(58)【調査した分野】(Int.Cl.,DB名)
導電材分散体中の炭素繊維濃度x(質量%)と、動的粘弾性測定による導電材分散体の複素弾性率y(Pa)とが、下記式(1)、式(2)、及び式(3)の関係を満足することを特徴とする、請求項1に記載の導電材分散体。
y<8x (1)
y<20 (2)
0.1≦x≦10 (3)
請求項1〜5のいずれかに記載の導電材分散体を用いて形成した膜、請求項6記載のバインダー樹脂含有導電材分散体を用いて形成した膜、及び請求項7記載の電極膜用スラリーを用いて形成した膜からなる群から選択される少なくとも1種を含む、電極膜。
【発明を実施するための形態】
【0026】
以下、本発明の実施形態である導電材分散体、バインダー樹脂含有導電材分散体、電極膜用スラリー、電極膜、及び非水電解質二次電池等について詳しく説明する。本発明は以下の実施形態に限定されるものではなく、本発明には要旨を変更しない範囲において実施される実施形態も含まれる。
【0027】
<導電材分散体>
本発明の導電材分散体は、炭素繊維を含む導電材と、共重合体Aを含む分散剤と、アミド系有機溶媒とを含有する。すなわち、導電材分散体は、共重合体Aと、アミド系有機溶媒と、炭素繊維とを少なくとも含有し、塩基、酸等の二次電池電極に配合され得る任意の成分を更に含有してもよい。
【0028】
<導電材>
本発明の導電材は、少なくとも炭素繊維を含み、任意でその他の導電材を含んでもよい。炭素繊維の中でも、カーボンナノチューブや気相成長炭素繊維のような炭素超短繊維を含むことがより好ましく、カーボンナノチューブを含むことがより好ましい。その他の導電材としては、例えば金、銀、銅、銀メッキ銅粉、銀−銅複合粉、銀−銅合金、アモルファス銅、ニッケル、クロム、パラジウム、ロジウム、ルテニウム、インジウム、ケイ素、アルミニウム、タングステン、モルブテン、白金等の金属粉、これらの金属で被覆した無機物粉体、酸化銀、酸化インジウム、酸化スズ、酸化亜鉛、酸化ルテニウム等の金属酸化物の粉末、これらの金属酸化物で被覆した無機物粉末、及びカーボンブラック、グラファイト等の炭素材料が挙げられる。その他の導電材は、1種または2種以上組み合わせて用いてもよい。その他の導電材を用いる場合、分散剤の吸着性能の観点から、カーボンブラックが好ましい。本発明において、上記炭素繊維、カーボンブラック、及びその他炭素系導電材を総じて「炭素系導電材」と称する。導電材は、後述する電極活物質とは異なる物質(材料)である。
【0029】
カーボンナノチューブ(CNT)は、平面的なグラファイトを円筒状に巻いた形状、単層カーボンナノチューブ、多層カーボンナノチューブを含み、これらが混在してもよい。単層カーボンナノチューブは一層のグラファイトが巻かれた構造を有する。多層カーボンナノチューブは、二又は三以上の層のグラファイトが巻かれた構造を有する。また、カーボンナノチューブの側壁はグラファイト構造でなくともよい。また、例えば、アモルファス構造を有する側壁を備えるカーボンナノチューブも本明細書ではカーボンナノチューブである。
【0030】
カーボンナノチューブの形状は限定されない。かかる形状としては、針状、円筒チューブ状、魚骨状(フィッシュボーン又はカップ積層型)、トランプ状(プレートレット)及びコイル状を含む様々な形状が挙げられる。本実施形態においてカーボンナノチューブの形状は、中でも、針状、又は、円筒チューブ状であることが好ましい。カーボンナノチューブは、単独の形状、または2種以上の形状の組合せであってもよい。
【0031】
カーボンナノチューブの形態は、例えば、グラファイトウィスカー、フィラメンタスカーボン、グラファイトファイバー、極細炭素チューブ、カーボンチューブ、カーボンフィブリル、カーボンマイクロチューブ及びカーボンナノファイバー等が挙げられる。カーボンナノチューブは、これらの単独の形態又は二種以上を組み合わせられた形態を有していてもよい。
【0032】
カーボンブラックは、例えば、アセチレンブラック、ファーネスブラック、中空カーボンブラック、チャンネルブラック、サーマルブラック、ケッチェンブラック等が挙げられる。また、カーボンブラックは、中性、酸性、塩基性のいずれでもよく、酸化処理されたカーボンブラックや、黒鉛化処理されたカーボンブラックを使用してもよい。
【0033】
炭素系導電材の炭素純度は一般的なCHN元素分析により求めることができ、炭素系導電材中の炭素原子の含有率(質量%)で表される。炭素純度は、炭素系導電材の質量を基準として(炭素系導電材の質量を100質量%として)、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。炭素純度を上記範囲にすることにより、二次電池に用いる際に不純物によってデンドライトが形成されショートが起こる等の不具合を防ぐことができる。
【0034】
前記炭素系導電材中に含まれる金属量は、炭素系導電材100質量%に対して、10質量%未満が好ましく、5質量%未満がより好ましく、2質量%未満がさらに好ましい。特に、カーボンナノチューブに含まれる金属としては、カーボンナノチューブを合成する際に触媒として使用される金属や金属酸化物が挙げられる。具体的には、鉄、コバルト、ニッケル、アルミニウム、マグネシウム、シリカ、マンガンやモリブデン等の金属、金属酸化物やこれらの複合酸化物が挙げられる。
【0035】
また、前記炭素系導電材は、製造過程で使用される触媒のうち鉄金属元素を50ppm以下、より具体的には、20ppm以下の含有量で含んでもよい。このように、炭素系導電材内に残留する不純物としての鉄含有量を著しく減少させることで、電極内の副反応の恐なしに、より優れた伝導性を示すことができる。導電材内に残留する金属不純物の含有量は、高周波誘導結合プラズマ(inductively coupled plasma、ICP)を用いて分析することができる。また、前記炭素系導電材は、鉄金属元素を含まなくてもよい。
【0036】
導電材のBET比表面積は、20〜1,000m
2/gであることが好ましく、30〜500m
2/gであることがより好ましい。
【0037】
導電材分散体に含まれる炭素繊維の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。炭素繊維の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、10質量%以下が好ましく、8質量%以下がより好ましい。
【0038】
また、導電材分散体に含まれる導電材の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。導電材の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、30質量%以下が好ましく、20質量%以下がより好ましい。導電材分散体に含まれる導電材の含有量を上記範囲にすることで、沈降やゲル化を起こすことなく、導電材を良好に、かつ安定に存在させることができる。また、導電材の含有量は、導電材の比表面積や分散媒への親和性等を考慮して、適当な粘性を示す導電材分散体が得られるよう適宜調整することが好ましい。
【0039】
例えば、良好な分散性と安定性との両立の観点から、導電材の含有量は、10質量%以下であってもよく、好ましくは8質量%以下である。本発明では、導電材として高比表面積の炭素繊維(CNTなど)を使用するため、前記範囲であることが好ましい。又は、例えば、導電材の濃度が高い場合であっても共重合体Aによって良好な分散性と安定性とを両立できることから、導電材の含有量は5質量%以上であってもよく、10質量%超であってもよい。
【0040】
<分散剤>
分散剤は、ニトリル基含有構造単位を含む共重合体Aを含有する。共重合体Aは、ニトリル基含有構造単位を含有しているため、優れた柔軟性及び結着力による安定性を発揮することができる。従って、導電材分散体を電極活物質と混合して電極膜用スラリーを膜状に形成する電極膜中でも良好な導電ネットワークを維持させることができる。
【0041】
ニトリル基含有構造単位は、ニトリル基を含む構造単位であり、好ましくはニトリル基により置換されたアルキレン構造を含む構造単位を含み、より好ましくはニトリル基により置換されたアルキレン構造のみからなる構造単位を含む。アルキレン構造は、直鎖状又は分岐状のアルキレン構造であることが好ましい。ニトリル基含有構造単位は、ニトリル基により置換されたアルキル構造を含む(又はのみからなる)構造単位を更に含んでもよい。ニトリル基含有構造単位に含まれるニトリル基の数は、1つであることが好ましい。
【0042】
ニトリル基含有構造単位は、下記一般式(1A)で表される構造単位を含むことが好ましい。
【0044】
一般式(1A)中、nは、2以上の整数を表す。nは、6以下の整数であることが好ましく、4以下の整数であることがより好ましく、3以下の整数であることが更に好ましい。特に、nは、2であることが好ましい。
本明細書において「*」は、他の構造との結合部を表す。
【0045】
ニトリル基含有構造単位は、下記一般式(1B)で表される構造単位を含むことが好ましい。
【0047】
一般式(2B)中、Rは、水素原子又はメチル基を表す。Rは、水素原子であることが好ましい。
【0048】
共重合体Aへのニトリル基含有構造単位の導入方法は、特に限定されないが、ニトリル基含有単量体を含有する単量体組成物を用いて重合反応により共重合体を調製する方法が好ましい。最終的に得られる共重合体Aは、ニトリル基含有単量体単位をニトリル基含有構造単位として含む。ニトリル基含有構造単位を形成し得るニトリル基含有単量体としては、重合性炭素−炭素二重結合とニトリル基とを含む単量体が挙げられる。例えば、ニトリル基を有するα,β−エチレン性不飽和基含有化合物が挙げられ、具体的には、アクリロニトリル、メタクリロニトリルなどが挙げられる。特に、共重合体A同士及び/又は共重合体Aと被分散物(被吸着物)との分子間力を高める観点から、ニトリル基含有単量体は、アクリロニトリルを含むことが好ましい。ニトリル基含有単量体は、1種を単独で、又は、2種以上を組み合わせて用いることができる。
【0049】
ニトリル基含有構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。ニトリル基含有構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、50質量%以下であることが好ましく、46質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。ニトリル基含有構造単位の含有量を上記範囲にすることで、被分散物への吸着性及び分散媒への親和性をコントロールすることができ、被分散物を分散媒中に安定に存在させることができる。また、共重合体Aの電解液への親和性もコントロールでき、電池内で共重合体Aが電解液に溶解して電解液の抵抗を増大させるなどの不具合を防ぐことができる。
【0050】
また、共重合体Aは脂肪族炭化水素構造単位を含むことが好ましい。脂肪族炭化水素構造単位は、脂肪族炭化水素構造を含む構造単位であり、好ましくは脂肪族炭化水素構造のみからなる構造単位である。脂肪族炭化水素構造は、飽和脂肪族炭化水素構造を少なくとも含み、不飽和脂肪族炭化水素構造を更に含んでもよい。脂肪族炭化水素構造は、直鎖状脂肪族炭化水素構造を少なくとも含むことが好ましく、分岐状脂肪族炭化水素構造を更に含んでもよい。
【0051】
脂肪族炭化水素構造単位の例として、アルキレン構造単位、アルケニレン構造単位、アルキル構造単位、アルカントリイル構造単位、アルカンテトライル構造単位等が挙げられる。脂肪族炭化水素構造単位は、少なくともアルキレン構造単位を含むことが好ましい。
【0052】
アルキレン構造単位は、アルキレン構造を含む構造単位であり、好ましくはアルキレン構造のみからなる構造単位である。アルキレン構造は、直鎖状アルキレン構造又は分岐状アルキレン構造であることが好ましい。
【0053】
アルキレン構造単位は、下記一般式(2A)で表される構造単位を含むことが好ましい。
【0055】
一般式(2A)中、nは、1以上の整数を表す。nは、2以上の整数であることが好ましく、3以上の整数であることがより好ましく、4以上の整数であることが特に好ましい。nは、6以下の整数であることが好ましく、5以下の整数であることがより好ましい。特に、nは、4であることが好ましい。
【0056】
アルキレン構造単位は、下記一般式(2B)で表される構造単位を含むことが好ましい。
【0058】
一般式(2B)中、nは、1以上の整数を表す。nは、2以上の整数であることが好ましく、3以上の整数であることがより好ましい。nは、5以下の整数であることが好ましく、4以下の整数であることがより好ましい。特に、nは、3であることが好ましい。
【0059】
アルキレン構造単位は、下記一般式(2C)で表される構造単位を含むことが好ましい。
【0061】
一般式(2C)中、nは、1以上の整数を表す。nは、4以下の整数であることが好ましく、3以下の整数であることがより好ましく、2以下の整数であることが更に好ましい。特に、nは、2であることが好ましい。
【0062】
共重合体Aへの脂肪族炭化水素構造単位の導入方法は、特に限定はされないが、例えば以下の(2a)又は(2b)の方法が挙げられる。
【0063】
(2a)の方法では、共役ジエン単量体を含有する単量体組成物を用いて重合反応により共重合体を調製する。調製した共重合体は、共役ジエン単量体に由来する単量体単位を含む。本発明において、「共役ジエン単量体に由来する単量体単位」を「共役ジエン単量体単位」という場合があり、他の単量体に由来する単量体単位についても同様に省略する場合がある。次いで、共役ジエン単量体単位に水素添加することで、共役ジエン単量体単位の少なくとも一部をアルキレン構造単位に変換する。以下、「水素添加」を「水素化」という場合がある。最終的に得られる共重合体Aは、共役ジエン単量体単位を水素化した単位をアルキレン構造単位として含む。
【0064】
なお、共役ジエン単量体単位は、炭素−炭素二重結合を1つ持つ単量体単位を少なくとも含む。例えば、共役ジエン単量体単位である1,3−ブタジエン単量体単位は、cis−1,4構造を持つ単量体単位、trans−1,4構造を持つ単量体単位、及び1,2構造を持つ単量体単位からなる群から選択される少なくとも1種の単量体単位を含み、2種以上の単量体単位を含んでいてもよい。また、共役ジエン単量体単位は、炭素−炭素二重結合を持たない単量体単位であって、分岐点を含む単量体単位を更に含んでいてもよい。本明細書において、「分岐点」とは分岐ポリマーにおける分岐点をいい、共役ジエン単量体単位が分岐点を含む単量体単位を含む場合、上記の調製した共重合体及び共重合体Aは分岐ポリマーである。
【0065】
(2b)の方法では、α−オレフィン単量体を含む単量体組成物を用いて重合反応により共重合体を調製する。調製した共重合体は、α−オレフィン単量体単位を含む。最終的に得られる共重合体Aは、α−オレフィン単量体単位をアルキレン構造単位として含む。
【0066】
これらの中でも、共重合体の製造が容易であることから(2a)の方法が好ましい。共役ジエン単量体の炭素数は、4以上であり、好ましくは4以上6以下である。共役ジエン単量体としては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエンなどの共役ジエン化合物が挙げられる。中でも、1,3−ブタジエンが好ましい。アルキレン構造単位は、共役ジエン単量体単位を水素化して得られる構造単位(水素化共役ジエン単量体単位)を含むことが好ましく、1,3−ブタジエン単量体単位を水素化して得られる構造単位(水素化1,3−ブタジエン単量体単位)を含むことがより好ましい。共役ジエン単量体は、1種を単独で、又は、2種以上を組み合わせて用いることができる。
【0067】
水素化は、共役ジエン単量体単位を選択的に水素化できる方法であることが好ましい。水素化の方法として、例えば、油層水素添加法又は水層水素添加法などの公知の方法が挙げられる。
【0068】
水素化は、通常の方法により行うことができる。水素化は、例えば、共役ジエン単量体単位を有する共重合体を、適切な溶媒に溶解させた状態において、水素化触媒の存在下で水素ガス処理することにより行うことができる。水素化触媒としては、鉄、ニッケル、パラジウム、白金、銅等が挙げられる。
【0069】
(2b)の方法において、α−オレフィン単量体の炭素数は、2以上であり、好ましくは3以上であり、より好ましくは4以上である。α−オレフィン単量体の炭素数は、6以下であることが好ましく、5以下であることがより好ましい。α−オレフィン単量体としては、例えば、エチレン、プロピレン、1−ブテン、1−ヘキセンなどのα−オレフィン化合物が挙げられる。α−オレフィン単量体は、1種を単独で、又は、2種以上を組み合わせて用いることができる。
【0070】
アルキレン構造単位は、直鎖状アルキレン構造を含む構造単位、及び、分岐状アルキレン構造を含む構造単位からなる群から選択される少なくとも1種を含むことが好ましく、直鎖状アルキレン構造のみからなる構造単位、及び、分岐状アルキレン構造のみからなる構造単位からなる群から選択される少なくとも1種を含むことがより好ましく、上記式(2B)で表される構造単位、及び、上記式(2C)で表される構造単位からなる群から選択される少なくとも1種を含むことが更に好ましい。
【0071】
アルキレン構造単位は、直鎖状アルキレン構造を含む構造単位と、分岐状アルキレン構造を含む構造単位とを含んでもよい。アルキレン構造単位が、直鎖状アルキレン構造を含む構造単位と、分岐状アルキレン構造を含む構造単位とを含む場合、分岐状アルキレン構造の含有量は、アルキレン構造単位の質量を基準として(すなわち、アルキレン構造単位の質量を100質量%とした場合に)、70質量%以下であることが好ましく、65質量%以下であることがより好ましい。特に、20質量%以下であることが好ましく、18質量%以下であることがより好ましく、15質量%以下であることが更に好ましい。共重合体Iが、直鎖状アルキレン構造を含む構造単位と、分岐状アルキレン構造を含む構造単位とを含む場合、分岐状アルキレン構造の含有量は、アルキレン構造単位の質量を基準として(すなわち、アルキレン構造単位の質量を100質量%とした場合に)、例えば、1質量%以上であり、5質量%以上あってもよく、更に10質量%以上であってもよい。
【0072】
脂肪族炭化水素構造単位において、アルキレン構造単位の含有量は、脂肪族炭化水素構造単位の合計の質量を基準として(すなわち、脂肪族炭化水素構造単位の質量を100質量%とした場合に)、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。アルキレン構造単位の含有量は、脂肪族炭化水素構造単位の合計の質量を基準として(すなわち、脂肪族炭化水素構造単位の質量を100質量%とした場合に)、例えば、100質量%未満であり、99.5質量%以下、99質量%以下、又は98質量%以下であってもよい。アルキレン構造単位の含有量は、100質量%であってもよい。
【0073】
脂肪族炭化水素構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることが更に好ましい。脂肪族炭化水素構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Iの質量を100質量%とした場合に)、85質量%未満であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。
【0074】
さらに、共重合体Aは、任意の構造単位を含んでもよい。任意の構造単位として、アミド基含有構造単位;カルボキシル基含有構造単位;アルケニレン構造単位;アルキル構造単位;アルカントリイル構造単位、アルカンテトライル構造単位等の分岐点を含む構造単位などが挙げられる。分岐点を含む構造単位は、分岐状アルキレン構造を含む構造単位及び分岐状アルキル構造を含む構造単位とは異なる構造単位である。
【0075】
アミド基含有構造単位は、アミド基を含む構造単位であり、好ましくはアミド基により置換されたアルキレン構造を含む構造単位を含み、より好ましくはアミド基により置換されたアルキレン構造のみからなる構造単位を含む。アルキレン構造は、直鎖状又は分岐状のアルキレン構造であることが好ましい。アミド基含有構造単位は、アミド基により置換されたアルキル構造を含む(又は、のみからなる)構造単位を更に含んでもよい。アミド基含有構造単位に含まれるアミド基の数は、1つであることが好ましい。
【0076】
アミド基含有構造単位は、下記一般式(3A)で表される構造単位を含むことが好ましい。
【0078】
一般式(3A)中、nは、2以上の整数を表す。nは、6以下の整数であることが好ましく、4以下の整数であることがより好ましく、3以下の整数であることが更に好ましい。特に、nは、2であることが好ましい。R’は、それぞれ独立に、水素原子又は置換基を表す。置換基は、アルキル基又はヒドロキシアルキル基であることが好ましい。R’は、少なくとも1つが水素原子であることが好ましく、2つが水素原子であることがより好ましい。
【0079】
アミド基含有構造単位は、下記一般式(3B)で表される構造単位を含むことが好ましい。
【0081】
一般式(3B)中、Rは、水素原子又はメチル基を表す。Rは、水素原子であることが好ましい。R’は、それぞれ独立に、水素原子又は置換基を表す。置換基は、アルキル基又はヒドロキシアルキル基であることが好ましい。R’は、少なくとも1つが水素原子であることが好ましく、2つが水素原子であることがより好ましい。
【0082】
共重合体Aへのアミド基含有構造単位の導入方法は、特に限定はされないが、例えば、アミド基含有単量体を含有する単量体組成物を用いて重合反応により共重合体を調製することができる。調製した共重合体は、アミド基含有単量体単位を含む。最終的に得られる共重合体Aは、アミド基含有単量体単位をアミド基含有構造単位として含む。
【0083】
アミド基含有単量体としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミドなどのモノアルキル(メタ)アクリルアミド類;N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド等などのジアルキル(メタ)アクリルアミド類;N−(2−ヒドロキシエチル)(メタ)アクリルアミド、N−(2−ヒドロキシプロピル)(メタ)アクリルアミド、N−(2−ヒドロキシブチル)(メタ)アクリルアミドなどのN−(ヒドロキシアルキル)(メタ)アクリルアミド;ダイアセトン(メタ)アクリルアミド;アクリロイルモルホリン等が挙げられる。本明細書において、「(メタ)アクリル」とは、アクリル又はメタクリルを表す。特に、アミド基含有単量体は、アクリルアミド、メタクリルアミド、及びN,N−ジメチルアクリルアミドからなる群から選択される少なくとも1種を含むことが好ましい。アミド基含有単量体は、1種を単独で、又は、2種以上を組み合わせて用いることができる。
【0084】
アミド基含有構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましい。アミド基含有構造単位の含有量が上記範囲以下であると、共重合体A同士の水素結合が強くなりすぎることによって起こり得る、導電材分散体が貯蔵中にゲル化するという問題を防ぐことができる。
【0085】
カルボキシル基含有構造単位は、カルボキシル基を含む構造単位であり、好ましくはカルボキシル基により置換されたアルキレン構造を含む構造単位を含み、より好ましくはカルボキシル基により置換されたアルキレン構造のみからなる構造単位を含む。アルキレン構造は、直鎖状又は分岐状のアルキレン構造であることが好ましい。カルボキシル基含有構造単位は、カルボキシル基により置換されたアルキル構造を含む(又は、のみからなる)構造単位を更に含んでもよい。カルボキシル基含有構造単位に含まれるカルボキシル基の数は、1つ又は2つであることが好ましい。共重合体Aにカルボキシル基含有構造単位を含ませることで、被分散物への吸着力を向上させるとともに、導電材分散体の粘性を低下させ、分散効率を向上させることができる。
【0086】
カルボキシル基含有構造単位は、下記一般式(4A)で表される構造単位を含むことが好ましい。
【0088】
一般式(4A)中、nは、2以上の整数を表す。nは、6以下の整数であることが好ましく、4以下の整数であることがより好ましく、3以下の整数であることが更に好ましい。特に、nは、2であることが好ましい。
【0089】
カルボキシル基含有構造単位は、下記一般式(4B)で表される構造単位を含むことが好ましい。
【0091】
一般式(4B)中、Rは、水素原子又はメチル基を表す。Rは、水素原子であることが好ましい。
【0092】
カルボキシル基含有構造単位の導入方法は、特に限定はされないが、例えば、以下の(4a)又は(4b)の方法が挙げられる。
【0093】
(4a)の方法では、カルボキシル基含有単量体を含有する組成物を用いて重合反応により共重合体を調製する。調製した共重合体は、カルボキシル基含有単量体単位を含む。最終的に得られる共重合体Aは、カルボキシル基含有単量体単位をカルボキシル基含有構造単位として含む。
【0094】
(4b)の方法では、まず(3a)の方法などによりアミド基含有構造単位を含む共重合体を調製する。次いで、アミド基含有構造単位に含まれるアミド基を、酸性雰囲気下で加水分解することで、アミド基含有構造単位をカルボキシル基含有構造単位に変換する。最終的に得られる共重合体Aは、アミド基含有構造単位に含まれるアミド基を加水分解により変性した単位をカルボキシル基含有構造単位として含む。
【0095】
(4a)の方法において、カルボキシル基含有単量体としては、例えば、(メタ)アクリル酸、クロトン酸、イソクロトン酸などの不飽和モノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、グルタコン酸、イタコン酸などの不飽和ジカルボン酸等が挙げられる。特に、カルボキシル基含有単量体は、アクリル酸及びマレイン酸からなる群から選択される少なくとも1種を含むこと好ましい。カルボキシル基含有単量体は、1種を単独で、又は、2種以上を組み合わせて用いることができる。
【0096】
(4b)の方法において、酸性雰囲気下にするために、無機酸及び有機酸からなる群から選ばれる少なくとも1種の酸を用いることができる。
【0097】
無機酸としては、塩酸、硝酸、リン酸、硫酸、ホウ酸、フッ化水素酸等が挙げられる。有機酸としては、ギ酸、酢酸、クエン酸、シュウ酸、コハク酸、リンゴ酸、安息香酸、ベンゼンスルホン酸等が挙げられる。これらの中でも、コハク酸及びクエン酸が好ましい。
【0098】
酸の使用量は、共重合体の質量を基準として0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。酸の使用量は、共重合体の質量を基準として10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。使用量が少なすぎると、加水分解によるアミド基の変性が起こりにくい傾向がある。使用量が多すぎると、分散装置及び/又は電池内部の腐食の原因となり得る。
【0099】
カルボキシル基含有構造単位の含有量は、共重合体Aの質量を基準として(すなわち、共重合体Aの質量を100質量%とした場合に)、1質量%未満が好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましい。カルボキシル基含有構造単位の含有量が上記範囲未満(又は以下)であると、共重合体A同士の水素結合が強くなりすぎることによって起こり得る、後述する導電材分散体が貯蔵中にゲル化するという問題を防ぐことができる。
【0100】
アルケニレン構造単位は、アルケニレン構造を含む構造単位であり、好ましくはアルケニレン構造のみからなる構造単位である。アルケニレン構造は、直鎖状アルケニレン構造又は分岐状アルケニレン構造であることが好ましい。
【0101】
アルケニレン構造単位は、直鎖状アルケニレン構造を含む構造単位、及び、分岐状アルケニレン構造を含む構造単位からなる群から選択される少なくとも1種を含むことが好ましく、直鎖状アルケニレン構造のみからなる構造単位、及び、分岐状アルケニレン構造のみからなる構造単位からなる群から選択される少なくとも1種を含むことがより好ましい。
【0102】
例えば、上記(2a)の方法を経て共重合体Aを得る場合、共重合体Aには、単位内に炭素−炭素二重結合を持つ共役ジエン単量体単位が、水素添加されることなく分子内に残ることがある。最終的に得られる共重合体Aは、単位内に炭素−炭素二重結合を持つ共役ジエン単量体単位をアルケニレン構造単位として含んでもよい。
【0103】
アルキル構造単位は、アルキル構造を含む構造単位(但し、分岐状アルキレン構造単位等の他の脂肪族炭化水素構造単位、ニトリル基含有構造単位、アミド基含有構造単位、及びカルボキシル基含有構造単位には該当しない構造単位である。)であり、好ましくはアルキル構造のみからなる構造単位である。アルキル構造は、直鎖状アルキル構造又は分岐状アルキル構造であることが好ましい。
【0104】
アルキル構造単位は、直鎖状アルキル構造を含む構造単位、及び、分岐状アルキル構造を含む構造単位からなる群から選択される少なくとも1種を含むことが好ましく、直鎖状アルキル構造のみからなる構造単位、及び、分岐状アルキル構造のみからなる構造単位からなる群から選択される少なくとも1種を含むことがより好ましい。
【0105】
例えば、上記(2a)又は(2b)の方法を経て共重合体Aを得る場合、共重合体Aには、共重合体Aの末端基として、好ましくは、水素化共役ジエン単量体単位又はα−オレフィン単量体単位が少なくとも導入されることが好ましい。最終的に得られる共重合体Aは、これらの単量体単位をアルキル構造単位として含んでもよい。
【0106】
アルカントリイル構造単位は、アルカントリイル構造を含む構造単位であり、好ましくはアルカントリイル構造のみからなる構造単位である。アルカンテトライル構造単位は、アルカンテトライル構造を含む構造単位であり、好ましくはアルカンテトライル構造のみからなる構造単位である。
【0107】
例えば、上記(2a)の方法を経て共重合体Aを得る場合、共重合体Aには、共役ジエン単量体単位が、単位内に炭素−炭素二重結合を持たない単量体単位であって、分岐点を含む単量体単位として分子内に導入されることがある。この場合、最終的に得られる共重合体Aは分岐ポリマーであり、共役ジエン単量体単位をアルカントリイル構造単位、アルカンテトライル構造単位等の分岐点を含む脂肪族炭化水素構造単位として含んでもよい。脂肪族炭化水素構造単位が分岐点を含む構造単位を含む場合、共重合体Aは分岐ポリマーである。分岐ポリマーは、網目ポリマーであってもよい。分岐点を含む構造単位を含む共重合体Aは、被分散物に三次元的に吸着することができるため、分散性と安定性をより向上させることができる。
【0108】
共重合体Aの好ましい態様として、以下が挙げられる。
・共重合体Aに含まれる脂肪族炭化水素構造単位、ニトリル基含有構造単位の合計の含有量が、共重合体Aの質量を基準として80質量%以上100質量%以下である共重合体A。合計の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上である。
・共重合体Aに含まれる脂肪族炭化水素構造単位、ニトリル基含有構造単位、アミド基含有構造単位の合計の含有量が、共重合体Aの質量を基準として80質量%以上100質量%以下である共重合体A。合計の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上である。
・共重合体Aに含まれる脂肪族炭化水素構造単位、ニトリル基含有構造単位、アミド基含有構造単位、及びカルボキシル基含有構造単位の合計の含有量が、共重合体Aの質量を基準として80質量%以上100質量%以下である共重合体A。合計の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上である。
【0109】
本明細書において、構造単位の含有量は、単量体の使用量、NMR(核磁気共鳴)及び/又はIR(赤外分光法)測定を利用して求めることができる。
【0110】
本発明の共重合体Aは、ムーニー粘度(ML
1+4,100℃)が70以下であることが好ましい。ムーニー粘度(ML
1+4,100℃)が70以下である共重合体Aは、導電材として炭素繊維を含む分散体の分散性、安定性ハンドリング性、をより向上させることができる。本発明における「ムーニー粘度(ML
1+4,100℃)」は、JIS K6300−1に準拠して温度100℃で測定することができる。
【0111】
共重合体Aのムーニー粘度は、70以下であることが好ましく、65以下であることが好ましく、60以下であることがより好ましく、50以下であることが更に好ましい。共重合体Aのムーニー粘度が高すぎる場合、共重合体Aの炭素繊維表面への吸着力が低く、凝集力の強い炭素繊維を分散させることができず、均一な導電材分散体を調製することが困難となる恐れがある。また、得られる導電材分散体は高粘度となるため、原料由来で混入する金属異物を磁石による除鉄や、ろ過、遠心分離等の方法で効率よく除去できず、残存金属異物による電池性能が低下する恐れがある。
【0112】
共重合体Aのムーニー粘度は以下の方法によって調製することができるが、特に限定はされない。例えば共重合体Aの組成(例えば、構造単位種や含有量、水素化率)、構造(例えば直鎖率)、分子量、調製条件(例えば、重合温度、分子量調整剤量)などを変更することでムーニー粘度を調整することができる。
【0113】
分子量調整剤は、例えば、オクチルメルカプタン、ノニルメルカプタン、デシルメルカプタン、ドデシルメルカプタン、3−メルカプト−1,2−プロパンジオール等のアルキルメルカプタン類、チオグリコール酸オクチル、チオグリコール酸ノニル、チオグリコール酸−2−エチルヘキシル等のチオグリコール酸エステル類、2,4−ジフェニル−4−メチル−1−ペンテン、1−メチル−4−イソプロピリデン−1−シクロヘキセン、α−ピネン、β−ピネン等が挙げられる。
【0114】
共重合体Aの調製に用いられる重合反応は、乳化重合反応であることが好ましく、通常の乳化重合の方法を用いることができる。乳化重合に使用する乳化剤(界面活性剤)、重合開始剤、キレート剤、酸素捕捉剤、分子量調整剤等の重合薬剤は、従来公知のそれぞれの薬剤が使用でき、特に限定されない。例えば、乳化剤としては、通常、アニオン系又はアニオン系とノニオン(非イオン)系の乳化剤が使用される。
【0115】
アニオン系乳化剤としては、例えば、牛脂脂肪酸カリウム、部分水添牛脂脂肪酸カリウム、オレイン酸カリウム、オレイン酸ナトリウム等の脂肪酸塩;ロジン酸カリウム、ロジン酸ナトリウム、水添ロジン酸カリウム、水添ロジン酸ナトリウム等の樹脂酸塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩等が挙げられる。ノニオン系乳化剤としては、例えば、ポリエチレングリコールエステル型、ポリプロピレングリコールエステル型、エチレンオキサイドとプロピレンオキサイドのブロック共重合体等のプルロニック型等の乳化剤が挙げられる。
【0116】
重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩等の熱分解型開始剤;t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、オクタノイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ化合物;これらと二価の鉄イオン等の還元剤とからなるレドックス系開始剤等が挙げられる。これらの中でもレドックス系開始剤が好ましい。開始剤の使用量は、例えば、単量体の全量に対して0.01〜10質量%の範囲である。
【0117】
乳化重合反応は、連続式又は回分式のいずれでもよい。重合温度は、低温〜高温重合のいずれでもよいが、好ましくは0〜50℃、更に好ましくは0〜35℃である。また、単量体の添加方法(一括添加、分割添加等)、重合時間、重合転化率等も特に限定されない。転化率は85質量%以上が好ましく、90質量%以上であることがより好ましい。
【0118】
共重合体Aの重量平均分子量は、5,000以上が好ましく、10,000以上がより好ましく、50,000以上が更に好ましい。共重合体Aの重量平均分子量は、400,000以下が好ましく、350,000以下がより好ましく、300,000以下が更に好ましい。共重合体Aの重量平均分子量が、5,000以上、かつ、400,000以下である場合、被分散物への吸着性及び分散媒への親和性が良好となり、分散体の安定性が向上する傾向がある。重量平均分子量は、ポリスチレン換算の重量平均分子量であり、ゲルバーミエーションクロマトグラフィ(GPC)により測定できる。具体的には実施例に記載の方法により測定すればよい。
【0119】
分散剤は、少なくとも共重合体Aを含有する。分散剤は、任意の重合体、任意の共重合体等を更に含んでもよい。分散剤における共重合体Aの含有量は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがより好ましい。分散剤における共重合体Aの含有量は100質量%であってもよく、この場合、分散剤は共重合体Aのみからなる。
【0120】
導電材分散体に含まれる分散溶媒は、実質的にアミド系有機溶媒からなる。溶媒はアミド系有機溶媒であれば特に限定されないが、共重合体Aを溶解できる溶媒であることが好ましく、アミド系有機溶媒のいずれか1種からなる溶媒、又は、アミド系有機溶媒のいずれか2種以上からなる混合溶媒であることが好ましい。
【0121】
アミド系有機溶媒としては、N−メチル−2−ピロリドン(NMP)、N−エチル−2−ピロリドン(NEP)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルカプロラクタムなどが挙げられる。特に、N−メチル−2−ピロリドン及びN−エチル−2−ピロリドンからなる群から選択される少なくとも1種を含むことがより好ましい。
【0122】
導電材分散体は、実質的に水を含まないことが好ましい。本発明において、実質的に水を含まない、とは意図して水を添加しないことを意味する。共重合体Aの質量を基準として、5質量%未満であることが好ましく、1質量%未満が更に好ましい。水が大量に含まれると共重合体Aの被分散物への吸着性が低下し、被分散物を分散溶媒中に安定に存在させることができない恐れがある。水含有量を上記範囲とすることで、導電材分散体が貯蔵中にゲル化するという問題を防ぐことができる。
【0123】
本発明の導電材分散体は前述のとおり、実質的に水を含んでいないが、本発明の導電材分散体の「pH」とは、導電材分散体に水を添加することで、水を添加する前の固形分濃度を100%としたとき、水を添加した後の固形分濃度が50%となるように調製し、一般的なpHメーターを用いて測定した値を指し、例えば、以下の方法で測定することができる。
固形分濃度5%の導電材分散体を、ディスパーなどで攪拌しながら、導電材分散体の固形分濃度が2.5%になるように水を添加する。均一に攪拌した後、25℃にて、卓上型pHメーター(セブンコンパクトS220Expert Pro、メトラー・トレド製)を用いることで、導電材分散体のpHを測定することができる。
本発明の導電材分散体は上述のpHが9.0以上であることを特徴とする。導電材分散体のpHは、9.0以上11.0以下が好ましく、9.0以上10.5以下がより好ましい。pHが上記範囲を上回ると、電池内での各種原料及び外装材等の腐食、またはバインダーのゲル化といった問題が生じやすくなる。
【0124】
導電材分散体のpHは、塩基を添加することで、あるいは塩基性を示す導電材を使用することで調整することができる。塩基を添加して調整する場合、添加する塩基としては、電解液に対する溶解度が低い化合物を用いることができ、具体的には、無機塩基、及び、有機水酸化物(有機塩基)からなる群から選ばれる少なくとも一種の塩基を用いることができる。
【0125】
無機塩基としては、例えば、アルカリ金属又はアルカリ土類金属の、塩化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、リン酸塩、タングステン酸塩、バナジウム酸塩、モリブデン酸塩、ニオブ酸塩、又はホウ酸塩;及び、水酸化アンモニウム等が挙げられる。これらの中でも容易にカチオンを供給できる観点から、アルカリ金属又はアルカリ土類金属の水酸化物が好ましい。アルカリ金属の水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。アルカリ土類金属の水酸化物としては、例えば、水酸化カルシウム、水酸化マグネシウム等が挙げられる。これらの中でも、水酸化リチウム、水酸化ナトリウム、及び水酸化カリウムからなる群から選択される少なくとも1種を用いることがより好ましい。なお、無機塩基が有する金属は、遷移金属であってもよい。
【0126】
有機水酸化物は、有機カチオンと水酸化物イオンとを含む塩である。有機水酸化物としては、例えば、トリメチル−2−ヒドロキシエチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、セチルトリメチルアンモニウムヒドロキシド、ヘキサデシルトリメチルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、3−トリフルオロメチル−フェニルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等が挙げられる。これらの中でも、トリメチル−2−ヒドロキシエチルアンモニウムヒドロキシド及びテトラメチルアンモニウムヒドロキシドからなる群から選択される少なくとも1種を用いることが特に好ましい。
【0127】
一方、電解液に対する溶解度が高い化合物としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、ジオクチルアミン、トリオクチルアミン、アミノエタノール、アミノプロパノール、アミノブタノール、2−メトキシエチルアミン等が挙げられる。これらの化合物は電解液に溶解するため、電池性能を低下させる恐れがある。また、これらの化合物は分解しやすいことから、分解物が塗膜中に残留する可能性があり、電池中に存在すると初期容量が低下する恐れがある。
【0128】
塩基の使用量は、共重合体Aの質量を基準として1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。塩基の使用量は、共重合体の質量を基準として20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。使用量が少なすぎると、得られる導電材分散体が高粘度化する傾向がある。使用量が多すぎると、得られる導電材分散体の安定性が不良となるおそれがあり、さらに、分散装置及び/又は電池内部の腐食の原因となり得る。
【0129】
pHを所定の値に調整することで分散性が向上する理由は定かではないが、以下の要因が考えられる。
(1)共重合体Aの分散性を高める。
pHを所定の値に調整する目的で塩基を添加することで、共重合体Aのニトリル基含有構造単位に含まれるニトリル基を加水分解しアミド基が形成される。共重合体Aにアミド基含有構造単位を含ませることで、被分散物への吸着力を高めることができる。さらに、アミド基は強い水素結合を形成し得ることから、共重合体Aにアミド基含有構造単位を含ませることで、共重合体Aの分子内に水素結合による架橋構造が導入され、被分散物に缶次元的に吸着することができ、分散性だけでなく安定性にも優れる分散体を得ることができる。
(2)共重合体Aの溶液粘度を低下させる。
共重合体Aは溶媒に溶解させて使用するが、共重合体A溶液の粘度が低いと、凝集力の強い炭素繊維の内部に分散剤が入り込みやすくなり、均一な分散体を得ることができる。
(3)炭素繊維の濡れ性を向上する。
炭素繊維を分散する場合、炭素繊維を溶媒で濡らすことで炭素繊維同士の凝集力を低下させ、その後解砕し、それを安定化させることで分散体として存在することができる。炭素繊維は、他の導電材と比して濡れ性が低いため、炭素繊維を化学処理、あるいは機械的に破砕する等の前処理による濡れ性改善の所作が必要となるが、これら処理によって導電性が低下する恐れがある。pHを所定の値に調整することで炭素繊維の有する導電性を損なうことなく、濡れ性を飛躍的に向上させることができる。
【0130】
導電材分散体における導電材の分散性は、動的粘弾性測定による位相角及び複素弾性率で示すことができる。位相角は、導電材分散体に与えるひずみを正弦波とした場合の応力波の位相ズレを意味している。純弾性体であれば、与えたひずみと同位相の正弦波となるため、位相角0°となる。一方で、純粘性体であれば90°進んだ応力波となる。一般的な粘弾性測定用試料では、位相角が0°より大きく90°より小さい正弦波となり、導電材分散体における導電材の分散性が良好であれば、位相角は純粘性体である90°に近づく。また、導電材分散体の複素弾性率は、導電材の分散性が良好で、導電材分散体が低粘度であるほど小さくなる。
【0131】
動的粘弾性測定による位相角及び複素弾性率は、分散体中の導電材の濃度に依存する。導電材として高比表面積の炭素繊維(CNTなど)を使用する場合、炭素繊維を含む導電材の含有量が少ないほど、得られる分散体は純粘性体に近づくため位相角は90°に近づく。逆に、炭素繊維を含む導電材を高濃度で含む分散体は均一に分散することが困難であり、得られる分散体の位相角は19°未満となる。本発明では、共重合体Aによって良好な分散性と安定性とを両立できることから、導電材の濃度が高い場合であっても周波数1Hzでの位相角が19°以上である導電材分散体を得ることができる。
【0132】
本発明の導電材分散体の、動的粘弾性測定による複素弾性率は、20Pa未満であり、10Pa以下がより好ましく、5Pa以下が更に好ましい。導電材分散体の複素弾性率は、0.01Pa以上が好ましく、0.05Pa以上がより好ましく、0.1Pa以上が更に好ましい。また、導電材分散体の周波数1Hzでの位相角が19°以上であり、30°以上がより好ましく、45°以上が更に好ましい。周波数1Hzでの位相角は、90°以下が好ましく、85°以下がより好ましく、80°以下が更に好ましい。複素弾性率と位相角は、実施例に記載の方法により測定することができる。
【0133】
本発明の導電材分散体は、共重合体Aを含む分散剤の効果により炭素繊維の凝集がほぐされることから、複素弾性率は小さくなる。本実施形態の導電材分散体においては、導電材分散体中の炭素繊維濃度x(質量%)と、動的粘弾性測定による導電材分散体の複素弾性率y(Pa)とが、下記式(1)、式(2)、及び式(3)の関係を満足することが好ましい。
y<8x (1)
y<20 (2)
0.1≦x≦10 (3)
【0134】
すなわち、上記式(1)および(2)より、動的粘弾性測定による導電材分散体の複素弾性率yは20Pa未満であり、かつ、y<8xを満たすことが好ましい。また、上記式(3)より、炭素繊維濃度x(質量%)は0.1≦x≦10の範囲であることが好ましい。
【0135】
前述のように、位相角及び複素弾性率の値によって導電材の分散性を判断することができるため、導電性分散体の好ましい製造方法の態様として、以下の工程 I 及び工程 II を含む製造方法が挙げられる。この製造方法により良好な分散性と安定性とを両立できる導電材分散体を得ることができる。
(工程I)炭素繊維を含む導電材と、共重合体Aを含む分散剤と、分散媒とを混合する工程。
(工程II)工程Iの後、分散処理を行い、レオメーター測定結果が周波数1Hzでの位相角が19°、及び複素弾性率が20Pa未満を示す、分散体を得る工程。
【0136】
導電材としてカーボンナノチューブを含む場合、それを構成する単位層の構造や結晶性、形態、前記単位層からなるカーボンナノチューブの構造や形状、含まれる金属元素の含有量などに応じて物性が異なり得る。しかし、本発明の共重合体Aを含む分散剤を用いて、上述の方法で測定される導電材分散体pHを所定の値にし、更に導電材分散体の位相角及び複素弾性率を所定の値に制御することで、求められる物性を有することができる。
【0137】
導電材分散体の製造方法は特に限定されない。導電材分散体は、例えば、分散剤と、溶媒と、導電材とを混合し、導電材を溶媒中に分散させることにより得ることができる。分散剤、溶媒、及び導電材に加え、任意の成分を混合してもよい。又は、導電材分散体は、例えば、分散剤を溶媒に溶解させた後、導電材を混合し、導電材を溶媒中に分散させることにより得ることができる。分散剤、溶媒、及び導電材に加え、追加溶媒等の任意の成分を混合してもよい。溶媒を混合する場合は、分散剤を溶解させる溶媒と同じ溶媒であることが好ましい。容器に分散剤又は導電材とを加える順序は、特に限定されない。導電材を分散する過程のいずれかの時点で、導電材と共に分散剤が存在していることが好ましい。
【0138】
分散方法としては、ディスパー(分散機)、ホモジナイザー、シルバーソンミキサー、ニーダー、2本ロールミル、3本ロールミル、ボールミル、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、アトライター、プラネタリーミキサー、又は高圧ホモジナイザー等の各種の分散手段を用いる方法が挙げられる。
【0139】
導電材分散体の製造時に金属異物等のコンタミを除く工程を入れることが好ましい。炭素繊維を含む導電材、及び共重合体Aを含む分散剤には、それらの製造工程由来(ラインコンタミや触媒として)の金属異物が含まれている場合が多く、これら金属異物を除去することは、電池の短絡を防ぐために非常に重要となる。金属異物とは、導電材分散体中に粒子状で存在している鉄、ニッケル、クロム等であり、溶解し金属イオン状態で存在しているものは含まない。本発明では、共重合体Aを含む分散剤の効果により、炭素繊維の凝集がほぐされ、得られる導電材分散体の粘度が低くなるため、共重合体Aを分散剤として含まない場合に比して、導電材分散体中の炭素繊維含有濃度が高い場合でも、効率良く金属異物を取り除くことができる。金属異物除去工程における、導電材分散体から粒子状の金属異物を除去する方法は特に限定されず、例えば、フィルターを用いた濾過により除去する方法、振動ふるいにより除去する方法、遠心分離により除去する方法、磁力により除去する方法等が挙げられる。中でも、鉄、ニッケル、クロム等の金属異物は磁性を有するため、磁力により除去する方法が好ましく、磁力により除去する工程とフィルターを用いた濾過により除去する工程を組み合わせる方法がより好ましい。
【0140】
本発明の導電材分散体に含まれる金属異物の種類は特に限定されないが、具体的には、鉄、コバルト、ニッケル、クロム、アルミニウム、マグネシウム、シリカ、マンガンやモリブデン等の金属、金属酸化物やこれらの複合酸化物が挙げられる。
【0141】
磁力により除去する方法としては、金属異物が除去できる方法であれば特に限定はされないが、生産性及び除去効率を考慮すると、導電材分散体の製造ライン中に、磁気フィルターを配置して、導電材組成物を通過させることにより除去する方法が好ましい。
磁気フィルターによって導電材分散体中から金属異物を除去する工程は、1,000ガウス以上の磁束密度以上の磁場を形成する磁気フィルターを通過させることにより行われることが好ましい。磁束密度が低いと金属成分の除去効率が低下するため、好ましくは5,000ガウス以上、磁性の弱いステンレスを除去することを考慮するとさらに好ましくは10,000ガウス以上、最も好ましくは12,000ガウス以上である。
製造ライン中に磁気フィルターを配置する際には、磁気フィルターの上流側に、カートリッジフィルターなどのフィルターにより粗大な異物、あるいは金属粒子を除く工程を含ませることが好ましい。粗大な金属粒子は、濾過する流速によっては、磁気フィルターを通過してしまう恐れがあるためである。また、磁気フィルターは、一回ろ過するのみでも効果はあるが、循環式であることがより好ましい。循環式とすることで、金属粒子の除去効率が向上するためである。
導電材分散体の製造ライン中に、磁気フィルターを配置する場合は、磁気フィルターの配置場所は特に制限されないが、好ましくは導電材分散体を容器に充填する直前、容器への充填前に濾過フィルターによる濾過工程が存在する場合には、濾過フィルターの前に配置することが好ましい。これは、磁気フィルターから金属成分が脱離した場合に、製品への混入を防止するためである。
【0142】
金属含有量は、導電材分散体中の金属異物量は導電材分散体を乾燥した後、高周波誘導結合プラズマ(inductively coupled plasma、ICP)を用いて分析することができる。ICP分析によって検出される鉄、ニッケル、クロムからなる金属含有量は、粒子状で存在している金属異物、及び、溶解し金属イオン状態で存在しているものを含む。すなわち、金属異物の除去工程を経た導電材分散体の金属異物量は、除去しきれなかった金属異物、及び、溶解し金属イオン状態で存在しているものを含む。
【0143】
本発明の導電材分散体に含まれる鉄、ニッケル、クロムからなる金属含有量は、50ppm以下であることが好ましく、20ppm以下であることがさらに好ましい。金属含有量を上記範囲にすることで、電極内の副反応の恐れなしに、より優れた伝導性を示すことができる。金属量の測定は、実施例に記載の方法で行うことができる。
【0144】
<バインダー樹脂含有導電材分散体>
バインダー樹脂含有導電材分散体は、バインダー樹脂と、前記導電材分散体とを含有する。すなわち、バインダー樹脂含有導電材分散体は、前記分散剤と溶媒と導電材とバインダー樹脂とを少なくとも含む。更に換言すると、バインダー樹脂含有導電材分散体は、共重合体Aと、アミド系有機溶媒と、炭素繊維と、バインダー樹脂とを少なくとも含有し、塩基、酸等の任意の成分を更に含有してもよい。バインダー樹脂含有導電材分散体は、バインダー樹脂と導電材分散体とを混合することにより製造することができる。バインダー樹脂と導電材分散体と共に、任意の成分を更に混合してもよい。バインダー樹脂含有導電材分散体の製造時に、前述の導電材分散体で説明した金属異物等のコンタミを除く工程を入れてもよい。本明細書において、前記の「導電材分散体」と「バインダー樹脂含有導電材分散体」とを総称して「導電材分散体」という場合がある。
【0145】
バインダー樹脂は、電極活物質、導電材等の物質間を結合することができる樹脂である。本明細書において、バインダー樹脂は共重合体Aとは異なる。つまり、バインダー樹脂は、共重合体Aを除く樹脂から選択される。バインダー樹脂としては、例えば、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、ビニルピロリドン等を構造単位として含む重合体又は共重合体;ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂等の樹脂;カルボキシメチルセルロースのようなセルロース樹脂;スチレンブタジエンゴム、フッ素ゴムのようなゴム類;ポリアニリン、ポリアセチレンのような導電性樹脂等が挙げられる。また、これらの変性体、混合物、又は共重合体でもよい。これらの中でも、正極膜のバインダー樹脂として使用する場合は、耐性面から分子内にフッ素原子を有する重合体又は共重合体、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、テトラフルオロエチレン等が好ましい。また、負極膜のバインダー樹脂として使用する場合は、密着性が良好なカルボキシメチルセルロース、スチレンブタジエンゴム、ポリアクリル酸等が好ましい。
【0146】
バインダー樹脂の重量平均分子量は、10,000〜2,000,000が好ましく、100,000〜1,000,000がより好ましく、200,000〜1,000,000が更に好ましい。
【0147】
バインダー樹脂含有導電材分散体に含まれる共重合体Aの含有量は、導電材の質量を基準として(導電材の質量を100質量%として)、0.1〜200質量%が好ましく、1〜100質量%がより好ましく、2〜50質量%が更に好ましい。
【0148】
バインダー樹脂含有導電材分散体に含まれる導電材の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましい。
【0149】
バインダー樹脂含有導電材分散体に含まれるバインダー樹脂の含有量は、導電材分散体の質量を基準として(導電材分散体の質量を100質量%として)、0.05〜25質量%が好ましく、0.1〜15質量%がより好ましい。
【0150】
バインダー樹脂含有導電材分散体は、溶媒を含む。溶媒は特に限定されないが、例えば、分散剤組成物の説明において例示した溶媒を用いることができる。また、分散剤組成物に含まれる溶媒と同じ溶媒を用いることが好ましい。
【0151】
<電極膜用スラリー>
電極膜用スラリーは、前記導電材分散体又は前記バインダー樹脂含有導電材分散体と、電極活物質とを含有する。すなわち、電極膜用スラリーは、前記導電材分散体と電極活物質とを少なくとも含有するか、又は、前記バインダー樹脂含有導電材分散体と電極活物質とを少なくとも含有する。更に換言すると、電極膜用スラリーは、共重合体Aと、炭素繊維と、溶媒と、電極活物質とを少なくとも含有し、バインダー樹脂、塩基、酸等の任意の成分を更に含有してもよい。本明細書において、「スラリー」を「合材スラリー」という場合がある。
【0152】
電極活物質とは、電池反応の基となる材料のことである。電極活物質は、起電力から正極活物質と負極活物質に分けられる。
【0153】
正極活物質としては、特に限定はされないが、リチウムイオンを可逆的にドーピング又はインターカレーション可能な材料を用いることができる。例えば、金属酸化物、金属硫化物等の金属化合物等が挙げられる。具体的には、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V
2O
5、V
6O
13、TiO
2等の遷移金属酸化物粉末;層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末;オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料;TiS
2、FeSなどの遷移金属硫化物粉末等が挙げられる。正極活物質は、少なくともNiを含有する物質であることが好ましい。正極活物質は、1種又は複数を組み合わせて使用することもできる。
【0154】
負極活物質としては、リチウムイオンを可逆的にドーピング又はインターカレーション可能な材料を用いることができる。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系;Li
XFe
2O
3、Li
XFe
3O
4、Li
XWO
2(xは0<x<1の数である。)、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系;ポリアセチレン、ポリ−p−フェニレン等の導電性高分子系;高黒鉛化炭素材料等の人造黒鉛、天然黒鉛等の炭素質粉末;樹脂焼成炭素材料などの炭素系材料が挙げられる。負極活物質は、1種又は複数を組み合わせて使用することもできる。
【0155】
電極膜用スラリー中の共重合体Aの含有量は、電極活物質の質量を基準として(電極活物質の質量を100質量%として)、0.01〜10質量%であることが好ましく、0.05〜5質量%であることがより好ましい。
【0156】
電極膜用スラリー中の導電材の含有量は、電極活物質の質量を基準として(電極活物質の質量を100質量%として)、0.01〜10質量%であることが好ましく、0.02〜5質量%であることがより好ましく0.03〜3質量%であることが更に好ましい。
【0157】
電極膜用スラリーがバインダー樹脂を含有する場合、電極膜用スラリー中のバインダー樹脂の含有量は、電極活物質の質量を基準として(電極活物質の質量を100質量%として)、0.1〜30質量%であることが好ましく、0.5〜20質量%であることがより好ましく、1〜10質量%であることが更に好ましい。
【0158】
本実施形態の電極膜用スラリー中の固形分量は、電極膜用スラリーの質量を基準として(電極膜用スラリーの質量を100質量%として)、30〜90質量%であることが好ましく、30〜80質量%であることがより好ましく、40〜75質量%であることが更に好ましい。
【0159】
電極膜用スラリーは、従来公知の様々な方法で作製することができる。例えば、導電材分散体に電極活物質を添加して作製する方法;導電材分散体にバインダー樹脂を添加した後、電極活物質を添加して作製する方法;導電材分散体に電極活物質を添加した後、バインダー樹脂を添加して作製する方法;バインダー樹脂含有導電材分散体に電極活物質を添加して作製する方法などが挙げられる。
【0160】
電極膜用スラリーを作製する方法としては、導電材分散体にバインダー樹脂を添加した後、電極活物質を更に加えて分散させる処理を行う方法が好ましい。分散に使用される分散装置は特に限定されない。導電材分散体の説明において挙げた分散手段を用いて、電極膜用スラリーを得ることができる。共重合体Aはバインダーとしての機能も有するため、バインダー樹脂を加えなくとも電極膜用スラリーを得ることができる。したがって、電極膜用スラリーを作製する方法としては、導電材分散体にバインダー樹脂を添加することなく、電極活物質を加えて分散させる処理を行う方法も好ましい。
【0161】
<電極膜>
電極膜は、前記導電材分散体を用いて形成した膜、前記バインダー樹脂含有導電材分散体を用いて形成した膜、及び、前記電極膜用スラリーを用いて形成した膜からなる群から選択される少なくとも1種を含む。電極膜は、更に、集電体を含んでもよい。例えば、電極膜は、集電体上に電極膜用スラリーを塗工し、乾燥させることで得ることができ、集電体と膜とを含む。本明細書において、「電極膜用スラリーを用いて形成した膜」を「電極合材層」という場合がある。
【0162】
電極膜の形成に用いられる集電体の材質及び形状は特に限定されず、各種二次電池にあったものを適宜選択することができる。例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属又は合金が挙げられる。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化した集電体、穴あき箔状の集電体、又はメッシュ状の集電体も使用できる。
【0163】
集電体上に導電材分散体、バインダー樹脂含有導電材分散体、又はスラリーを塗工する方法としては、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法又は静電塗装法等を挙げることができる。乾燥方法としては、放置乾燥、又は、送風乾燥機、温風乾燥機、赤外線加熱機、若しくは遠赤外線加熱機等を用いる乾燥を挙げることができるが、特にこれらに限定されるものではない。
【0164】
塗工後に、平版プレス、カレンダーロール等による圧延処理を行ってもよい。形成された膜の厚みは、例えば、1μm以上500μm以下であり、好ましくは10μm以上300μm以下である。
【0165】
導電材分散体又はバインダー樹脂含有導電材分散体を用いて形成された膜は、電極合材層と集電体との密着性向上、又は、電極膜の導電性を向上させるために、電極合材層の下地層として用いることも可能である。
【0166】
<非水電解質二次電池>
非水電解質二次電池は、正極と、負極と、電解質とを含み、正極及び負極からなる群から選択される少なくとも1つが、前記電極膜を含む。
【0167】
正極としては、例えば、集電体上に正極活物質を含む電極膜用スラリーを塗工し、乾燥させて膜を作製した電極膜を使用することができる。
【0168】
負極としては、例えば、集電体上に負極活物質を含む電極膜用スラリーを塗工し、乾燥させて膜を作製した電極膜を使用することができる。
【0169】
電解質としては、イオンが移動可能な従来公知の様々なものを使用することができる。例えば、LiBF
4、LiClO
4、LiPF
6、LiAsF
6、LiSbF
6、LiCF
3SO
3、Li(CF
3SO
2)
2N、LiC
4F
9SO
3、Li(CF
3SO
2)
3C、LiI、LiBr、LiCl、LiAlCl、LiHF
2、LiSCN、又はLiBPh
4(ただし、Phはフェニル基である)等リチウム塩を含むものが挙げられるが、これらに限定されない。電解質は非水系の溶媒に溶解して、電解液として使用することが好ましい。
【0170】
非水系の溶媒としては、特に限定はされないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;γ−ブチロラクトン、γ−バレロラクトン、及びγ−オクタノイックラクトン等のラクトン類;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−メトキシエタン、1,2−エトキシエタン、及び1,2−ジブトキシエタン等のグライム類;メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、アセトニトリル等のニトリル類等が挙げられる。これらの溶媒は、それぞれ単独で使用してもよいが、2種以上を混合して使用してもよい。
【0171】
非水電解質二次電池は、セパレーターを含むことが好ましい。セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びこれらに親水性処理を施した不織布が挙げられるが、特にこれらに限定されるものではない。
【0172】
本実施形態の非水電解質二次電池の構造は特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレーターとを備え、ペーパー型、円筒型、ボタン型、積層型等、使用する目的に応じた種々の形状とすることができる。
【実施例】
【0173】
以下に実施例を挙げて、本発明を更に具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、特に断らない限り、「部」は「質量部」、「%」は「質量%」を表す。また、実施例中、「共重合体A」を「共重合体」または「分散剤」という場合がある。さらに、実施例中、「分散剤」と溶媒とを含む「分散剤含有液」を「分散剤溶液」という場合がある。また、本発明では、導電材分散体の金属含有量の測定対象を鉄、ニッケル、クロムとしているが、これに限定されるものではない。
【0174】
<共重合体の重量平均分子量(Mw)の測定>
共重合体の重量平均分子量(Mw)は、RI検出器を装備したゲルパーミエーションクロマトグラフィー(GPC)で測定した。装置としてHLC−8320GPC(東ソー株式会社製)を用い、分離カラムを3本直列に繋ぎ、充填剤には順に東ソー株式会社製「TSK−GEL SUPER AW−4000」、「AW−3000」、及び「AW−2500」を用い、オーブン温度40℃、溶離液として30mMトリエチルアミン及び10mM LiBrのN,N−ジメチルホルムアミド溶液を用い、流速0.6mL/minで測定した。測定サンプルは前記溶離液からなる溶剤を用いて1%の濃度となるように濃度を調整し、20マイクロリットル注入した。重量平均分子量はポリスチレン換算値である。
【0175】
<共重合体の水素添加率の測定>
水素添加率は、前述の全反射測定法による赤外分光分析と同様の方法でIR測定を行い求めた。共役ジエン単量体単位に由来する二重結合は970cm
−1にピークが表れ、水素添加された単結合は723cm
−1にピークが表れることから、この二つのピークの高さの比率から水素添加率を計算した。
【0176】
<共重合体のムーニー粘度(ML
1+4、100℃)の測定>
共重合体Aのムーニー粘度は、それを溶解することができる溶媒を含む共重合体溶液より測定試料を調製して測定する。NMPに溶解している場合、共重合体AのNMP溶液を水で凝固させた後メタノールで洗浄し、温度60℃で12時間真空乾燥し、測定試料とした。測定試料40gを使用し、日本工業規格JIS K6300−1に準拠して温度100℃でL形ローターを使用してムーニー粘度(ML
1+4、100℃)を測定した。
【0177】
<導電材分散体の初期粘度の測定>
粘度値の測定は、B型粘度計(東機産業株式会社製「BL」)を用いて、導電材分散体の温度25℃にて、導電材分散体をヘラで十分に撹拌した後、B型粘度計ローター回転速度60rpmにて直ちに行った。測定に使用したローターは、粘度値が100mPA・s未満の場合はNo.1を、100以上500mPa・s未満の場合はNo.2を、500以上2,000mPa・s未満の場合はNo.3を、2,000以上10,000mPa・s未満の場合はNo.4のローターをそれぞれ用いた。低粘度であるほど分散性が良好であり、高粘度であるほど分散性が不良である。得られた導電材分散体が明らかに分離又は沈降しているものは分散性不良とした。
判定基準
◎:500mPa・s未満(優良)
○:500mPa・s以上2,000mPa・s未満(良)
△:2,000mPa・s以上10,000mPa・s未満(可)
×:10,000mPa・s以上、沈降又は分離(不良)
【0178】
<導電材分散体の複素弾性率及び位相角の測定>
導電材分散体の複素弾性率及び位相角は、直径60mm、2°のコーンにてレオメーター(Thermo Fisher Scientific株式会社製RheoStress1回転式レオメーター)を用い、25℃、周波数1Hzにて、ひずみ率0.01%から5%の範囲で動的粘弾性測定を実施することで評価した。得られた複素弾性率が小さいほど分散性が良好であり、大きいほど分散性が不良である。また、得られた位相角が大きいほど分散性が良好であり、小さいほど分散性が不良である。
複素弾性率 判定基準
◎:5Pa未満(優良)
○:5Pa以上20Pa未満(可)
×:20Pa以上(不良)
××:100Pa以上(極めて不良)
位相角 判定基準
◎:45°以上(優良)
○:30°以上45°未満(良)
△:19°以上30°未満(可)
×:19°未満(不良)
【0179】
<導電材分散体の安定性評価>
貯蔵安定性の評価は、導電材分散体を50℃にて7日間静置して保存した後の、液性状の変化から評価した。液性状の変化は、ヘラで撹拌した際の撹拌しやすさから判断した。
判定基準
○:問題なし(良好)
△:粘度は上昇しているがゲル化はしていない(可)
×:ゲル化している(極めて不良)
【0180】
<導電材分散体の金属含有量測定>
導電材分散体の金属含有量は、高周波誘導結合プラズマ(inductively coupled plasma、ICP)を用いて分析した。導電材分散体を、日本工業規格JIS K 0116;2014に従い酸分解法にて前処理し、ICP発光分析法にて鉄、ニッケル、及びクロムイオン・原子の含有量測定を行った。
【0181】
<正極合材層の導電性評価>
正極用合材スラリーを、ギャップ175μmのアプリケーターを用いてPETフィルム(厚さ100μm)に塗工し、70℃の熱風オーブンで10分、120℃の熱風オーブンで15分乾燥させて、導電性評価用の正極膜を得た。正極合材層の表面抵抗率(Ω/□)は、株式会社三菱化学アナリテック製:ロレスターGP、MCP−T610を用いて測定した。測定後、PETフィルム上に形成した正極合材層の厚みを乗じて、体積抵抗率(Ω・cm)とした。正極合材層の厚みは、膜厚計(株式会社NIKON製、DIGIMICRO MH−15M)を用いて、正極膜中の3点を測定して正極膜の平均値を求め、正極膜の平均値とPETフィルムの膜厚との差として求めた。
判定基準
◎:正極合材層の体積抵抗率(Ω・cm)が10未満(優良)
〇:正極合材層の体積抵抗率(Ω・cm)が10以上20未満(良)
×:正極合材層の体積抵抗率(Ω・cm)が20以上(不良)
【0182】
<非水電解質二次電池のレート特性評価>
非水電解質二次電池を25℃の恒温室内に設置し、充放電装置(北斗電工株式会社製、SM−8)を用いて充放電測定を行った。充電電流10mA(0.2C)にて充電終止電圧4.3Vで定電流定電圧充電(カットオフ電流1mA(0.02C))を行った後、放電電流10mA(0.2C)にて、放電終止電圧3Vで定電流放電を行った。この操作を3回繰り返した後、充電電流10mA(0.2C)にて充電終止電圧4.3Vで定電流定電圧充電(カットオフ電流(1mA(0.02C))を行い、放電電流0.2C及び3Cで放電終止電圧3.0Vに達するまで定電流放電を行って、それぞれ放電容量を求めた。レート特性は0.2C放電容量と3C放電容量の比、以下の式1で表すことができる。
(式1)
レート特性 = 3C放電容量/3回目の0.2C放電容量 ×100 (%)
判定基準
◎:レート特性が80%以上(優良)
〇:レート特性が60%以上80%未満(良)
×:レート特性が30%以上60%未満(不良)
××:レート特性が30%未満(極めて不良)
【0183】
<非水電解質二次電池のサイクル特性評価方法>
非水電解質二次電池を25℃の恒温室内に設置し、充放電装置(北斗電工株式会社製、SM−8)を用いて充放電測定を行った。充電電流25mA(0.5C)にて充電終止電圧4.3Vで定電流定電圧充電(カットオフ電流2.5mA(0.05C))を行った後、放電電流25mA(0.5C)にて、放電終止電圧3Vで定電流放電を行った。この操作を200回繰り返した。サイクル特性は25℃における3回目の0.5C放電容量と200回目の0.5C放電容量の比、以下の式2で表すことができる。
(式2)
サイクル特性 = 3回目の0.5C放電容量/200回目の0.5C放電容量 ×100(%)
判定基準
◎:サイクル特性が85%以上を(優良)
〇:サイクル特性が80%以上85%未満を(良)
×:サイクル特性が60%以上80%未満を(不良)
××:サイクル特性が60%未満(極めて不良)
【0184】
<合成例1 共重合体1の作製>
ステンレス製重合反応器に、アクリロニトリル35部、1,3−ブタジエン65部、オレイン酸カリ石ケン3部、アゾビスイソブチロニトリル0.3部、t−ドデシルメルカプタン0.55部、及びイオン交換水200部を加えた。窒素雰囲気下において、撹拌しながら、45℃で20時間の重合を行い、転化率90%で重合を終了した。未反応のモノマーを減圧ストリッピングにより除き、固形分濃度約30%のアクリロニトリル−共役ジエン系ゴムラテックスを得た。続いて、ラテックスにイオン交換水を追加して全固形分濃度を12%に調整し、容積1Lの撹拌機付きオートクレーブに投入して、窒素ガスを10分間にわたり流して内容物中の溶存酸素を除去した。水素化触媒としての酢酸パラジウム75mgを、パラジウムに対して4倍モルの硝酸を添加したイオン交換水180mLに溶解して調製した触媒液を、オートクレーブに添加した。オートクレーブ内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間の水素化反応を行った。その後、内容物を常温に戻し、オートクレーブ内を窒素雰囲気とした後、固形分を乾燥させて共重合体1を回収した。共重合体1の水素添加率は99.6%であり、重量平均分子量(Mw)は150,000であった。アクリロニトリル−共役ジエン系ゴムにおいて、アクリロニトリル−共役ジエン系ゴムの質量を基準として、共役ジエン単量体単位の含有量は65%であり、ニトリル基含有単量体単位の含有量は35%であった。また、共重合体1において、共重合体1の質量を基準として、アルキレン構造単位を含む脂肪族炭化水素構造単位の含有量は65%であり、ニトリル基含有単量体単位の含有量は35%であった。これらの単量体単位の含有量及び構造単位の含有量は、単量体の使用量から求めた(以下、同様である。)。共重合体1のムーニー粘度(ML
1+4、100℃)を測定したところ、49であった。
【0185】
<合成例2〜8 共重合体2〜8の作製>
使用するモノマー組成を、表1に従って変更し、使用する分子量調整剤であるt−ドデシルメルカプタンの含有量を、目標とする共重合体のムーニー粘度になるように、適宜変更し、共重合体2〜8を作製した。測定した、得られた共重合体2〜8のムーニー粘度は表1に示す通りであった。
【0186】
なお、表1のモノマーの欄に記した略号は、以下を意味する。
BD:1,3−ブタジエン
MBD:2−メチル−1,3−ブタジエン
AN:アクリロニトリル
MAN:メタクリロニトリル
AAm:アクリルアミド
BA:ブチルアクリレート
【0187】
【表1】
【0188】
<導電材分散体の作製>
(実施例1−1)
表2に示す組成に従い、ステンレス容器に共重合体1、NMP、及びNaOHを加え、ディスパーで均一になるまで撹拌した。その後、導電材をディスパーで撹拌しながら添加し、ハイシアミキサー(L5M−A、SILVERSON製)に角穴ハイシアスクリーンを装着し、8,500rpmの速度で全体が均一になり、グラインドゲージにて分散粒度が250μm以下になるまでバッチ式分散を行った。続いて、ステンレス容器から、配管を介して高圧ホモジナイザー(スターバーストラボHJP−17007、スギノマシン製)に被分散液を供給し、25回パス式分散処理を行った。分散処理はシングルノズルチャンバーを使用し、ノズル径0.25mm、圧力100MPaにて行った。さらに、目開き48μmのナイロンメッシュに3度通過させた後、磁気フィルター(トックエンジニアリング製)を介し、室温、磁束密度12,000ガウスの条件で濾過し、導電材分散体(分散体1)を得た。濾過後の磁気フィルターには磁性を有する粒状の金属片の付着が見られた。また、表2に示す通り、分散体1は低粘度かつ安定性が良好であり、ICP分析法で測定した金属含有量は2ppmだった。また、分散体1のpHを前述の方法により測定した結果、9.6であった。
【0189】
(実施例1−2〜1−22、比較例1−1〜1−5、1−7〜1〜10)
表2に示す組成に従い、実施例1−1と同様にして、各分散体(分散体2〜22、比較分散体1〜5、7〜10)を得た。表3に示す通り、本発明の導電材分散体(分散体2〜22)はいずれも低粘度かつ安定性が良好であった。分散体2〜22、比較分散体1〜5、7〜10のpH測定結果は表2に示す通りであった。
【0190】
(比較例1−6)
表2に示す組成に従い、ステンレス容器に共重合体1、NMP、及びNaOHを加え、ディスパーで均一になるまで撹拌した。その後、導電材をディスパーで撹拌しながら添加し、ハイシアミキサー(L5M−A、SILVERSON製)に角穴ハイシアスクリーンを装着し、8,500rpmの速度で全体が均一になり、グラインドゲージにて分散粒度が250μm以下になるまでバッチ式分散を行った。続いて、ステンレス容器から、配管を介して高圧ホモジナイザー(スターバーストラボHJP−17007、スギノマシン製)に被分散液を供給し、10回パス式分散処理を行った。分散処理はシングルノズルチャンバーを使用し、ノズル径0.25mm、圧力100MPaにて行った。さらに、目開き48μmのナイロンメッシュに3度通過させた後、磁気フィルター(トックエンジニアリング製)を介し、室温、磁束密度12,000ガウスの条件で濾過し、比較分散体7を得た。得られた比較分散体6の初期粘度は5500mPa・sであり、位相角を測定したところ、14°であった。
【0191】
なお、表2に記した略号は、以下を意味する。
・100T:K−Nanos 100T(Kumho Petrochemical株式会社製、多層CNT、外径10〜15nm)
・Flotube9110:CnanoFT9110CNT(Cnano TechnologyLtd製、多層CNT、平均外径11nm)
・BT1003M:LUCAN BT1003M(LG Chem Ltd製、多層CNT、平均外径13nm)
・8S:JENOTUBE8S(株式会社JEIO製、多層CNT、外径6〜9nm)
・HS−100:デンカブラックHS−100(デンカ株式会社製、アセチレンブラック、平均一次粒子径48nm、比表面積39m
2/g)
・PVP:ポリビニルピロリドンK−30(株式会社日本触媒製、固形分100%)
・H−NBR1: Therban(R)3406、(ARLANXEO株式会社製、ムーニー粘度(ML
1+4、100℃)63、アクリロニトリル含有量34.0%)
・H−NBR2:Zetpole(R)2000L(日本ゼオン株式会社製、ムーニー粘度(ML
1+4、100℃)65、アクリロニトリル含有量36.2%未満)
【0192】
【表2】
【0193】
【表3】
【0194】
表3に示す通り、実施例の導電材分散体(分散体1〜18)はいずれも低粘度かつ貯蔵安定性が良好であった。また、分散体1〜18の金属含有量はいずれも10ppm以下であった。一方、比較分散体1〜6は高粘度かつ貯蔵安定性が不良であり、特に比較分散体1は極めて貯蔵安定性が不良であった。どの比較分散体も実施例の導電材分散体に比して、金属異物除去工程効率は劣る結果となった。また、複素弾性率及び位相角も同様に、分散体1〜18はいずれも良好であり、比較分散体1〜6は不良であった。特に、比較分散体1の複素弾性率は約300Paであり、極めて不良であった。
【0195】
分散剤(共重合体A)は、比較例1−1のようにpHが9.0未満であると分散剤溶液の粘度が高く、そして得られる導電材分散体粘度もまた非常に高くなる。比較例1−2、3のように塩基を添加してもpHが9.0未満であると、導電材分散体の粘度が不良であった。実施例の分散剤(共重合体A)は導電材分散体のpHが9.0以上であることで、分散剤溶液粘度が低下するだけでなく、導電材への吸着力が向上し、分散性が良好な導電材分散体が容易に得られるようになったと思われる。また、比較例1−5、6のように、pHが9.0以上であっても、周波数1Hzでの位相角が19°未満の場合は、初期粘度、安定性が不良であり、金属含有量も多い結果となった。
【0196】
実施例1−19〜1−22、比較例1−7〜1−10で得られた分散体19〜22、比較分散体7〜10は、全て同じ導電材(CNT(8S))を使用し、CNT濃度がそれぞれ2.5、2.0、1.5、1.0(質量%)である分散体である。分散体中CNT濃度(質量%)をx軸、動的粘弾性測定による複素弾性率[G
*](Pa)をy軸として、その関係を
図1のグラフに示す。
【0197】
図1に示されるように、同一のCNT濃度の分散体で比較すると、実施例1−19〜1−22の得た分散体は、比較分散体と比較して動的粘弾性測定による複素弾性率yが小さく、その差は顕著であり、y<8xを満たすことが確認できる。
【0198】
実施例1−19〜1−22、比較例1−7〜1−10のように、凝集力の強いCNTを分散させる場合、CNT濃度が低くなるにつれて、
図1に示すように複素弾性率の値は小さくなるが、表3に示すように比較分散体では貯蔵安定性は不良であった。共重合体Aを含まない分散剤は、導電材への吸着力が低く、導電材の濃度によらず分散が安定な状態で保持することができなかったと考えられる。
【0199】
すなわち、実施例の炭素繊維を含む導電材分散体は、下記式(1)、並びに、下記式(2)及び式(3)の関係を満足するものである。
y<8x (1)
y<20 (2)
0.1≦x≦10 (3)
【0200】
<正極用合材スラリー及び正極膜の作製>
<実施例2−1>
表4に示す組成に従い、容量150mLのプラスチック容器に導電材分散体(分散体1)と、8質量%PVDFを溶解したNMPとを加えた後、自転及び公転ミキサー(株式会社シンキー製あわとり練太郎、ARE−310)を用いて、2,000rpmで30秒間撹拌し、バインダー樹脂含有導電材分散体を得た。その後、電極活物質としてNMCを添加し、自転及び公転ミキサーを用いて、2,000rpmで20分間にわたり撹拌した。さらにその後、NMPを添加し、自転及び公転ミキサーを用いて、2,000rpmで30秒間撹拌して、正極用合材スラリーを得た。正極用合材スラリーの固形分は75質量%とした。
【0201】
正極用合材スラリーを集電体となる厚さ20μmのアルミ箔上にアプリケーターを用いて塗工した後、電気オーブン中で120℃±5℃で25分間にわたり乾燥させて電極の単位面積当たりの目付量が20mg/cm
2となるように調整した。さらにロールプレス(株式会社サンクメタル製、3t油圧式ロールプレス)による圧延処理を行い、正極合材層の密度が3.1g/cm
3となる正極膜1aを作製した。
【0202】
<実施例2−2〜2−18、比較例2−1〜2−6>
導電材分散体の種類を変更した以外は実施例2−1と同様の方法により、正極膜2a〜18a、比較正極膜1a〜6aを作製した。
【0203】
<実施例3−1、3−2、比較例3−1〜3−5>
表4に示す通り、電極活物質をNCAに変更した以外は実施例2−1〜2−18、及び比較例2−1〜2−6と同様の方法により、正極膜1b、2b、及び比較正極膜1b〜5bを作製した。
【0204】
なお、表4に記した略号は、以下を意味する。
・NMC:NCM523(日本化学工業株式会社製、組成:LiNi
0.5Co
0.2Mn
0.3O
2、固形分100%)
・NCA:HED(登録商標)NAT−7050(BASF戸田バッテリーマテリアルズ合同会社製、組成:LiNi
0.8Co
0.15Al
0.05O
2)、固形分100%
・PVDF:ポリフッ化ビニリデン(Solef#5130(Solvey株式会社製)、固形分100%)
【0205】
【表4】
【0206】
表5に、電極の評価結果を示す。低粘度かつ安定性良好である導電材分散体を用いて作成した電極膜は、どれも抵抗が良い値を示した。これより、比較例と比較して、CNTが効率的に導電ネットワークを形成することができていると考えられる。また、導電材分散体製造時における金属異物除去を効率よく行えた実施例に対し、比較例の導電材分散体では粘度が高く、金属異物を効率よく除去できず金属異物が残存しており、結果として抵抗が悪くなったと考えられる。
【0207】
分散体のpH調整なく共重合体Aを使用する場合に対して、分散体のpHを調整した本発明の共重合体Aを使用する場合、導電材及び電極活物質粒子に対する共重合体Aの吸着力が高く、これらを分散させる能力が高いため、導電材分散体だけでなく、電極膜にしても導電材及び電極活物質の良好な分散性が保たれ、結果として優れた抵抗を示したと考えられる。
【0208】
【表5】
【0209】
<非水電解質二次電池の作製>
<実施例4−1〜4−18、比較例4−1〜4−6>
<実施例5−1、5−2、比較例5−1〜5−5>
下記の標準負極と表5に示す正極膜とを各々50mm×45mm、45mm×40mmに打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロプレンフィルム)とをアルミ製ラミネート袋に挿入し、電気オーブン中、70℃で1時間乾燥させた。続いて、アルゴンガスで満たされたグローブボックス内で、電解液を2mL注入し、アルミ製ラミネート袋を封口して電池1a〜18a、電池1b、2b、比較電池1a〜6a、及び比較電池1b〜5bを作製した。電解液は、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートを1:1:1(体積比)の割合で混合した混合溶媒を作製し、さらに添加剤として、VC(ビニレンカーボネート)を電解液100部に対して1部加えた後、LiPF
6を1Mの濃度で溶解させた非水電解液である。
【0210】
<製造例1 標準負極用合材スラリーの作製>
容量150mLのプラスチック容器にアセチレンブラック(デンカ株式会社製、デンカブラック(登録商標)HS−100)と、CMCと、水とを加えた後、自転及び公転ミキサー(株式会社シンキー製あわとり練太郎、ARE−310)を用いて、2,000rpmで30秒間撹拌した。さらに負極活物質として人造黒鉛を添加し、自転及び公転ミキサー(株式会社シンキー製あわとり練太郎、ARE−310)を用いて、2,000rpmで150秒間撹拌した。続いてSBRを加えて、自転及び公転ミキサー(株式会社シンキー製あわとり練太郎、ARE−310)を用いて、2,000rpmで30秒間撹拌し、標準負極用合材スラリーを得た。標準負極用合材スラリーの固形分は48質量%とした。標準負極用合材スラリー中の負極活物質:導電材:CMC:SBRの固形分比率は97:0.5:1:1.5とした。
【0211】
なお、上記に記した略号は、以下を意味する。
・HS−100:デンカブラックHS−100(デンカ株式会社製、アセチレンブラック、平均一次粒子径48nm、比表面積39m
2/g)
・人造黒鉛:CGB−20(日本黒鉛工業株式会社製)、固形分100%
・CMC:#1190(ダイセルファインケム株式会社製)、固形分100%
・SBR:TRD2001(JSR株式会社製)、固形分48%
【0212】
<製造例2 標準負極の作製>
負極用合材スラリーを集電体となる厚さ20μmの銅箔上にアプリケーターを用いて塗工した後、電気オーブン中で80℃±5℃で25分間にわたり乾燥させて電極の単位面積当たりの目付量が10mg/cm
2となるように調整した。さらにロールプレス(株式会社サンクメタル製、3t油圧式ロールプレス)による圧延処理を行い、負極合材層の密度が1.6g/cm
3となる負極を作製した。
【0213】
<レート試験及びサイクル試験の結果及び考察>
表5に示す通り、分散性が良好な導電材分散体を正極膜に備えた電池はレート特性及びサイクル特性が良好であり、分散不良である導電材分散体を正極膜に備えた電池はいずれの特性も悪かった。低抵抗な正極膜は、電池としても抵抗が低く、レート特性が良化するものと思われる。また、比較的に低抵抗である電極活物質粒子にサイクルの負荷が集中するため、劣化が促進されてしまうのに対し、全体に良好な導電ネットワークが形成されている場合、負荷が分散されるため劣化しにくくなると思われる。
さらに、製造工程において金属異物を十分に除去できなかった比較例の導電材分散体を正極膜に備えた場合、導電材分散体由来の残存金属異物(例えば鉄やニッケル、クロムなど)が負極上で還元・析出することによって電池性能劣化し、結果として電池の短絡が起こったとも考えられる。
【0214】
以上のように、分散性と安定性とを両立することで、電極膜中で良好な分散状態を維持して効率的な導電ネットワークを形成することができ、レート特性及びサイクル特性が良好な電池を製造することができた。また、導電材分散体が低粘度で得られることで金属異物除去効率を向上させることができ、結果としてレート特性及びサイクル特性が良好な電池を製造することができた。
【0215】
実施の形態を参照して本発明を説明したが、本発明は上記によって限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
【課題】良好な分散性と安定性とを両立できる導電材分散体及びバインダー樹脂含有導電材分散体を提供することを課題とする。また、良好な分散性を有する電極膜用スラリーを提供することを課題とする。さらに、本発明の実施形態は、非水電解質二次電池の出力及びサイクル寿命を向上できる電極膜、及び、高い出力かつ良好なサイクル寿命を有する非水電解質二次電池を提供することを課題とする。