む、項目39に記載の方法。
(項目41)
光学的に透過性の材料を上記格子間およびそれにわたって堆積させることをさらに含む、項目40に記載の方法。
(項目42)
反射層を上記光学的に透過性の材料上に形成することをさらに含む、項目41に記載の方法。
(項目43)
上記転写することは、異方性エッチングを実施することを含む、項目40に記載の方法。
(項目44)
メタ表面を形成するための方法であって、上記方法は、
光学的に透過性の基板を提供することと、
複数のユニットセルを含む格子を形成することであって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって上記第1のナノビームから離間される側方に伸長の第2のナノビームであって、上記第2のナノビームは、上記第1の幅より大きい第2の幅を有する、第2のナノビームと
を含む、ことと
反射材料の層を上記間隙内および上記ユニットセル間に提供することと
を含む、方法。
(項目45)
上記反射材料の層を提供することは、反射材料を上記第1および第2のナノビーム間およびそれにわたって堆積させることを含む、項目44に記載の方法。
(項目46)
上記反射材料は、アルミニウムを含む、項目45に記載の方法。
(項目47)
上記格子を形成することは、
光学的に透過性の層を上記基板にわたって堆積させることと、
上記光学的に透過性の層をパターン化し、上記格子を画定することと
を含む、項目44に記載の方法。
(項目48)
上記光学的に透過性の層をパターン化することは、
レジスト層を上記光学的に透過性の層にわたって提供することと、
パターンを上記レジスト層内に画定することと、
上記パターンを上記レジスト層から上記光学的に透過性の層に転写することと
を含む、項目47に記載の方法。
(項目49)
メタ表面を形成するための方法であって、上記方法は、
光学的に透過性の基板を提供することと、
複数のユニットセルを含む格子を形成することであって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって上記第1のナノビームから離間される側方に伸長の第2のナノビームであって、上記第2のナノビームは、上記第1の幅より大きい第2の幅を有する、第2のナノビームと
を含む、ことと、
光学的に透過性のスペーサ材料の層を上記間隙内および上記ユニットセル間に堆積させることと、
反射層を上記スペーサ材料の層上に堆積させることであって、上記スペーサ材料は、上記格子を上記反射層から分離する、ことと
を含む、方法。
(項目50)
上記スペーサ材料は、1〜2の屈折率を有する、項目49に記載の方法。
(項目51)
光学システムであって、
メタ表面を含む光学的に透過性の基板であって、上記メタ表面は、
複数のユニットセルを含む格子であって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって上記第1のナノビームから離間される側方に伸長の第2のナノビームであって、上記第2のナノビームは、上記第1の幅より大きい第2の幅を有する、第2のナノビームと
を含み、上記ユニットセルのピッチは、10nm〜1μmである、格子
を含む、基板
を含む、光学システム。
(項目52)
上記ピッチは、300nm〜500nmである、項目51に記載のシステム。
(項目53)
上記メタ表面は、可視波長の入射光を第1の回折次数に回折するように構成される、項目51に記載のシステム。
(項目54)
上記ユニットセルは、側方に伸長かつ相互に平行である、項目51に記載の光学システム。
(項目55)
上記第2の幅は、10nm〜1μmである、項目51に記載の光学システム。
(項目56)
上記第2の幅は、10nm〜300nmである、項目55に記載の光学システム。
(項目57)
上記ユニットセルのピッチは、10nm〜1μmである、項目51に記載の光学システム。
(項目58)
上記ユニットセルのピッチは、10nm〜500nmである、項目57に記載の光学システム。
(項目59)
上記第1のナノビームおよび上記第2のナノビームは、10nm〜1μmの間隙によって分離される、項目51に記載の光学システム。
(項目60)
上記間隙は、10nm〜300nm幅である、項目59に記載の光学システム。
(項目61)
上記光学的に透過性の基板は、ガラスを含む、項目51に記載の光学システム。
(項目62)
上記第1および第2のナノビームは、シリコンを含む、項目51に記載の光学システム。
(項目63)
上記第1および第2のナノビームは、窒化ケイ素を含む、項目62に記載の光学システム。
(項目64)
上記光学的に透過性の基板および上記メタ表面は、偏光ビームスプリッタを形成する、項目51に記載の光学システム。
(項目65)
上記光学的に透過性の基板は、導波管プレートである、項目51に記載の光学システム。
(項目66)
上記光学的に透過性の基板のスタックをさらに含み、上記ユニットセルの特徴の寸法は、上記基板間で変動する、項目65に記載の光学システム。
(項目67)
上記メタ表面は、内部結合光学要素であり、光を上記内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、上記メタ表面は、上記光を再指向し、全内部反射によって上記基板を通して上記光を伝搬するように構成される、項目51に記載の光学システム。
(項目68)
上記メタ表面は、外部結合光学要素であり、上記メタ表面は、光を上記基板から抽出するように構成される、項目51に記載の光学システム。
(項目69)
メタ表面を形成するための方法であって、上記方法は、
光学的に透過性の基板を提供することと、
光学的に透過性の層を上記基板にわたって提供することと、
上記光学的に透過性の層をパターン化し、複数のユニットセルを含む格子を画定することであって、各ユニットセルは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって上記第1のナノビームから離間される側方に伸長の第2のナノビームであって、上記第2のナノビームは、上記第1の幅より大きい第2の幅を有する、第2のナノビームと
を含み、上記ユニットセルのピッチは、10nm〜1μmである、ことと
を含む、方法。
(項目70)
上記ピッチは、300nm〜500nmである、項目69に記載の方法。
上記メタ表面は、可視波長の入射光を第1の回折次数に回折するように構成される、項目51に記載の方法。
(項目71)
光学システムであって、
マルチレベルメタ表面を含む光学的に透過性の基板であって、上記マルチレベルメタ表面は、
複数のマルチレベルユニットセルを含む格子であって、各ユニットセルは、上下図に見られるように、
上記ユニットセルの最下レベルには、
第1の幅を有する側方に伸長の第1の最下レベルナノビームと、
第2の幅を有する側方に伸長の第2の最下レベルナノビームであって、上記第2の幅は、上記第1の幅より大きい、第2の最下レベルナノビームと、
上記ユニットセルの最上レベルには、
上記第1の最下レベルナノビームの上方の側方に伸長の第1の最上レベルナノビームと、
上記第2の最下レベルナノビームの上方の側方に伸長の第2の最上レベルナノビームと
を含む、格子
を含む、基板
を含む、光学システム。
(項目72)
上記第1および第2の最上レベルナノビームは、上記第1および第2の最下レベルナノビームと異なる材料を含む、項目71に記載の光学システム。
(項目73)
上記第1および第2の最下レベルナノビームは、フォトレジストを含む、項目71に記載の光学システム。
(項目74)
上記第1および第2の最下レベルナノビームは、シリコンを含む、項目73に記載の光学システム。
(項目75)
上記第1および第2の最下レベルナノビームは、窒化ケイ素を含む、項目74に記載の光学システム。
(項目76)
上記第1および第2の最下レベルナノビームは、酸化物を含む、項目73に記載の光学システム。
(項目77)
上記第1および第2の最下レベルナノビームは、酸化チタンを含む、項目76に記載の光学システム。
(項目78)
上記複数のユニットセルの上記第1および第2の最下レベルナノビームは、相互に平行に延在する、項目71に記載の光学システム。
(項目79)
上記第1の幅は、10nm〜250nmである、項目71に記載の光学システム。
(項目80)
上記第2の幅は、10nm〜300nmである、項目79に記載の光学システム。
(項目81)
上記ユニットセルのピッチは、300nm〜500nmである、項目71に記載の光学システム。
(項目82)
上記第1のナノビームおよび上記第2のナノビームは、10nm〜300nmの間隙によって分離される、項目71に記載の光学システム。
(項目83)
上記光学的に透過性の基板および上記メタ表面は、偏光ビームスプリッタを形成する、項目71に記載の光学システム。
(項目84)
上記光学的に透過性の基板は、導波管プレートである、項目71に記載の光学システム。
(項目85)
上記メタ表面は、内部結合光学要素を形成し、光を上記内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、上記メタ表面は、上記光を再指向し、全内部反射によって上記基板を通して上記光を伝搬するように構成される、項目71に記載の光学システム。
(項目86)
上記光学的に透過性の基板のスタックをさらに含み、上記ユニットセルの特徴の寸法は、上記基板間で変動し、上記メタ表面は、内部結合光学要素であり、光を上記内部結合光学要素に投影するように構成される画像投入デバイスをさらに含み、上記メタ表面は、上記光を再指向し、全内部反射によって上記基板を通して上記光を伝搬するように構成される、項目84に記載の光学システム。
(項目87)
上記メタ表面は、外部結合光学要素であり、上記メタ表面は、光を上記基板から抽出するように構成される、項目71に記載の光学システム。
(項目88)
上記格子は、光学的に透過性の材料内に内蔵される、項目71に記載の光学システム。
(項目89)
メタ表面を形成するための方法であって、上記方法は、
光学的に透過性の基板を提供することと、
光学的に透過性の層を上記基板にわたって提供することと、
上記光学的に透過性の層をパターン化し、複数の反復ユニットを画定することであって、各反復ユニットは、上下図に見られるように、
第1の幅を有する側方に伸長の第1のナノビームと、
間隙によって上記第1のナノビームから離間される側方に伸長の第2のナノビームであって、上記第2のナノビームは、上記第1の幅より大きい第2の幅を有する、第2のナノビームと
を含む、ことと、
光学的に透過性の材料を上記第1および第2のナノビーム上および上記ナノビーム間の間隙の中に堆積させ、上記光学的に透過性の材料の離間されたプラトーを上記ナノビームの上方に形成することと
を含む、方法。
(項目90)
上記光学的に透過性の材料は、上記パターン化されたレジストまたは上記基板のいずれかより高い屈折率を有する、項目89に記載の方法。
(項目91)
上記光学的に透過性の層をパターン化することは、レジストをパターン化することを含む、項目89に記載の方法。
(項目92)
上記レジストをパターン化することは、上記パターンを上記レジストの中にインプリントすることを含む、項目91に記載の方法。
(項目93)
上記光学的に透過性の材料を堆積させることは、上記光学的に透過性の材料を上記パターン化されたレジスト上にスピンコーティングすることを含む、項目91に記載の方法。
(項目94)
上記光学的に透過性の材料を堆積させることは、上記光学的に透過性の材料の共形性堆積または指向性堆積を実施することを含む、項目91に記載の方法。
(項目95)
上記共形性堆積は、上記光学的に透過性の材料の化学蒸着または原子層堆積を含む、項目94に記載の方法。
(項目96)
上記指向性堆積は、上記光学的に透過性の材料の蒸発またはスパッタリングを含む、項目95に記載の方法。
(項目97)
上記第1の幅は、10nm〜250nmである、項目89に記載の方法。
(項目98)
上記第2の幅は、10nm〜300nmである、項目97に記載の方法。
(項目99)
上記ユニットセルのピッチは、300nm〜500nmである、項目89に記載の方法。
(項目100)
上記第1のナノビームおよび上記第2のナノビームは、10nm〜300nmの間隙によって分離される、項目89に記載の光学システム。
(項目101)
上記光学的に透過性の基板は、導波管である、項目89に記載の方法。