【実施例】
【0048】
以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明は、その要旨を超えない限り、下記の実施例によって何ら限定されるものではない。なお、成分量に関して「部」及び「%」と記載しているものは、特に断らない限り質量基準である。平均粒子径は、ナノ粒子粒度分布測定器(商品名「UPA−EX250」、日機装社製)を使用して測定した。
【0049】
[実施例1]
(1)材料の調製
<α置換βジケトンの合成>
α置換βジケトンとして、3−メチル−2,4−ペンタンジオンを合成した。
【0050】
【化3】
【0051】
温度計、還流管、滴下ろうと及び攪拌装置を備えた反応容器に、炭酸カリウム100部(塩基触媒)、アセトン200部(溶媒)を加えて攪拌を行った。続いて、攪拌しながらアセチルアセトン100部(基質)を加えて、その後ヨ−ドメタン200部(反応物)を滴下して水浴で55〜60℃に保ちながら6時間反応させた。その後、吸引ろ過を行い、不溶成分を除去して得られたろ液を、ロータリーエバポレーターを用いて濃縮し、得られた濃縮液を減圧蒸留することによって、3−メチル−2,4−ペンタンジオンを得た。
【0052】
<トリフルオロ酢酸マグネシウムゾル溶液の調製>
【0053】
【化4】
【0054】
温度計、滴下ろうと及び攪拌装置を備えた反応容器に、マグネシウムジエトキシド5部(基質)、2−エチル1−ブタノ−ル119部(溶剤)、3−メチル−2,4−ペンタンジオン9部(安定化剤)を加えて100rpmで攪拌を行った。続いて、攪拌しながらトリフルオロ酢酸(反応物)11部を85分かけて滴下した後、水浴で25℃に保ちながら反応を行い、トリフルオロ酢酸マグネシウムゾル溶液を得た。
【0055】
(2)光学膜の製造
基板(スライドガラス 水縁磨 材質:ソーダガラス 角型 3t×40×40mm)をイソプロピルアルコールで30分間超音波洗浄、乾燥させた後、30分間オゾン洗浄、基板洗浄用スプレーでゴミを取り除き、コーティング用ガラス基板とした。このコーティング用ガラス基板上に、上記トリフルオロ酢酸マグネシウムゾル溶液0.3mlを、スピンコート装置(商品名:「1H−D7」、ミカサ(株)製)を用い、回転数4000pm、90秒間でスピンコートした。その後、250℃にて2時間焼成し、光学膜を製造した(表1中、層構成A)。
【0056】
[実施例2]
仕込み量を、マグネシウムジエトキシド17部、2−エチル1−ブタノール82部、3−メチル−2,4−ペンタンジオン9部、トリフルオロ酢酸(反応物)36部に変更した以外は、実施例1と同様の方法にて、トリフルオロ酢酸マグネシウムゾル溶液を調製した。そして、実施例1と同じ方法にて成膜して、光学膜を製造した。
【0057】
[実施例3]
仕込み量を、マグネシウムジエトキシド4部、2−エチル1−ブタノール123部、3−メチル−2,4−ペンタンジオン9部、トリフルオロ酢酸(反応物)8部に変更した以外は、実施例1と同様にして、トリフルオロ酢酸マグネシウムゾル溶液を調製した。そして、実施例1と同じ方法にて成膜して、光学膜を製造した。
【0058】
[実施例4]
仕込み量を、マグネシウムジエトキシド20部、2−エチル1−ブタノール74部、3−メチル−2,4−ペンタンジオン9部、トリフルオロ酢酸(反応物)41部に変更した以外は、実施例1と同様にして、トリフルオロ酢酸マグネシウムゾル溶液を調製した。そして、実施例1と同じ方法にて成膜して、光学膜を製造した。
【0059】
[実施例5]
(1)材料の調製
<中空粒子液の調製>
中空シリカスラリーIPA分散液(日揮触媒化成株式会社製 スルーリア1110、平
均フェレ径55nm、固形分濃度20.5wt%、)4.5重量部に1−エトキシ−2−プロパノール9.00重量部100mlのナスフラスコに入れ、エバポレーターにて濃縮し、溶媒を1−エトキシ−2−プロパノールに置換した。その後、1−エトキシ−2−プロパノール11.0重量部、1−ブトキシ−2−プロパノール15.0重量部、2―エチルブタノール13.5重量部添加して、1.9wt%の中空粒子液を調製した。
【0060】
<バインダー液の調製>
シリコーンレジン(信越化学工業株式会社製 KR−311)1質量部にキシレン75質量部添加し、0.8wt%のバインダー液を調製した。
【0061】
なお、トリフルオロ酢酸マグネシウムゾル溶液は、実施例2と同様の方法にて調製した。
【0062】
(2)光学膜の製造
実施例1と同じ方法にて成膜したフッ化マグネシウム層の上に、上記中空粒子液0.3mlを、スピンコート装置を用い、回転数2000rpm、90秒間でスピンコートした。その上にバインダー液0.3mlを、スピンコート装置を用い、回転数2000rpm、90秒間でスピンコートし、200℃で2時間加熱処理を施し光学膜を得た(表1中、層構成B)。
【0063】
[実施例6]
(1)材料の調製
<シリカ粒子分散溶液の調製>
温度計及び攪拌装置を備えた反応容器に、ケイ酸エチル95部(基質)、0.1%塩酸水溶液85部を加え、水浴を20℃に保ちながら200rpmで攪拌し60分間反応させた。得られた溶液を耐熱容器に移し、200℃のオーブンで2時間縮合反応を進めバルク状のシリカを得た。得られたシリカを、ボールミル(入江商会社製V−1ML)を用い鋼球ボールにてポット内で粉砕し、粉砕したシリカ粉末20部を2−プロパノール180部に分散させた。得られたシリカ分散溶液を、湿式粉砕装置(株式会社スギノマシン社製 HJP−25001)にてさらに微粒子化し、固形分10wt%(平均粒子径13nm)のシリカ粒子分散溶液を得た。
【0064】
なお、トリフルオロ酢酸マグネシウムゾル溶液は、実施例2と同様の方法にて調製した。また、バインダー液は、実施例5と同じ方法にて調製した。
【0065】
(2)光学膜の製造
実施例1と同じ方法にて成膜したフッ化マグネシウム層の上に、上記シリカ粒子溶液0.3mlを、スピンコート装置を用い、回転数2000rpm、90秒間でスピンコートした。その上に、バインダー液0.3mlを、スピンコート装置を用い、回転数2000rpm、90秒間でスピンコートし、200℃で2時間加熱処理を施し光学膜を得た(表1中、層構成C)。
【0066】
[実施例7]
(1)材料の調製
<ZrO
2分散溶液の調製>
温度計、滴下ろうと及び攪拌装置を備えた反応容器に、ジルコニウムテトラ−n−ブトキシド30部(基質)、2−エチル−1−ブタノ−ル70部(溶剤)、3−メチル−2,4−ペンタンジオン5部(安定化剤)を加えて60rpmで攪拌を行った。これとは別に、温度計及び攪拌装置を備えた反応容器に、0.01Nの塩酸2部(酸触媒)、2−エチル−1−ブタノ−ル130部(溶剤)、1−エトキシ−2−プロパノール90部(溶剤)を加えて、振とうすることで酸触媒溶液を調整した。調整した酸触媒溶液を、上記ジルコニウムテトラ−n−ブトキシド溶液に加えて120rpmで攪拌することで、ZrO
2分散溶液を得た。
【0067】
なお、トリフルオロ酢酸マグネシウムゾル溶液は、実施例2と同様の方法で調製した。
【0068】
(2)光学膜の製造
基板(スライドガラス 水縁磨 材質:ソーダガラス 角型 3t×40×40mm)をイソプロピルアルコールで30分間超音波洗浄、乾燥させた後、30分間オゾン洗浄することによって基板洗浄用スプレーでゴミを取り除き、コーティング用ガラス基板とした。このコーティング用ガラス基板上に、上記ZrO
2分散溶液0.3mlを、スピンコート装置(商品名:「1H−D7」、ミカサ(株)製)を用い、回転数2000rpm、60秒間でスピンコートし、200℃にて2時間焼成した。その膜上に上記トリフルオロ酢酸マグネシウムゾル溶液0.3mlを、スピンコート装置を用い、回転数2000rpm、90秒間でスピンコートし250℃で2時間焼成させた。その膜上にさらに、前記工程を繰り返すことによってZrO
2層とフッ化マグネシウム層が繰り返された12層の光学膜を形成した(表1中、層構成D)。
【0069】
[実施例8]
(1)材料の調製
トリフルオロ酢酸マグネシウムゾル溶液は、実施例2と同じ方法にて調製した。また、ZrO
2分散溶液は、実施例6と同様にして分散溶液を調製した。
【0070】
(2)光学膜の製造
実施例6と同様にして12層の光学膜を形成した最上層に、実施例5と同様にして調整した中空粒子溶液0.3mlを、スピンコート装置を用い、回転数2000rpm、60秒間でスピンコートし200℃で2時間焼成し光学膜を形成した(表1中、層構成E)。
【0071】
なお、各実施例の層構成(下記の表1に示されるA〜Eの層)を表3に示す。
【0072】
【表1】
【0073】
[実施例9]
溶剤を2−エチル1−ブタノール88部、安定化剤を3−メチル−2,4−ペンタンジオン3部に変更した以外は、実施例2と同様にしてトリフルオロ酢酸マグネシウムゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0074】
[実施例10]
溶剤を2−エチル1−ブタノール85部、安定化剤を3−メチル−2,4−ペンタンジオン6部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0075】
[実施例11]
溶剤を2−エチル1−ブタノール90部、安定化剤を3−メチル−2,4−ペンタンジオン1部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0076】
[実施例12]
溶剤を2−エチル1−ブタノール77部、安定化剤を3−メチル−2,4−ペンタンジオン14部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0077】
[実施例13]
安定化剤の3−メチル−2,4−ペンタンジオンを、5−メチルヘキサン−2,4−ジオンに変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0078】
[実施例14]
溶剤をブチルカルビトール82部に変更した以外は前述の実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0079】
[実施例15]
溶剤を1−ブトキシ−2−プロパノール82部に変更した以外は前述の実施例2と同様にしてゾルを調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0080】
[実施例16]
溶剤をメチルカルビトール82部に変更した以外は前述の実施例2と同様にしてゾルを調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0081】
[実施例17]
溶剤をn−ペンタノ−ル25部、酢酸58部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0082】
[実施例18]
溶剤をn−ペンタノ−ル41部、シクロヘキサノン41部からなる混合溶媒に変更した以外は前述の実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0083】
[実施例19]
溶剤をn−ペンタノ−ル4部、酢酸78部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0084】
[実施例20]
溶剤をメチルカルビトール82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0085】
[実施例21]
溶剤をn−ヘキサノ−ル82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0086】
[実施例22]
溶剤をN,N−ジメチルホルムアミド33部、1−ブトキシ−2−プロパノ−ル49部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0087】
[実施例23]
溶剤をメチルイソブチルカルビト−ル82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0088】
[実施例24]
溶剤をn−ペンタノ−ル82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0089】
[実施例25]
溶剤をn−ペンタノ−ル41部、メチルイソブチルケトン41部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0090】
[実施例26]
溶剤を1−メトキシ−2−プロパノ−ル82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0091】
[実施例27]
溶剤をメチルイソブチルケトン82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0092】
[実施例28]
溶剤をエチレングリコ−ル82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0093】
[実施例29]
溶剤をヘキサン82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0094】
[実施例30]
溶剤をエチレングリコ−ル49部、トルエン33部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0095】
[実施例31]
溶剤をエチレングリコ−ル12部、イソオクチルアルコ−ル70部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0096】
[実施例32]
溶剤をイソオクチルアルコ−ル49部、ジエチルエ−テル33部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0097】
[実施例33]
溶剤をエタノ−ル82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0098】
[実施例34]
溶剤を酢酸ブチル82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0099】
[実施例35]
溶剤をN,N−ジメチルホルムアミド82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0100】
[実施例36]
溶剤をトルエン41部、2−プロパノ−ル41部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0101】
[実施例37]
溶剤をシクロオクタノン82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0102】
[実施例38]
溶剤をシクロヘキサノン82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0103】
[実施例39]
溶剤をイソオクチルアルコ−ル54部、ヘキサン29部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0104】
[実施例40]
溶剤をメチルエチルケトン82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0105】
[実施例41]
溶剤をブチルセロソルブ54部、キシレン29部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0106】
[実施例42]
溶剤をイソオクチルアルコ−ル49部、アセトン33部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0107】
[実施例43]
溶剤をイソオクチルアルコ−ル66部、メタノ−ル16部からなる混合溶媒に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0108】
[実施例44]
溶剤をトルエン82部に変更した以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0109】
[比較例1]
安定化剤の3−メチル−2,4−ペンタンジオンを加えないこと以外は、実施例2と同様にしてゾル溶液を調製した。そして、実施例1と同様の方法にて光学膜を形成した。
【0110】
[比較例2]
安定化剤の3−メチル−2,4−ペンタンジオンを無水酢酸に変更したこと以外は、実施例2と同様にしてゾル溶液を調製した。そして、前述の実施例1と同様の方法にて光学膜を形成した。
【0111】
[参考例1]
<光学膜の製造>
基板(スライドガラス 水縁磨 材質:ソーダガラス 角型 3t×40×40mm)をイソプロピルアルコールで30分間超音波洗浄、乾燥させた後、30分間オゾン洗浄することによって基板洗浄用スプレーでゴミを取り除き、コーティング用ガラス基板とした。このコーティング用ガラス基板上に、真空蒸着法によりフッ化マグネシウム層を形成した。
【0112】
表2にトリフルオロ酢酸マグネシウム溶液の組成および溶液中のトリフルオロ酢酸マグネシウム粒子の平均粒子径を示す。
【0113】
【表2-1】
【0114】
【表2-2】
【0115】
<光学膜の評価>
光学膜の評価は、以下の4つの点に関して行った。
(1)フッ化マグネシウム層の屈折率(評価1)
光学膜中のフッ化マグネシウム層の屈折率は、自動多入射角分光エリプソメーターV−VASE(ジェーエーウーラム社製)を用い、波長550nmの値を測定した。結果を表3に示す。
【0116】
(2)反射率(評価2)
反射分光膜厚計(大塚電子株式会社製 FE3000)を用い、入射角0度において、350nm〜550nmの波長領域における、光学膜の反射率挙動を測定し、以下に示す評価基準にしたがって光学膜の反射率を評価した。結果を表3に示す。また、各光学膜の層構成については表3に示す通りである。
【0117】
◎ :波長350nm〜550nmの範囲における最大反射率が1%未満であり、且つ、波長350nm〜550nmの範囲における反射率の差(反射率最大値−反射率最小値)が0.5%以下である。
○ :波長350nm〜550nmの範囲における最大反射率が1%未満であり、且つ、波長350nm〜550nmの範囲における反射率の差(反射率最大値−反射率最小値)が0.5%を超え1%未満である。
△ :波長350nm〜550nmの範囲における最大反射率が1%以上2%未満である。
△×:波長350nm〜550nmの範囲における最大反射率が2%以上4%未満である。
× :波長350nm〜550nmの範囲における最大反射率が4%以上である。
【0118】
(3)透過率(評価3)
分光光度計UV−Vis(株式会社日立ハイテクサイエンス製 U−3310)を用い、入射角0度において、350nm〜550nmの波長領域における、光学膜の透過率挙動を測定し、以下に示す評価基準にしたがって光学膜の透過率を評価した。結果を表3に示す。また、各光学膜の層構成については表1に示す通りである。
【0119】
◎ :波長350nm〜550nmの範囲における最低透過率が98%以上である。
○ :波長350nm〜550nmの範囲における最低透過率が96%以上98%未満である。
△ :波長350nm〜550nmの範囲における最低透過率が94%以上96%未満である。
× :波長350nm〜550nmの範囲における最低透過率が94%未満である。
【0120】
(4)成膜性(評価4)
フッ化マグネシウム層の成膜後の外観を、目視およびレーザー顕微鏡VK−9510(株式会社キーエンス社製)にて観察し、以下の評価基準にしたがって、フッ化マグネシウム層の成膜性を評価した。結果を表3に示す。
【0121】
○ :均一に成膜できている
△ :部分的に膜厚の差がある
× :塗工されていない部分がある。
【0122】
【表3-1】
【0123】
【表3-2】
【0124】
表3に示す評価結果から明らかなように、実施例1〜44の光学膜では、緻密な膜で成膜性が良好であり、透明性と反射防止性能に優れた光学膜を得ることが出来た。