(54)【発明の名称】溶融亜鉛めっき処理方法、その溶融亜鉛めっき処理方法を用いた合金化溶融亜鉛めっき鋼板の製造方法、その溶融亜鉛めっき処理方法を用いた溶融亜鉛めっき鋼板の製造方法、合金化溶融亜鉛めっき鋼板、及び、溶融亜鉛めっき鋼板
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0026】
本明細書において、溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板の表面欠陥は、ドロス欠陥、不めっき、及び、表面疵を含む。ドロス欠陥は、ドロスが溶融亜鉛めっき層に付着して発生する欠陥である。ドロス欠陥は、溶融亜鉛めっき層又は合金化溶融亜鉛めっき層の一部にドロスが付着したまま固着することにより形成される欠陥である。ドロスが付着した部分、つまり、ドロス欠陥の外観は、ドロスが付着していない部分の外観と異なる。
【0027】
不めっきは、溶融亜鉛めっき層及び合金化溶融亜鉛めっき層において、鋼板表面の一部がめっきされていない部分を意味する。不めっきは、主として、溶融亜鉛めっき処理前に鋼板表面に付着した金属ヒュームが溶融亜鉛めっき処理後に表面から剥離することにより形成される。なお、金属ヒューム以外の他の要因により、不めっきが発生する場合も有り得るが、不めっきの主たる要因は金属ヒュームである。
【0028】
表面疵は、鋼板表面がドロスと物理的に接触した結果発生する疵を意味する。表面疵はたとえば、すり疵である。
【0029】
本発明者らは、溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板において、上述の表面欠陥(ドロス欠陥、不めっき、及び、表面疵)が発生する原因を検討した。その結果、次の知見を得た。
【0030】
[ドロス欠陥の発生要因について]
ドロス欠陥の発生要因は従来から研究されている。ドロス欠陥は溶融亜鉛めっき処理中に生成するドロスが発生要因となっている。上述のとおり、従来の研究では、溶融亜鉛めっき処理において発生するドロスとして、次の種類が存在すると報告されている。
(A)トップドロス
(B)δ
1相ドロス
(C)Γ
1相ドロス
(D)ζ相ドロス
【0031】
トップドロスは、溶融亜鉛めっき浴よりも比重が軽い。そのため、トップドロスは、溶融亜鉛めっき浴の液面に浮上しやすい。トップドロスの結晶構造は斜方晶である。トップドロスの化学組成は、質量%で、45%のAlと、38%のFeと、17%のZnとからなる。トップドロスは浴面に浮上するため回収しやすい。そのため、トップドロスはドロス欠陥の要因となりにくい。
【0032】
δ
1相ドロス、Γ
1相ドロス、及び、ζ相ドロスは、ボトムドロスと呼ばれる。ボトムドロスは、溶融亜鉛めっき浴よりも比重が重い。そのため、ボトムドロスは、溶融亜鉛めっき浴が貯留されている溶融亜鉛ポットの底に堆積しやすい。
【0033】
δ
1相ドロスの結晶構造は六方晶である。δ
1相ドロスの化学組成は、質量%で、1%以下のAlと、9%以上のFeと、90%以上のZnとからなる。Γ
1相ドロスの結晶構造は面心立方晶である。Γ
1相ドロスの化学組成は、質量%で、20%のFeと、80%程度のZnとからなる。ζ相ドロスの結晶構造は単斜晶である。ζ相の化学組成は、質量%で、1%以下のAlと、6%程度のFeと、94%程度のZnとからなる。
【0034】
従前の研究では、ドロス欠陥の主たる要因をδ
1相ドロスとする報告例が多数存在していた。上述の特許文献1及び2においても、δ
1相ドロスをドロス欠陥の要因の一つと考えていると思われる。そこで、本発明者らも当初、δ
1相ドロスがドロス欠陥の主たる要因であると考え、調査及び研究を行った。しかしながら、溶融亜鉛めっき処理においてδ
1相ドロスの発生を抑制した場合であっても、合金化溶融亜鉛めっき鋼板及び溶融亜鉛めっき鋼板の表面には、依然としてドロス欠陥が発生する場合があった。
【0035】
そこで、本発明者らは、ドロス欠陥の発生要因はδ
1相ドロスではなく、他のドロスではないかと考えた。そこで、本発明者らは、ドロス欠陥が発生している合金化溶融亜鉛めっき鋼板を用いて、ドロス欠陥部分の組成及び結晶構造について、改めて分析を行った。本発明者らはさらに、溶融亜鉛めっき浴中で発生するドロスの種類についても、改めて分析を行った。その結果、本発明者らは、ドロス欠陥について、従来の研究結果とは異なる次の知見を得た。
【0036】
はじめに、合金化溶融亜鉛めっき鋼板の表面のドロス欠陥部分の化学組成をEPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザー)を用いて分析した。さらに、ドロス欠陥部分の結晶構造をTEM(Transmission Electron Microscope:透過型電子顕微鏡)を用いて解析した。その結果、ドロス欠陥部分の化学組成は、質量%で、2%のAlと、8%のFeと、90%のZnとからなり、結晶構造は面心立方晶であった。
【0037】
従来のドロス欠陥の主要因と考えられていたδ
1相ドロスの化学組成(質量%で1%以下のAl、9%以上のFe、及び、90%以上のZn)は、上述のドロス欠陥部分の化学組成と類似する。しかしながら、δ
1相ドロスの結晶構造は六方晶であり、ドロス欠陥部分で特定された面心立方晶ではない。そのため、本発明者らは、従来ドロス欠陥の主要因と考えられていたδ
1相ドロスは、実際には、ドロス欠陥の主要因ではないと考えた。
【0038】
そこで、本発明者らは、ドロス欠陥の原因となるドロスの特定を行った。上述の(A)〜(D)のドロスのうち、トップドロスについては、化学組成がドロス欠陥部分の化学組成と大きく異なる。Γ
1相ドロスについては、結晶構造がドロス欠陥部分と同じ面心立方晶であるものの、化学組成(質量%で20%のFe、及び、80%のZn)がドロス欠陥部分の化学組成と大きく異なる。ζ相ドロスについては、化学組成(質量%で1%以下のAl、6%程度のFe、及び、94%程度のZn)がドロス欠陥部分の化学組成と異なり、さらに、結晶構造(単斜晶)もドロス欠陥部分の結晶構造(面心立方晶)と異なる。
【0039】
以上の検討結果に基づいて、本発明者らは、ドロス欠陥は、上述の(A)〜(D)のドロスに起因したものではないと考えた。そして、本発明者らは、ドロス欠陥は、上記(A)〜(D)以外の他の種類のドロスに起因しているのではないかと考えた。
【0040】
そこで、本発明者らは、溶融亜鉛めっき浴中のドロスの分析をさらに行った。ドロスの分析には、上述のEPMA及びTEMを用いた。その結果、本発明者らは、溶融亜鉛めっき浴中に生成するドロスとして、Γ
2相ドロスが存在することを突き止めた。
【0041】
Γ
2相ドロスの化学組成は、質量%で、2%のAlと、8%のFeと、90%のZnとからなり、上述の解析されたドロス欠陥部分の化学組成と一致する。さらに、Γ
2相ドロスの結晶構造は面心立方晶であり、ドロス欠陥部分の結晶構造と一致する。そこで、本発明者らは、Γ
2相ドロスがドロス欠陥の主要因ではないかと考えた。そして、Γ
2相ドロスの比重は溶融亜鉛めっき浴の比重よりも大きいため、Γ
2相ドロスは、溶融亜鉛ポットの底に堆積し得るボトムドロスに該当した。
【0042】
上述のとおり、トップドロスは溶融亜鉛めっき浴よりも比重が軽い。トップドロスは溶融亜鉛めっき浴の液面に浮上するため、回収しやすい。したがって、トップドロスはドロス欠陥の原因になりにくい。
【0043】
そこで、本発明者らは、Γ
2相ドロスと、他の(B)〜(D)のドロスとに関して、さらに調査を進めた。その結果、ドロス欠陥は、硬質のドロスが起因しており、軟質のドロスはドロス欠陥を形成しにくいことが判明した。
【0044】
本発明者らの更なる検討の結果、上記(B)〜(D)のドロス、及び、Γ
2相ドロスのうち、Γ
2相ドロスは硬質のドロスであることが判明した。さらに、δ
1相ドロス、及びζ相ドロスは、Γ
2相ドロスよりも軟質であるため、ドロス欠陥になりにくいことが判明した。
【0045】
以上の検討結果に基づいて、本発明者らは、溶融亜鉛めっき処理が施される合金化溶融亜鉛めっき鋼板及び溶融亜鉛めっき鋼板の表面に発生するドロス欠陥の主要因は、δ
1相ドロスではなく、Γ
2相ドロスであると考えた。さらに、本発明者らは、ボトムドロスに分類されるドロスは、Γ
2相ドロス、δ
1相ドロス、ζ相ドロス、及び、Γ
1相ドロスのいずれかであるものの、溶融亜鉛めっき浴において、Γ
1相ドロスはほとんど存在していないとの知見を得た。
【0046】
そこで、本発明者らは、Γ
2相ドロスと、他の(A)〜(D)のドロスとに関して、さらに調査を進めた。その結果、次の事項が判明した。
【0047】
ドロス欠陥は、粒径の大きいドロスが起因している。つまり、粒径の大きいドロスがドロス欠陥を形成しやすく、粒径の小さいドロスはドロス欠陥を形成しにくい。具体的には、最長径が50μm以上の粗大なドロスがドロス欠陥の要因となっている。そして、最長径が50μm未満のドロスは、ドロス欠陥を形成しにくい。ここで、「最長径」とは、後述の組織観察の視野中において、ドロスの外周(ドロスと母相との界面)の任意の2点を結ぶ線分のうち、最大の線分(μm)を意味する。
【0048】
上記(A)〜(D)のドロス、及び、Γ
2相ドロスの成長速度は、Γ
2相ドロスが最も速く、δ
1相ドロスが最も遅い。したがって、Γ
2相ドロスはδ
1相ドロスよりも速く成長し、δ
1相ドロスよりもはるかに早い段階でΓ
2相の最長径は50μmを超える。これに対して、δ
1相ドロスが生成しても、δ
1相の最長径は50μm未満の微細なまま維持されやすく、ドロス欠陥を形成しにくい。さらに、δ
1相ドロスはΓ
2相ドロスよりも軟質である。そのため、仮に、δ
1相ドロスが粗大化してもドロス欠陥になりにくい。
【0049】
以上の検討結果に基づいて、本発明者らは、溶融亜鉛めっき処理を施される合金化溶融亜鉛めっき鋼板の表面及び溶融亜鉛めっき鋼板の表面に発生するドロス欠陥の主要因は、従来多数報告されていたδ
1相ドロスではなく、Γ
2相ドロスであると結論付けた。
【0050】
本発明者らはさらに、次の知見を得た。Γ
2相ドロスとδ
1相ドロスとは、互いに相変態する。つまり、溶融亜鉛めっき処理の条件に応じて、Γ
2相ドロスがδ
1相ドロスに相変態したり、δ
1相ドロスがΓ
2相ドロスに相変態したりする。そこで、本発明者らは、溶融亜鉛めっき浴中のボトムドロスのうち、δ
1相ドロス量が多くなれば、溶融亜鉛めっき浴中のΓ
2相ドロス量は、相変態により、少なくなると考えた。
【0051】
以上の知見に基づいて、本発明者らは、従来ではドロス欠陥の主要因と考えられ、低減する対象となっていたδ
1相ドロスを、あえて増やすように溶融亜鉛めっき処理の操業条件を調整すれば、溶融亜鉛めっき浴中のΓ
2相ドロスが低減して、ドロス欠陥を抑制できると考えた。そこで、本発明者らは、δ
1相ドロスとΓ
2相ドロスとの相変態と、溶融亜鉛めっき浴中のフリーFe濃度及びフリーAl濃度との関係をさらに調査した。その結果、溶融亜鉛めっき浴中のフリーFe濃度をX(質量%)、フリーAl濃度をY(質量%)と定義したとき、フリーFe濃度Xが後述の式(3)を満たし、フリーAl濃度Yが後述の式(4)を満たすことを前提として、次の式(1)を満たせば、Γ
2相ドロスからδ
1相ドロスへの相変態が促進され、溶融亜鉛めっき浴中のΓ
2相ドロス量が低減し、その結果、ドロス欠陥が抑制できることを見出した。
Y≦2.674X+0.03719 (1)
【0052】
一方、ζ相ドロスの成長速度は、Γ
2相ドロスの成長速度よりも遅いものの、δ
1相ドロスの成長速度よりは速い。そのため、ζ相ドロスも粗大化すれば、ドロス欠陥を形成する場合があり得る。しかしながら、Γ
2相ドロス及びδ
1相ドロスの関係と同様に、ζ相ドロス及びδ
1相ドロスも、互いに相変態する。つまり、溶融亜鉛めっき処理の条件に応じて、ζ相ドロスがδ
1相ドロスに相変態したり、δ
1相ドロスがζ相ドロスに相変態したりする。したがって、Γ
2相ドロスと同様に、ζ相ドロスをδ
1相ドロスに相変態させて、δ
1相ドロス量を増やせば、ζ相ドロス量が低減して、ドロス欠陥の要因がさらに低減すると本発明者らは考えた。そこで、δ
1相ドロスとζ相ドロスとの相変態と、溶融亜鉛めっき浴中のフリーFe濃度及びフリーAl濃度との関係を本発明者らは調査した。その結果、フリーFe濃度Xが後述の式(3)を満たし、フリーAl濃度Yが後述の式(4)を満たすことを前提として、次の式(2)を満たせば、ζ相ドロスからδ
1相ドロスへの相変態が促進され、溶融亜鉛めっき浴中のζ相ドロスが低減し、その結果、ドロス欠陥が抑制できることを見出した。
Y≧0.2945X+0.1066 (2)
【0053】
以上のとおり、ドロス欠陥を抑制するためには、溶融亜鉛めっき浴中のフリーFe濃度Xと、フリーAl濃度Yとを、式(1)及び(2)を満たす範囲で保持することが有効である。
【0054】
[不めっき発生要因について]
本発明者らはさらに、不めっきの発生要因について検討を行った。不めっきの主たる発生要因として、金属ヒュームの鋼板表面への付着が考えられる。ここで、金属ヒュームとは、溶融亜鉛めっき浴の液面から蒸発した金属蒸気が凝固して生成した粉塵である。
【0055】
金属ヒュームは、スナウトの下端部等の溶融亜鉛めっきライン設備の一部に金属蒸気が付着することにより生成する。金属ヒュームはある程度の大きさに成長したときに、スナウト等の溶融亜鉛めっきライン設備の一部から、通過中の鋼板表面に落下して、鋼板表面に付着する。鋼板表面のうち、金属ヒュームが付着した部分にはめっき層が形成されない。その結果、不めっきが生じる。ここで、「不めっき」とは、鋼板表面に金属ヒューム等の異物が付着した後、鋼板がめっき処理され、めっき処理後の鋼板から金属ヒューム等の異物が剥離した結果、めっき層が形成されておらず鋼板表面がむき出しになった領域をいう。不めっきの最長径とは、不めっきの外周(めっき層が形成されている領域と鋼板表面がむき出しになった領域の境界)の任意の2点の線分のうち、最大の線分(μm)を意味する。
【0056】
上述のとおり、不めっきの主たる要因である金属ヒュームは、金属蒸気が発生することにより生成する。そのため、溶融亜鉛めっき浴の浴温を調整することにより、金属ヒュームの発生を抑制することができる。金属ヒュームの発生を抑制できれば、不めっきの発生を抑制できる。
【0057】
ところで、溶融亜鉛めっき浴中のFeは、溶融亜鉛めっき浴に浸漬している鋼板から溶出したものである。そして、溶融亜鉛めっき浴中のフリーFe濃度Xは、溶融亜鉛めっき浴の浴温と正の相関関係を示す。そこで、本発明者らは、溶融亜鉛めっき浴中のフリーFe濃度Xを抑制すれば、不めっきの主要因である金属ヒュームの発生を抑制できると考えた。そして、さらに検討した結果、式(1)及び式(2)を満たしつつ、溶融亜鉛めっき浴中のフリーFe濃度が式(3)を満たせば、金属ヒュームの生成が抑えられ、金属ヒュームに起因した不めっきの発生を抑制できることを本発明者らは見出した。
X<0.0488 (3)
【0058】
[表面疵の発生要因について]
本発明者らはさらに、表面疵の発生要因について検討を行った。表面疵はトップドロスが発生要因と考えられる。具体的には、次のメカニズムにより表面疵が発生すると考えられる。上述のとおり、トップドロスの比重は溶融亜鉛めっき浴の比重よりも軽い。そのため、トップドロスは溶融亜鉛めっき浴の液面に浮上する。しかしながら、トップドロスが多量に生成した場合、トップドロスの一部が、溶融亜鉛めっき浴中のシンクロールやサポートロールに巻き込まれる。シンクロールやサポートロールに巻き込まれたトップドロスが鋼板に押し当てられる。その結果、鋼板に表面疵を発生する。又は、トップドロスがシンクロールやサポートロール近傍から晶出する。晶出したトップドロスがシンクロールと鋼板との間に挟まれる。シンクロールと鋼板との間に挟まれたトップドロスが鋼板に押し当てられる。その結果、表面疵を発生する。
【0059】
以上のとおり、本発明者らは、トップドロスが多量に生成すれば、上記メカニズムにより表面疵が発生しやすくなると考えた。そこで、本発明者らは、表面疵の発生を抑制するために、トップドロス量の低減方法を検討した。その結果、本発明者らは次の知見を見出した。
【0060】
トップドロスは、Γ
2相ドロス及びδ
1相ドロスと互いに相変態する。したがって、トップドロスを低減するためには、トップドロスからΓ
2相への相変態、及び/又は、トップドロスからδ
1相への相変態を促進できるように、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを調整すればよい。調査の結果、溶融亜鉛めっき浴中のフリーFe濃度Xは、トップドロスとΓ
2相ドロス及びδ
1相ドロスとの相変態に影響を与えにくかった。一方、溶融亜鉛めっき浴中のフリーAl濃度Yは、トップドロスとΓ
2相ドロス及びδ
1相ドロスとの相変態に影響を大きく与えることが判明した。具体的には、溶融亜鉛めっき浴中のフリーAl濃度Yが0.140%以下であれば、トップドロスからΓ
2相ドロス及び/又はδ
1相ドロスへの相変態が促進された。したがって、理想的には、溶融亜鉛めっき浴中のフリーAl濃度Yを0.140%以下に保持できればよいと本発明者らは考えた。
【0061】
しかしながら、実際の溶融亜鉛めっき処理の操業上では、溶融亜鉛めっき浴中のフリーAl濃度の管理において、フリーAl濃度Yに最大で±0.001%のばらつきが生じる可能性がある。そこで、本発明者らは、溶融亜鉛めっき浴中のフリーAl濃度Yの上限を0.139%で保持すれば、つまり、溶融亜鉛めっき浴のフリーAl濃度Yが式(4)を満たせば、表面疵の発生を抑制できることを見出した。
Y≦0.139 (4)
【0062】
以上のとおり、本発明者らは、溶融亜鉛めっき処理中の溶融亜鉛めっき浴のフリーFe濃度X(質量%)及びフリーAl濃度Y(質量%)を、式(1)〜式(4)を満たすように保持すれば、合金化溶融亜鉛めっき鋼板及び溶融亜鉛めっき鋼板において、ドロス欠陥、不めっき及び表面疵を有効に低減できることを見出した。
【0063】
以上の知見により完成した本実施形態の溶融亜鉛めっき処理方法、その溶融亜鉛めっき処理方法を用いた合金化溶融亜鉛めっき鋼板の製造方法、その溶融亜鉛めっき処理方法を用いた溶融亜鉛めっき鋼板の製造方法、合金化溶融亜鉛めっき鋼板、及び、溶融亜鉛めっき鋼板は、次の構成を有する。
【0064】
[1]の溶融亜鉛めっき処理方法は、
溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板の製造方法に用いられ、Alを含有する溶融亜鉛めっき浴を用いた、溶融亜鉛めっき処理方法であって、
前記溶融亜鉛めっき浴中のフリーFe濃度をX(質量%)と定義し、前記溶融亜鉛めっき浴中のフリーAl濃度をY(質量%)と定義したとき、前記溶融亜鉛めっき浴中のフリーFe濃度及びフリーAl濃度を、式(1)〜式(4)を満たす範囲とする濃度保持工程を備える。
Y≦2.674X+0.03719 (1)
Y≧0.2945X+0.1066 (2)
X<0.0488 (3)
Y≦0.139 (4)
【0065】
ここで、溶融亜鉛めっき浴中のフリーFe濃度とは、溶融亜鉛めっき浴に溶融しているFe濃度を意味する。つまり、本明細書において、「溶融亜鉛めっき浴中のフリーFe濃度」は、ドロス(トップドロス及びボトムドロス)に含まれているFe含有量を除く、溶融亜鉛めっき浴に溶融している(つまり、液相中の)Fe濃度を意味する。同様に、溶融亜鉛めっき浴中のフリーAl濃度とは、溶融亜鉛めっき浴に溶融しているAl濃度を意味する。つまり、本明細書において、「溶融亜鉛めっき浴中のフリーAl濃度」は、ドロス(トップドロス及びボトムドロス)に含まれているAl含有量を除く、溶融亜鉛めっき浴に溶融している(つまり、液相中の)Al濃度を意味する。
【0066】
上述の溶融亜鉛めっき処理方法は、溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板において、ドロス欠陥、不めっき及び表面疵の発生を抑制することができる。
【0067】
[2]の合金化溶融亜鉛めっき鋼板の製造方法は、
鋼板に対して、[1]に記載の溶融亜鉛めっき処理方法を実施して、前記鋼板の表面に前記溶融亜鉛めっき層を形成する溶融亜鉛めっき処理工程と、
前記表面に溶融亜鉛めっき層が形成された前記鋼板に対して合金化処理を実施して、合金化溶融亜鉛めっき鋼板を製造する合金化処理工程とを備える。
【0068】
本実施形態による合金化溶融亜鉛めっき鋼板の製造方法は、上述の溶融亜鉛めっき処理を実施する。そのため、製造された合金化溶融亜鉛めっき鋼板において、ドロス欠陥、不めっき及び表面疵の発生を抑制することができる。
【0069】
[3]の溶融亜鉛めっき鋼板の製造方法は、
鋼板に対して、[1]に記載の溶融亜鉛めっき処理方法を実施して、前記鋼板の表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理工程を備える。
【0070】
本実施形態による溶融亜鉛めっき鋼板の製造方法は、上述の溶融亜鉛めっき処理を実施する。そのため、製造された溶融亜鉛めっき鋼板において、ドロス欠陥、不めっき及び表面疵の発生を抑制することができる。
【0071】
[4]の合金化溶融亜鉛めっき鋼板は、
鋼板と、
前記鋼板上に形成された合金化溶融亜鉛めっき層とを備え、
前記合金化溶融亜鉛めっき層の表面において、
最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2以上であり、
最長径が50μm以上のドロスが、10個/10m
2以下であり、
最長径が50μm以上の不めっきが10個/10m
2以下である。
【0072】
ここで、「最長径が50μm以上のドロス」のドロスとは、トップドロス、δ
1相ドロス、Γ
1相ドロス、ζ相ドロス、Γ
2相ドロスのいずれか1種以上である。なお、溶融亜鉛めっき浴中において、Γ
1相ドロスはほとんど存在していないと考えられる。
【0073】
本実施形態による合金化溶融亜鉛めっき鋼板の溶融亜鉛めっき相の表面では、微細な粒子であるδ
1相ドロスが多く存在する。一方、粗大な粒子のドロスは少なく、かつ、粗大な金属ヒュームの付着が少ない。そのため、ドロス欠陥及び不めっきが発生しにくい。
【0074】
[5]の溶融亜鉛めっき鋼板は、
鋼板と、
前記鋼板上に形成された溶融亜鉛めっき層とを備え、
前記溶融亜鉛めっき層の表面において、
最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2以上であり、
最長径が50μm以上のドロスが、10個/10m
2以下であり、
最長径が50μm以上の不めっきが10個/10m
2以下である。
【0075】
ここで、「最長径が50μm以上のドロス」のドロスとは、トップドロス、δ
1相ドロス、Γ
1相ドロス、ζ相ドロス、Γ
2相ドロスのいずれか1種以上である。なお、溶融亜鉛めっき浴中において、Γ
1相ドロスはほとんど存在していないと考えられる。
【0076】
本実施形態による溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面では、微細な粒子であるδ
1相ドロスが多く存在する。一方、粗大な粒子のドロスは少なく、かつ、粗大な金属ヒュームの付着が少ない。そのため、ドロス欠陥及び不めっきが発生しにくい。
【0077】
以下、本実施形態による溶融亜鉛めっき処理方法、合金化溶融亜鉛めっき鋼板の製造方法、及び、溶融亜鉛めっき鋼板の製造方法について、図面を参照しながら説明する。本明細書及び図面において、実質的に同一の機能を有する構成については、同一符号を付してその説明を繰り返さない。
【0078】
[溶融亜鉛めっきライン設備の構成について]
図1は、合金化溶融亜鉛めっき鋼板及び溶融亜鉛めっき鋼板の製造に用いられる溶融亜鉛めっきライン設備の全体構成の一例を示す機能ブロック図である。
図1を参照して、溶融亜鉛めっきライン設備1は、焼鈍炉20と、溶融亜鉛めっき設備10と、調質圧延機(スキンパスミル)30とを備える。
【0079】
焼鈍炉20は、図示しない1又は複数の加熱帯と、加熱帯の下流に配置された1又は複数の冷却帯とを含む。焼鈍炉20では、鋼板が焼鈍炉20の加熱帯に供給され、鋼板に対して焼鈍が実施される。焼鈍された鋼板は冷却帯で冷却され、溶融亜鉛めっき設備10に搬送される。溶融亜鉛めっき設備10は、焼鈍炉20の下流に配置されている。溶融亜鉛めっき設備10では、鋼板に対して溶融亜鉛めっき処理が実施され、合金化溶融亜鉛めっき鋼板、又は、溶融亜鉛めっき鋼板が製造される。調質圧延機30は、溶融亜鉛めっき設備10の下流に配置される。調質圧延機30では、溶融亜鉛めっき設備10において製造された合金化溶融亜鉛めっき鋼板、又は、溶融亜鉛めっき鋼板に対して、必要に応じて軽圧下して、合金化溶融亜鉛めっき鋼板又は溶融亜鉛めっき鋼板の表面を調整する。
【0080】
[溶融亜鉛めっき設備10について]
図2は、
図1中の溶融亜鉛めっき設備10の側面図である。
図2を参照して、溶融亜鉛めっき設備10は、溶融亜鉛ポット101と、シンクロール107と、サポートロール113と、ガスワイピング装置109と、合金化炉111とを備える。
【0081】
溶融亜鉛めっき設備10の上流に配置されている焼鈍炉20は、内部が大気雰囲気から遮断されており、還元性雰囲気に維持されている。焼鈍炉20は、上述のとおり、連続搬送される鋼板Sを加熱帯にて加熱する。これにより、鋼板Sの表面が活性化され、鋼板Sの機械的性質が調整される。
【0082】
焼鈍炉20の出側に相当する焼鈍炉20の下流端部は、ターンダウンロール201が配置された空間を有する。焼鈍炉20の下流端部は、スナウト202の上流端部に接続されている。スナウト202の下流端部は、溶融亜鉛めっき浴103中に浸漬されている。スナウト202の内部は大気雰囲気から遮断されており、還元性雰囲気に維持されている。
【0083】
ターンダウンロール201により搬送方向が下向きに変えられた鋼板Sは、スナウト202を通過して、溶融亜鉛ポット101に貯留されている溶融亜鉛めっき浴103へと連続的に浸漬される。溶融亜鉛ポット101の内部には、シンクロール107が配置されている。シンクロール107は、鋼板Sの幅方向と平行な回転軸を有している。シンクロール107の軸方向の幅は、鋼板Sの幅よりも大きい。シンクロール107は、鋼板Sと接触して鋼板Sの進行方向を溶融亜鉛めっき設備10の上方に転換させる。
【0084】
サポートロール113は、溶融亜鉛めっき浴103中であって、シンクロール107よりも上方に配置されている。サポートロール113は、一対のロールを備えている。サポートロール113の一対のロールは、鋼板Sの幅方向と平行な回転軸を有している。サポートロール113は、シンクロール107により進行方向を上方に転換された鋼板Sを挟んで、上方に搬送される鋼板Sを支持する。
【0085】
ガスワイピング装置109は、シンクロール107及びサポートロール113よりも上方であって、かつ、溶融亜鉛めっき浴103の液面よりも上方に配置されている。ガスワイピング装置109は、一対のガス噴射装置を備える。一対のガス噴射装置は、互いに対抗するガス噴射ノズルを有する。溶融亜鉛めっき処理時において、鋼板Sはガスワイピング装置109の一対のガス噴射ノズルの間を通過する。このとき、一対のガス噴射ノズルは、鋼板Sの表面と対向する。ガスワイピング装置109は、溶融亜鉛めっき浴103から引き上げられた鋼板Sの両表面に対してガスを吹き付ける。これにより、ガスワイピング装置109は、鋼板Sの両表面に付着した溶融亜鉛めっきの一部を掻き落とし、鋼板Sの表面の溶融亜鉛めっきの付着量を調整する。
【0086】
合金化炉111は、ガスワイピング装置109の上方に配置されている。合金化炉111は、ガスワイピング装置109を通過して上方に搬送された鋼板Sを内部に通して、鋼板Sに対して合金化処理を実施する。合金化炉111は、鋼板Sの入側から出側に向かって順に、加熱帯、保熱帯、冷却帯を含む。加熱帯は鋼板Sの温度(板温)が略均一になるように加熱する。保熱帯は、鋼板Sの板温を保持する。このとき、鋼板Sの表面に形成された溶融亜鉛めっき層が合金化されて合金化溶融亜鉛めっき層になる。冷却帯は、合金化溶融亜鉛めっき層が形成された鋼板Sを冷却する。以上のとおり、合金化炉111は、加熱帯、保熱帯、冷却帯を用いて、合金化処理を実施する。なお、合金化炉111は、合金化溶融亜鉛めっき鋼板を製造する場合に、上述の合金化処理を実施する。一方、溶融亜鉛めっき鋼板を製造する場合、合金化炉111は合金化処理を実施しない。この場合、鋼板Sは、作動していない合金化炉111内を通過する。ここで、作動していないとは、たとえば、合金化炉111がオンラインに配置されたまま、電源が停止した状態(起動していない状態)であることを意味する。合金化炉111を通過した鋼板Sは、トップロール115により次工程に搬送される。
【0087】
溶融亜鉛めっき鋼板を製造する場合、
図3に示すとおり、合金化炉111がオフラインに移動してもよい。この場合、鋼板Sは、合金化炉111を通過することなく、トップロール115により次工程に搬送される。
【0088】
なお、溶融亜鉛めっき設備10が溶融亜鉛めっき鋼板専用の設備である場合、溶融亜鉛めっき設備10は、
図4に示すとおり、合金化炉111を備えていなくてもよい。
【0089】
[溶融亜鉛めっきライン設備1の他の構成例について]
溶融亜鉛めっきライン設備1は、
図1の構成に限定されない。たとえば、溶融亜鉛めっき処理前の鋼板にNiプレめっき処理を実施して、鋼板上にNi層を形成する場合、
図5に示すとおり、焼鈍炉20と溶融亜鉛めっき設備10との間に、Niプレめっき設備40が配置されていてもよい。Niプレめっき設備40は、Niめっき浴を貯留するNiめっきセルを備える。Niプレめっき処理は、電気めっき法により実施される。なお、
図1及び
図5の溶融亜鉛めっきライン設備1は、焼鈍炉20及び調質圧延機30を備える。しかしながら、溶融亜鉛めっきライン設備1は、焼鈍炉20を備えなくてもよい。また、溶融亜鉛めっきライン設備1は、調質圧延機30を備えなくてもよい。溶融亜鉛めっきライン設備1は、少なくとも、溶融亜鉛めっき設備10を備えていればよい。焼鈍炉20及び調質圧延機30は、必要に応じて配置されればよい。また、溶融亜鉛めっきライン設備1は、溶融亜鉛めっき設備10よりも上流に、鋼板を酸洗するための酸洗設備を備えていてもよいし、焼鈍炉20及び酸洗設備以外の他の設備を備えていてもよい。溶融亜鉛めっきライン設備1はさらに、溶融亜鉛めっき設備10よりも下流に、調質圧延機30以外の他の設備を備えていてもよい。
【0090】
[本実施形態の溶融亜鉛めっき処理方法について]
[利用する溶融亜鉛めっきライン設備ついて]
本実施形態の溶融亜鉛めっき処理方法では、溶融亜鉛めっきライン設備1を用いる。溶融亜鉛めっきライン設備1はたとえば、
図1や
図5に示す構成を有する。本実施形態の溶融亜鉛めっきの処理方法に用いられる溶融亜鉛めっきライン設備1は、上述のとおり、
図1や
図5に示す設備であってもよいし、
図1や
図5に示す設備にさらに他の構成が追加されたものであってもよい。また、上述のとおり、溶融亜鉛めっきライン設備1は、焼鈍炉20を備えなくてもよい。また、溶融亜鉛めっきライン設備1は、調質圧延機30を備えなくてもよい。溶融亜鉛めっきライン設備1は、少なくとも、溶融亜鉛めっき設備10を備えていればよい。
図1や
図5と異なる構成の周知の溶融亜鉛めっきライン設備1を用いてもよい。
【0091】
[溶融亜鉛めっき処理の対象となる鋼板について]
本実施形態の溶融亜鉛めっき処理方法に用いられる鋼板(母材鋼板)の鋼種及びサイズ(板厚、板幅等)は、特に限定されない。鋼板は、製造する合金化溶融亜鉛めっき鋼板、又は、溶融亜鉛めっき鋼板に求められる各機械的性質(たとえば、引張強度、加工性等)に応じて、合金化溶融亜鉛めっき鋼板又は溶融亜鉛めっき鋼板に適用される公知の鋼板を利用すればよい。自動車外板に用いられる鋼板を溶融亜鉛めっき処理対象の鋼板として利用してもよい。
【0092】
本実施形態の溶融亜鉛めっき処理の対象となる鋼板(母材鋼板)は、熱延鋼板であってもよいし、冷延鋼板であってもよい。母材鋼板として、たとえば、次の鋼板が用いられる。
(a)酸洗処理された熱延鋼板
(b)酸洗処理された後、Niプレめっき処理が施されて、表面にNi層が形成された熱延鋼板
(c)焼鈍処理された冷延鋼板
(d)焼鈍処理された後、Niプレめっき処理が施されて、表面にNi層が形成された冷延鋼板
上記(a)〜(d)は、本実施形態の溶融亜鉛めっき処理に用いられる鋼板の例示である。本実施形態の溶融亜鉛めっき処理に用いられる鋼板は、上記(a)〜(d)に限定されない。上記(a)〜(d)以外の処理が施された熱延鋼板又は冷延鋼板を、溶融亜鉛めっき処理の対象とする鋼板としてもよい。
【0093】
[溶融亜鉛めっき浴について]
溶融亜鉛めっき浴の主成分はZnである。溶融亜鉛めっき浴はさらに、Znの他に、Al及びFeを含有する。
【0094】
[溶融亜鉛めっき処理方法]
本実施形態の溶融亜鉛めっき処理方法は、濃度保持工程を含む。濃度保持工程では、溶融亜鉛めっき浴中のフリーFe濃度をX(質量%)と定義し、溶融亜鉛めっき浴中のフリーAl濃度をY(質量%)と定義したとき、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを、式(1)〜(4)を満たす範囲とする。
Y≦2.674X+0.03719 (1)
Y≧0.2945X+0.1066 (2)
X<0.0488 (3)
Y≦0.139 (4)
ここで、溶融亜鉛めっき浴中のフリーFe濃度とは、溶融亜鉛めっき浴に溶融しているFe濃度を意味する。つまり、本明細書において、「溶融亜鉛めっき浴中のフリーFe濃度」は、ドロス(トップドロス及びボトムドロス)に含まれているFe含有量を除く、溶融亜鉛めっき浴に溶融している(つまり、液相中の)Fe濃度を意味する。同様に、溶融亜鉛めっき浴中のフリーAl濃度とは、溶融亜鉛めっき浴に溶融しているAl濃度を意味する。つまり、本明細書において、「溶融亜鉛めっき浴中のフリーAl濃度」は、ドロス(トップドロス及びボトムドロス)に含まれているAl含有量を除く、溶融亜鉛めっき浴に溶融している(つまり、液相中の)Al濃度を意味する。以下、式(1)〜(4)について詳述する。
【0095】
[式(1)について]
式(1)は、溶融亜鉛めっき浴中において、Γ
2相ドロスがδ
1相ドロスに相変態する境界(相変態線)を意味する。溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yが式(1)を満たせば、溶融亜鉛めっき浴の化学組成が、Γ
2相ドロスよりもδ
1相ドロスの方が生成しやすい状態となっている。この場合、フリーFe濃度Xが式(3)を満たし、フリーAl濃度Yが式(4)を満たすことを前提として、溶融亜鉛めっき浴中のΓ
2相ドロスがδ
1相ドロスに相変態しやすい。そのため、溶融亜鉛めっき浴において、δ
1相ドロス量が増加し、δ
1相ドロス量の増加に伴い、Γ
2相ドロス量が低減する。上述のとおり、δ
1相の成長速度は、Γ
2相の成長速度よりもはるかに遅い。そのため、溶融亜鉛めっき浴中において、δ
1相は最長径が50μm未満の微細な状態を維持する。その結果、最長径が50μm以上のドロスが低減する。そのため、ドロス欠陥の発生を抑制できる。ここで、「最長径が50μm以上のドロス」のドロスとは、トップドロス、δ
1相ドロス、Γ
1相ドロス、ζ相ドロス、Γ
2相ドロスのいずれかである。なお、溶融亜鉛めっき浴中において、Γ
1相ドロスはほとんど存在していないと考えられる。
【0096】
[式(2)について]
式(2)は、溶融亜鉛めっき浴中において、ζ相ドロスがδ
1相ドロスに相変態する境界(相変態線)を意味する。溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yが式(2)を満たせば、溶融亜鉛めっき浴の化学組成が、ζ相ドロスよりもδ
1相ドロスの方が生成しやすい状態となっている。この場合、フリーFe濃度Xが式(3)を満たし、フリーAl濃度Yが式(4)を満たすことを前提として、溶融亜鉛めっき浴中のζ相ドロスがδ
1相ドロスに相変態しやすい。そのため、溶融亜鉛めっき浴において、δ
1相ドロス量が増加し、δ
1相ドロス量の増加に伴い、ζ相ドロス量が低減する。上述のとおり、δ
1相の成長速度は、ζ相の成長速度よりも遅い。そのため、溶融亜鉛めっき浴中において、最長径が50μm以上の粗大なドロスが低減する。その結果、ドロス欠陥の発生を抑制できる。
【0097】
[式(3)について]
式(3)は溶融亜鉛めっき浴中のフリーFe濃度X(質量%)の許容可能な範囲を示す。溶融亜鉛めっき浴中のフリーFe濃度Xは、溶融亜鉛めっき浴の浴温と正の相関関係を示す。フリーFe濃度Xが0.0488%以上であれば、溶融亜鉛めっき浴の浴温が高すぎる。そのため、金属蒸気が発生して、金属ヒュームが生成しやすくなる。この場合、上述のとおり、不めっきが発生しやすくなる。溶融亜鉛めっき浴中のフリーFe濃度Xが0.0488%未満であれば、つまり、フリーFe濃度Xが式(3)を満たせば、溶融亜鉛めっき浴の浴温が適切であり、金属蒸気が発生しにくい。そのため、粗大な金属ヒュームの発生が抑制される。その結果、最長径が50μm以上の不めっきの発生が抑制される。
【0098】
溶融亜鉛めっき浴中のフリーFe濃度Xの下限は式(1)及び式(2)に基づいて、0.0290%である。フリーFe濃度Xの好ましい下限は0.0370%である。フリーFe濃度Xの好ましい上限は0.0480%である。
【0099】
[式(4)について]
式(4)は溶融亜鉛めっき浴中のフリーAl濃度Y(質量%)の許容可能な範囲を示す。溶融亜鉛めっき浴中のフリーAl濃度Yは、トップドロス、Γ
2相ドロス、及び、δ
1相ドロスの生成量に関係する。フリーAl濃度Yが0.140%を超えれば、Γ
2相ドロス及び/又はδ
1相ドロスが、トップドロスに相変態しやすくなる。この場合、Γ
2相ドロス量及び/又はδ
1相ドロス量が低減し、トップドロス量が増加する。上述のとおり、トップドロス量が多すぎれば、シンクロールと鋼板との間にトップドロスが挟まって、表面疵を生成する場合がある。したがって、本実施形態では、表面疵の発生を抑制するために、トップドロスの生成を抑制する。理想的には、溶融亜鉛めっき浴中のフリーAl濃度Yを0.140%以下に保持できればよい。しかしながら実際の溶融亜鉛めっき処理の操業では、フリーAl濃度Yを管理しても、フリーAl濃度Yにおいて最大で±0.001%のばらつきが生じる可能性がある。そこで、本実施形態では、溶融亜鉛めっき浴中のフリーAl濃度Yの上限を0.139%とする。
【0100】
表面疵の発生を抑制する観点では、フリーAl濃度Yの下限は式(1)及び式(2)に基づいて、0.115%である。
【0101】
本実施形態では、溶融亜鉛めっき浴のフリーAl濃度Yが式(4)を満たすように、溶融亜鉛めっき浴中のフリーAl濃度を調整する。この場合、トップドロスの過剰な生成を抑制しつつ、表面疵の発生を抑制できる。
【0102】
なお、溶融亜鉛めっき浴中のフリーAl濃度Yの好ましい下限は、0.120%であり、さらに好ましくは、0.134%である。
【0103】
[濃度保持工程でのフリーFe濃度X及びフリーAl濃度Yの管理方法]
濃度保持工程では、上述のとおり、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを、式(1)〜式(4)を満たす範囲とする。濃度保持工程では、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを上述の範囲に保持できれば、保持方法は特に限定されない。
【0104】
濃度保持工程ではたとえば、次の方法により、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを上述の式を満たす範囲に保持する。
【0105】
図6は、濃度保持工程の一例を示すフロー図である。
図6を参照して、濃度保持工程の一例は、サンプル採取工程(S1)と、フリーFe濃度及びフリーAl濃度決定工程(S2)と、濃度調整工程(S3)とを含む。サンプル採取工程(S1)では、溶融亜鉛めっき浴からサンプルを採取する。フリーFe及びフリーAl濃度決定工程(S2)では、採取したサンプルから、溶融亜鉛めっき浴中のフリーFe濃度及びフリーAl濃度を決定する。濃度調整工程(S3)では、決定したフリーFe濃度及びフリーAl濃度に基づいて、式(1)〜式(4)を満たすように、溶融亜鉛めっき浴中のフリーFe濃度及びフリーAl濃度を調整する。以下、各工程について詳述する。
【0106】
[サンプル採取工程(S1)]
サンプル採取工程(S1)では、溶融亜鉛めっき浴からサンプルを採取する。サンプル採取期間(サンプルを採取した後、次のサンプルを採取するまでの期間)は、一定であってもよいし、一定でなくてもよい。たとえば、1時間ごとにサンプルを採取してもよい。サンプルを採取した後1時間経過後に次のサンプルを採取し、さらに30分経過後に次のサンプルを採取してもよい。サンプル採取期間は特に限定されない。
【0107】
溶融亜鉛めっき浴中からのサンプル採取量は特に限定されない。フリーFe濃度X及びフリーAl濃度Yを測定できれば、サンプル採取量は特に制限されない。サンプル採取量はたとえば、100〜400gである。採取したサンプルを冷却して固化する。たとえば、採取したサンプルを熱伝導率が高い常温の金属に接触させて、サンプルを常温まで急冷して固化する。熱伝導率が高い常温の金属はたとえば、銅である。他の方法により、採取したサンプルを冷却して固化してもよい。
【0108】
溶融亜鉛めっき浴中のサンプル採取位置は特に限定されない。たとえば、
図2〜
図4を参照して、溶融亜鉛めっき浴103を深さ方向に三等分した場合、溶融亜鉛めっき浴103中の最上部の領域D1でサンプルを採取してもよい。溶融亜鉛めっき浴103中の中部の領域D2でサンプルを採取してもよい。溶融亜鉛めっき浴103中の最下部の領域D3でサンプルを採取してもよい。
【0109】
図2〜
図4に示すとおり、溶融亜鉛めっき浴103のうち、鋼板Sの板幅方向と平行な方向を幅方向Wと定義する。溶融亜鉛めっき浴103の深さ方向を深さ方向Dと定義する。幅方向W及び深さ方向Dと垂直な方向を長さ方向Lと定義する。この場合、好ましくは、幅方向Wにおける特定の幅範囲、深さ方向Dにおける特定の深さ範囲、及び、長さ方向Lにおける特定の長さ範囲で区画される特定領域内から経時的にサンプルを採取する。要するに、溶融亜鉛めっき浴103内の同じ位置(特定領域内)から、経時的にサンプルを採取する。
【0110】
さらに好ましくは、溶融亜鉛めっき浴103のうち、シンクロール107の上端から下端までの範囲内の深さの領域D107から、サンプルを採取する。シンクロール107近傍に浮遊するドロスにより、ドロス欠陥や表面疵が発生する可能性が高いからである。したがって、好ましくは、領域D107を含む特定領域内からサンプルを採取する。
【0111】
[フリーFe濃度及びフリーAl濃度決定工程(S2)]
フリーFe濃度及びフリーAl濃度決定工程(S2)では、採取したサンプルを用いて、溶融亜鉛めっき浴103中のフリーFe濃度X及びフリーAl濃度Yを決定する。フリーFe濃度X及びフリーAl濃度Yの決定方法は特に限定されない。たとえば、誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法により得られたFe濃度及びAl濃度に基づいて、フリーFe濃度X(質量%)及びフリーAl濃度Y(質量%)を求める。
【0112】
具体的には、サンプルを用いてICP発光分光分析法により、Fe濃度及びAl濃度を得る。ICP発光分光分析法により得られたFe濃度は、溶融亜鉛めっき浴中のFe濃度(フリーFe濃度)だけでなく、ドロス中のFe濃度も含む。つまり、ICP発光分光分析法により得られたFe濃度は、いわゆるトータルFe濃度である。同様に、上述のICP発光分光分析法により得られたAl濃度は、溶融亜鉛めっき浴中のAl濃度(フリーAl濃度)だけでなく、ドロス中のAl濃度も含む。つまり、ICP発光分光分析法により得られたAl濃度は、いわゆるトータルAl濃度である。そこで、得られたトータルFe濃度及びトータルAl濃度と、周知のZn−Fe−Al三元系状態図とを用いて、フリーFe濃度X及びフリーAl濃度Yを決定する。
【0113】
フリーFe濃度X及びフリーAl濃度Yの決定方法は次のとおりである。サンプルを採取したときの浴温でのZn−Fe−Al三元系状態図を準備する。上述のとおり、Zn−Fe−Al三元系状態図は周知であり、非特許文献1中の
図2及び
図3にも開示されている。なお、非特許文献1は、溶融亜鉛めっき浴の研究者及び開発者の間では著名な論文である。Zn−Fe−Al三元系状態図に、ICP発光分光分析法により得られたトータルFe濃度及びトータルAl濃度から特定される点をプロットする。そして、プロットされた点から、Zn−Fe−Al三元系状態図中の液相線にタイライン(共役線)を引く。液相線とタイラインとの交点でのFe濃度をフリーFe濃度(質量%)と定義し、液相線とタイラインとの交点でのAl濃度をフリーAl濃度(質量%)と定義する。
【0114】
以上の方法により、溶融亜鉛めっき浴中のフリーFe濃度X及び溶融亜鉛めっき浴中のフリーAl濃度Yを求めることができる。なお、溶融亜鉛めっき浴の化学組成のうち、フリーFe濃度X及びフリーAl濃度Y以外の残部は、Znとみなすことができる。
【0115】
[濃度調整工程(S3)]
濃度調整工程(S3)では、フリーFe濃度及びフリーAl濃度決定工程(S2)で得られたフリーFe濃度X及びフリーAl濃度Yに基づいて、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yが式(1)〜式(4)を満たすように、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを調整する。フリーFe濃度X及びフリーAl濃度Yが式(1)〜(4)を満たすよう調整すれば、調整方法は特に限定されない。
【0116】
[溶融亜鉛めっき浴中のフリーFe濃度の調整方法]
たとえば、溶融亜鉛めっき浴中のフリーFe濃度Xを調整する場合、次の(I)及び/又は(II)を実施する。
(I)溶融亜鉛めっき浴の浴温を調整する。
(II)溶融亜鉛めっき設備での鋼板の搬送速度を調整する。
【0117】
上記(I)について、溶融亜鉛めっき浴の温度を高くすれば、溶融亜鉛めっき浴中に浸漬している鋼板から溶け出すFe量が多くなる。一方、溶融亜鉛めっき浴の温度を低くすれば、溶融亜鉛めっき浴中に浸漬している鋼板から溶け出すFe量が少なくなる。したがって、溶融亜鉛めっき浴の浴温を調整することにより、溶融亜鉛めっき浴中のフリーFe濃度Xを調整することができる。溶融亜鉛めっき浴の浴温とフリーFe濃度Xとは正の相関関係を有する。そのため、ステップS2で求めたフリーFe濃度Xに応じて溶融亜鉛めっき浴の浴温を調整する。これにより、フリーFe濃度Xが式(1)〜(4)を満たすように、溶融亜鉛めっき浴中のフリーFe濃度Xを調整することができる。
【0118】
上記(II)について、溶融亜鉛めっき設備での鋼板の搬送速度を遅くすれば、単位時間当たりの溶融亜鉛めっき浴中への鋼板の通板量が低減する。この場合、溶融亜鉛めっき浴中に浸漬している鋼板から溶融亜鉛めっき浴へのFeの溶解量が低減する。そのため、溶融亜鉛めっき浴中のフリーFe濃度Xを低減できる。一方、鋼板の搬送速度を速くすれば、単位時間当たりの溶融亜鉛めっき浴中への鋼板の通板量が増加する。この場合、溶融亜鉛めっき浴中に浸漬している鋼板から溶融亜鉛めっき浴へのFeの溶解量が増加する。そのため、溶融亜鉛めっき浴中のフリーFe濃度Xを増加できる。
【0119】
溶融亜鉛めっき浴中のフリーFe濃度Xを上記(I)により調整し上記(II)により調整しなくてもよい。溶融亜鉛めっき浴中のフリーFe濃度Xを上記(I)により調整せずに(II)により調整してもよい。溶融亜鉛めっき浴中のフリーFe濃度Xを上記(I)及び(II)により調整してもよい。また、溶融亜鉛めっき浴中のフリーFe濃度Xを上記(I)及び(II)以外の他の方法により調整してもよい。
【0120】
[溶融亜鉛めっき浴中のフリーAl濃度の調整方法]
溶融亜鉛めっき浴中のフリーAl濃度Yはたとえば、溶融亜鉛めっき浴にAlを添加することにより調整する。Alの添加はたとえば、Alインゴットを溶融亜鉛めっき浴に浸漬することにより行われる。Alの添加は、Alインゴットの溶融亜鉛めっき浴への浸漬以外の他の方法により行っても良い。Alインゴットを溶融亜鉛めっき浴に浸漬することによりAlを溶融亜鉛めっき浴に添加する場合、溶融亜鉛めっき浴の温度が急速に変化するのを抑制できる浸漬速度で、Alインゴットを溶融亜鉛めっき浴に浸漬する。溶融亜鉛めっき浴中のフリーAl濃度Yの調整方法は上記の方法に限定されない。溶融亜鉛めっき浴中のフリーAl濃度Yの調整方法は周知の方法でよい。
【0121】
上述の方法以外の他の方法により、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを調整してもよい。溶融亜鉛めっき浴の浴温とフリーFe濃度Xとは正の相関関係を有する。そこで、たとえば、使用する溶融亜鉛めっき浴での浴温とフリーFe濃度Xとの関係を予め調べておく。そして、浴温とフリーFe濃度Xとの関係が判明した後、浴温を監視及び調整することにより、フリーFe濃度Xを調整してもよい。この場合、溶融亜鉛めっき浴から採取したサンプルを用いて溶融亜鉛めっき浴中のフリーFe濃度Xを決定しなくても、浴温に基づいて溶融亜鉛めっき浴中のフリーFe濃度Xを決定することができる。ただし、この場合であっても、溶融亜鉛めっき浴中のフリーAl濃度Yについてはサンプルを用いて決定する。
【0122】
式(1)及び式(2)に基づいて操業条件を調整する場合、フリーFe濃度X及びフリーAl濃度Yのどちらを優先的に制御するかについては、合金化溶融亜鉛めっき鋼板の製造工程での操業条件、又は、溶融亜鉛めっき鋼板の製造工程での操業条件等に応じて適宜決定すればよい。
【0123】
[溶融亜鉛めっき浴のより好ましい浴温について]
上述の溶融亜鉛めっき処理方法における溶融亜鉛めっき浴の温度(浴温)は、好ましくは、465〜480℃である。ドロスは、溶融亜鉛めっき浴の温度及び溶融亜鉛めっき浴中のフリーAl濃度Yに応じて、トップドロス、Γ
2相ドロス、δ
1相ドロスに相変態する。Γ
2相ドロスは浴温が低い領域で生成しやすい。δ
1相ドロスは、Γ
2相ドロスの生成領域よりも浴温が高い領域で生成しやすい。なお、トップドロスは、Γ
2相ドロスの生成領域及びδ
1相ドロスの生成領域よりもフリーAl濃度Yが高い領域で生成しやすい。
【0124】
溶融亜鉛めっき浴の浴温が465℃以上であれば、Γ
2相ドロスよりもδ
1相ドロスの方がより生成しやすくなり、Γ
2相ドロスがδ
1相ドロスに相変態しやすい。そのため、Γ
2相ドロスが減少し、δ
1相ドロスが増加しやすくなる。一方、溶融亜鉛めっき浴の浴温が480℃以下であれば、金属蒸発がさらに抑制され、金属ヒュームの発生がさらに抑制される。したがって、溶融亜鉛めっき浴の好ましい浴温は465〜480℃である。溶融亜鉛めっき浴の浴温のさらに好ましい下限は470℃である。
【0125】
なお、溶融亜鉛めっき処理方法を実施しているときの溶融亜鉛めっき浴の浴温のばらつき、つまり、鋼板を溶融亜鉛めっき浴に浸漬(通板)しているときの溶融亜鉛めっき浴の浴温のばらつきは、±3.0℃の範囲内とするのが好ましい。ここで、溶融亜鉛めっき浴の浴温のばらつきとは、溶融亜鉛めっき浴全体(つまり、溶融亜鉛めっき浴中の幅方向W、深さ方向D、長さ方向Lの全ての方向)の浴温の最高温度と最低温度との差を意味する。溶融亜鉛めっき浴の浴温のさらに好ましいばらつきは±2.0℃の範囲内であり、さらに好ましくは±1.5℃の範囲内である。
【0126】
なお、溶融亜鉛めっき処理方法を実施しているときの溶融亜鉛めっき浴の浴温の経時変化、つまり、鋼板を溶融亜鉛めっき浴に通板しているときの溶融亜鉛めっき浴の浴温の経時的な変化を、好ましくは、3.0℃/分以内で制御する。溶融亜鉛めっき浴の浴温の調整は、溶融亜鉛ポット101の外壁に配置された、図示しないヒータを用いて行うことができる。
【0127】
以上のとおり、本実施形態の溶融亜鉛めっき処理方法では、鋼板を溶融亜鉛めっき浴中に通板(浸漬)している間において、溶融亜鉛めっき浴のフリーFe濃度X及びフリーAl濃度Yを、式(1)〜(4)を満たす範囲とする。これにより、溶融亜鉛めっき処理された合金化溶融亜鉛めっき鋼板(GA)又は溶融亜鉛めっき鋼板(GI)において、ドロス欠陥、不めっき、及び、表面疵の発生を抑制できる。
【0128】
[合金化溶融亜鉛めっき鋼板の製造方法]
上述の本実施形態の溶融亜鉛めっき処理方法は、合金化溶融亜鉛めっき鋼板(GA)の製造方法に適用可能である。
【0129】
本実施形態による合金化溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき処理工程と、合金化処理工程とを備える。溶融亜鉛めっき処理工程では、鋼板に対して、上述の溶融亜鉛めっき処理方法を実施して、鋼板の表面に溶融亜鉛めっき層を形成する。一方、合金化処理では、溶融亜鉛めっき処理工程により表面に溶融亜鉛めっき層が形成された鋼板に対して、
図2に示す合金化炉111を用いて合金化処理を実施する。合金化処理方法は、周知の方法を適用すれば足りる。
【0130】
以上の製造工程により、合金化溶融亜鉛めっき鋼板を製造できる。本実施形態の合金化溶融亜鉛めっき鋼板では、上述の本実施形態の溶融亜鉛めっき処理方法を採用する。つまり、溶融亜鉛めっき処理中において、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを式(1)〜式(4)の範囲内とする。そのため、合金化溶融亜鉛めっき鋼板において、ドロス欠陥、不めっき及び表面疵の発生が抑制される。
【0131】
なお、本実施形態の合金化溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき処理工程、及び、合金化処理工程以外の他の製造工程を含んでもよい。たとえば、本実施形態の合金化溶融亜鉛めっき鋼板の製造方法は、合金化処理工程後において、
図1に示す調質圧延機30を用いて調質圧延を実施する調質圧延工程を含んでもよい。この場合、合金化溶融亜鉛めっき鋼板の表面の外観品質をさらに高めることができる。また、調質圧延工程以外の他の製造工程を含んでもよい。
【0132】
[合金化溶融亜鉛めっき鋼板(GA)の構成]
本実施形態の合金化溶融亜鉛めっき鋼板の製造方法により製造された合金化溶融亜鉛めっき鋼板は、鋼板と、合金化溶融亜鉛めっき層とを備える。
【0133】
[鋼板について]
鋼板(母材鋼板)の鋼種及びサイズ(板厚、板幅等)は、特に限定されない。鋼板は、製造する合金化溶融亜鉛めっき鋼板に求められる各機械的性質(たとえば、引張強度、加工性等)に応じて、公知の鋼板を利用すればよい。自動車外板に用いられる鋼板を合金化溶融亜鉛めっき処理対象の鋼板として利用してもよい。
【0134】
[合金化溶融亜鉛めっき層について]
合金化溶融亜鉛めっき層は、鋼板上に形成されている。合金化溶融亜鉛めっき層は周知の構成でよい。合金化溶融亜鉛めっき層の化学組成中の好ましいFe含有量は、9.0〜12.0%である。この場合、溶接性、摺動性及び耐パウダリング性が高まる。
【0135】
さらに、合金化溶融亜鉛めっき層の表面において、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2以上であり、最長径が50μm以上のドロスが、10個/10m
2以下であり、最長径が50μm以上の不めっきが10個/10m
2以下である。ここで、「最長径が50μm以上のドロス」のドロスとは、トップドロス、δ
1相ドロス、Γ
1相ドロス、ζ相ドロス、Γ
2相ドロスのいずれか1種以上である。なお、溶融亜鉛めっき浴中において、Γ
1相ドロスはほとんど存在していないと考えられる。
【0136】
合金化溶融亜鉛めっき層の表面における、最長径が3〜50μm未満のδ
1相ドロスの個数密度(個/cm
2)、最長径が50μm以上のドロスの個数密度(個/10m
2)、及び、最長径が50μm以上の不めっきの個数密度(個/10m
2)はそれぞれ、以下の方法で求める。
【0137】
初めに、δ
1相ドロスの個数密度の測定方法は、次の方法で求める。合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面のうち、任意の幅中央位置からサンプルを採取する。サンプルの大きさは、後述の観察視野を確保できれば、特に限定されない。採取したサンプルの合金化溶融亜鉛めっき層の表面のうち、2mm×2mmの矩形領域を1視野とし、任意の10視野を測定対象とする。各視野に対して、100倍にて、EPMAによる元素分析を実施し、及び/又は、TEMによる結晶構造解析を実施して、視野中のδ
1相ドロスを特定する。なお、TEMによる結晶構造解析を実施する場合、事前にEPMAにより測定対象のドロスの位置を特定した後、特定された位置に電子ビームを照射して、結晶構造解析を実施する。
【0138】
さらに、特定された各δ
1相ドロスの最長径を測定し、最長径が3〜50μm未満のδ
1相ドロスの個数を求める。10視野で特定された、最長径が3〜50μm未満のδ
1相ドロスの個数の合計、及び、10視野の合計面積(2mm×2mm×10)に基づいて、δ
1相ドロスの個数密度(個/cm
2)を求める。
【0139】
最長径が50μm以上のドロスの個数密度(個/10m
2)、及び、最長径が50μm以上の不めっきの個数密度(個/10m
2)は、次の方法で求める。合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面のうち、任意の幅中央位置からサンプルを採取する。サンプルの大きさは、後述の観察視野を確保できれば、特に限定されない。採取したサンプルの合金化溶融亜鉛めっき層の表面のうち、1m×1mの矩形領域を1視野とし、任意の10視野を測定対象とする。最長径が50μm以上のドロス、及び、最長径が50μm以上の不めっきは、目視による観察が可能である。なお、目視において、最長径が50μm以上か否かが判別困難なドロス、及び、不めっきについては、100倍の光学顕微鏡を用いて判別する。
【0140】
ここで、δ
1相ドロスを含むドロスの最長径は、次の方法で求める。
図7を参照して、各ドロス100において、ドロス100と母相200との界面(つまりドロスの外周)150の任意の2点を結ぶ線分LSのうち、最大の線分LSを「最長径」と定義する。最長径は観察視野の写真画像に対して画像処理を用いて求めることができる。なお、本明細書において、最長径が3μm未満のドロスについては、確認が困難であり、かつ、ドロス欠陥及び不めっきへの影響がほぼないため、対象外とする。また、不めっきの最長径も、上述のドロスの最長径と同じ方法で定義する。
【0141】
10視野で特定された、最長径が50μm以上のドロスの総個数をカウントする。同様に、10視野で特定された、最長径が50μm以上の不めっきの総個数をカウントする。最長径が50μm以上のドロスの総個数と、10視野の総面積(10m
2)とに基づいて、最長径が50μm以上のドロスの個数密度(個/10m
2)を求める。また、最長径が50μm以上の不めっきの総個数と、10視野の総面積(10m
2)とに基づいて、最長径が50μm以上の不めっきの個数密度(個/10m
2)を求める。
【0142】
上述のとおり、本実施形態の合金化溶融亜鉛めっき鋼板の製造方法では、上述の本実施形態の溶融亜鉛めっき処理方法を採用する。そのため、溶融亜鉛めっき浴中において、式(1)〜式(4)を満たし、微細なδ
1相ドロスを多く生成させることにより、粗大なドロスの生成を抑えている。その結果、製造された合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面において、微細なδ
1相ドロスが多く、かつ、粗大なドロスは少ない。具体的には、最長径が3〜50μm未満のδ
1相ドロスの個数密度は2.5個/cm
2以上であり、最長径が50μm以上のドロスの個数密度は10個/10m
2以下であり、最長径が50μm以上の不めっきは10個/10m
2以下である。そのため、本実施形態の合金化溶融亜鉛めっき鋼板では、ドロス欠陥及び不めっきが抑制されている。
【0143】
本実施形態の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面において、最長径が3〜50μm未満のδ
1相ドロスの個数密度の好ましい下限は5.0個/cm
2であり、さらに好ましくは7.5個/cm
2であり、さらに好ましくは10.0個/cm
2である。また、最長径が3〜50μm未満のδ
1相ドロスの個数密度の上限は特に限定されないが、たとえば、50.0個/cm
2である。なお、δ
1相ドロスの個数密度は、得られた値の小数第二位を四捨五入して得られた値(つまり、小数第一位の数値)とする。
【0144】
また、最長径が50μm以上のドロスの個数密度の好ましい上限は5個/10m
2であり、さらに好ましくは2個/10m
2であり、さらに好ましくは1個/10m
2である。最長径が50μm以上の不めっきの個数密度の好ましい上限は5個/10m
2であり、さらに好ましくは2個/10m
2であり、さらに好ましくは1個/10m
2である。
【0145】
[溶融亜鉛めっき鋼板の製造方法]
上述の本実施形態の溶融亜鉛めっき処理方法はまた、溶融亜鉛めっき鋼板(GI)の製造方法にも適用可能である。
【0146】
本実施形態による溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき処理工程を備える。溶融亜鉛めっき処理工程では、鋼板に対して、上述の溶融亜鉛めっき処理方法を実施して、鋼板の表面に溶融亜鉛めっき層を形成する。本実施形態の溶融亜鉛めっき鋼板の製造方法では、上述の本実施形態の溶融亜鉛めっき処理方法を採用する。つまり、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yを式(1)〜式(4)の範囲内とする。そのため、溶融亜鉛めっき鋼板において、ドロス欠陥、不めっき及び表面疵の発生が抑制される。
【0147】
なお、本実施形態の溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき処理工程以外の他の製造工程を含んでもよい。たとえば、本実施形態の溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき処理工程後に、
図1に示す調質圧延機30を用いて調質圧延を実施する調質圧延工程を含んでもよい。この場合、溶融亜鉛めっき鋼板の表面の外観品質をさらに高めることができる。また、調質圧延工程以外の他の製造工程を含んでもよい。
【0148】
[溶融亜鉛めっき鋼板(GI)の構成]
本実施形態の溶融亜鉛めっき鋼板の製造方法により製造された溶融亜鉛めっき鋼板は、鋼板と、溶融亜鉛めっき層とを備える。
【0149】
[鋼板について]
鋼板については、上述の合金化溶融亜鉛めっき鋼板での鋼板と同様である。つまり、鋼板の(母材鋼板)の鋼種及びサイズ(板厚、板幅等)は、特に限定されない。鋼板は、製造する溶融亜鉛めっき鋼板に求められる各機械的性質に応じて、公知の鋼板を利用すればよい。自動車外板に用いられる鋼板を溶融亜鉛めっき処理対象の鋼板として利用してもよい。
【0150】
[溶融亜鉛めっき層について]
溶融亜鉛めっき層は、鋼板上に形成されている。溶融亜鉛めっき層は、周知の構成でよい。溶融亜鉛めっき層中の好ましいFe含有量は、0%超〜3.0%である。また、溶融亜鉛めっき層中の好ましいAl含有量は0%超〜1.0%である。
【0151】
[溶融亜鉛めっき層表面でのドロス個数密度]
溶融亜鉛めっき層の表面において、最長径が3〜50μm未満のδ
1相ドロスは2.5個/cm
2以上であり、最長径が50μm以上のドロスは、10個/10m
2以下であり、最長径が50μm以上の不めっきは10個/10m
2以下である。
【0152】
溶融亜鉛めっき層の表面における微細δ
1相ドロスの個数密度(個/cm
2)、粗大ドロスの個数密度(個/10m
2)、及び、不めっきの個数密度(個/10m
2)は、合金化溶融亜鉛めっき層の表面における微細δ
1相ドロスの個数密度、粗大ドロスの個数密度、及び、不めっきの個数密度と同じ方法により求めることができる。
【0153】
上述のとおり、本実施形態の溶融亜鉛めっき鋼板の製造方法では、上述の本実施形態の溶融亜鉛めっき処理方法を採用する。そのため、浴中において、微細なδ
1相ドロスを多く生成させることにより、粗大なドロスの生成を抑えている。その結果、製造された溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面において、微細なδ
1相ドロスが多く、かつ、粗大なドロスは少ない。具体的には、最長径が3〜50μm未満のδ
1相ドロスの個数密度は2.5個/cm
2以上であり、最長径が50μm以上のドロスは、10個/10m
2以下であり、最長径が50μm以上の不めっきが10個/10m
2以下である。そのため、本実施形態の合金化溶融亜鉛めっき鋼板では、ドロス欠陥及び不めっきが抑制されている。
【0154】
本実施形態の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面において、最長径が3〜50μm未満のδ
1相ドロスの個数密度の好ましい下限は5.0個/cm
2であり、さらに好ましくは7.5個/cm
2であり、さらに好ましくは10.0個/cm
2である。また、最長径が3〜50μm未満のδ
1相ドロスの個数密度の上限は特に限定されないが、たとえば、50.0個/cm
2である。なお、δ
1相ドロスの個数密度は、得られた値の小数第二位を四捨五入して得られた値(つまり、小数第一位の数値)とする。
【0155】
また、最長径が50μm以上のドロスの個数密度の好ましい上限は5個/10m
2であり、さらに好ましくは2個/10m
2であり、さらに好ましくは1個/10m
2である。最長径が50μm以上の不めっきの個数密度の好ましい上限は5個/10m
2であり、さらに好ましくは2個/10m
2であり、さらに好ましくは1個/10m
2である。
【実施例1】
【0156】
以下、実施例により本実施形態の溶融亜鉛めっき処理方法の一態様の効果をさらに具体的に説明する、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の溶融亜鉛めっき処理方法は、この一条件例に限定されない。
【0157】
図2と同じ構成を有する溶融亜鉛めっき設備を利用して、合金化溶融亜鉛めっき鋼板を製造した。
【0158】
鋼板として、自動車外板用鋼板を用いた。各試験番号の鋼板の化学組成は同じであった。鋼板に対して、表1に示すフリーFe濃度X(質量%)及びフリーAl濃度Y(質量%)の溶融亜鉛めっき浴を準備した。準備された溶融亜鉛めっき浴を用いて、溶融亜鉛めっき処理を実施して、溶融亜鉛めっき鋼板を製造した。各試験番号での溶融亜鉛めっき浴の浴温(℃)は、表1に示すとおりであった。
【0159】
【表1】
【0160】
溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yは次の方法で求めた。溶融亜鉛めっき浴から、サンプルを採取した。各試験番号の溶融亜鉛めっき浴のサンプルの採取位置は、いずれの試験番号も同じ位置とした。サンプル採取位置(特定領域)は、溶融亜鉛めっき浴の深さ方向Dの中央位置であって、幅方向W及び長さ方向Lの所定の位置(いずれの試験番号も同じ位置)とした。
【0161】
溶融亜鉛めっき浴から200gのサンプルを採取した。サンプルを常温まで冷却して固化した。固化したサンプルを用いて、ICP発光分光分析法により、トータルFe濃度及びトータルAl濃度を得た。得られたトータルFe濃度及びトータルAl濃度と、周知のZn−Fe−Al三元系状態図とを用いて、フリーFe濃度X及びフリーAl濃度Yを決定した。具体的には、各試験番号の浴温でのZn−Fe−Al三元系状態図を準備した。Zn−Fe−Al三元系状態図に、ICP発光分光分析法により得られたトータルFe濃度及びトータルAl濃度から特定される点をプロットした。そして、プロットされた点から、Zn−Fe−Al三元系状態図中の液相線にタイライン(共役線)を引いた。液相線とタイラインとの交点でのFe濃度を、フリーFe濃度X(質量%)と定義した。液相線とタイラインとの交点でのAl濃度を、フリーAl濃度Y(質量%)と定義した。
【0162】
得られたフリーFe濃度X(質量%)を表1中の「フリーFe濃度X」欄に示す。得られたフリーAl濃度Y(質量%)を表1中の「フリーAl濃度Y」欄に示す。表1中の「F1」欄には、F1値を示す。ここで、F1=2.674X+0.03719である。つまり、F1は式(1)の右辺に相当する。表1中の「F2」欄には、F2値を示す。ここで、F2=0.2945X+0.1066である。つまり、F2は式(2)の右辺に相当する。
【0163】
表1中の「式(1)」欄中の「S(Satisfied)」は、対応する試験番号の溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yが式(1)を満たすことを意味する。表1中の「式(1)」欄中の「NS(Not Satisfied)」は、対応する試験番号の溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yが式(1)を満たさないことを意味する。表1中の「式(2)」欄中の「S」は、対応する試験番号の溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yが式(2)を満たすことを意味し、「NS」は、フリーFe濃度X及びフリーAl濃度Yが式(2)を満たさないことを意味する。表1中の「式(3)」欄中の「S」は、対応する試験番号の溶融亜鉛めっき浴中のフリーFe濃度Xが式(3)を満たすことを意味し、「NS」は、フリーFe濃度Xが式(3)を満たさないことを意味する。表1中の「式(4)」欄中の「S」は、対応する試験番号の溶融亜鉛めっき浴中のフリーAl濃度Yが式(4)を満たすことを意味し、「NS」は、フリーAl濃度Yが式(4)を満たさないことを意味する。
【0164】
溶融亜鉛めっき鋼板に対して、合金化炉を用いた合金化処理を実施して、合金化溶融亜鉛めっき鋼板を製造した。合金化処理での加熱温度は各試験番号のいずれにおいても一定(510℃)とした。
【0165】
[評価試験]
[合金化溶融亜鉛めっき層の表面でのドロス個数密度測定試験]
製造された各試験番号の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面におけるδ
1相ドロスの個数密度を次の方法で求めた。合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面のうち、任意の幅中央位置からサンプルを採取した。採取したサンプルの合金化溶融亜鉛めっき層の表面のうち、2mm×2mmの矩形領域を1視野とし、任意の10視野を測定対象とした。各視野に対して、100倍にて、EPMAによる元素分析、及び、TEMによる構造解析を実施して、視野中のドロスのうち、δ
1相ドロスを特定した。なお、TEMによる結晶構造解析では、事前にEPMAにより測定対象のドロスの位置を特定した後、特定された位置に電子ビームを照射して、結晶構造解析を実施した。さらに、特定された各δ
1相ドロスの最長径を測定し、最長径が3〜50μm未満のδ
1相ドロスの個数を求めた。10個の視野で特定された、最長径が3〜50μm未満のδ
1相ドロスの個数の合計、及び、10個の視野の総面積(2mm×2mm×10)に基づいて、δ
1相ドロスの個数密度(個/cm
2)を求めた。最長径が3〜50μm未満のδ
1相ドロスの個数密度(個/cm
2)を、表1中の「微細δ
1相ドロス個数密度」欄に示す。
【0166】
さらに、各試験番号の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面における、最長径が50μm以上のドロスの個数密度(個/10m
2)を、次の方法で求めた。合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面のうち、任意の幅中央位置からサンプルを採取した。採取したサンプルの合金化溶融亜鉛めっき層の表面のうち、1m×1mの矩形領域を1視野とし、任意の10視野を測定対象とした。各視野において、目視により、最長径が50μm以上のドロスを観察した。10視野で特定された、最長径が50μm以上のドロスの総個数をカウントした。最長径が50μm以上のドロスの総個数と、10視野の総面積(10m
2)とに基づいて、最長径が50μm以上のドロスの個数密度(個/10m
2)を求めた。なお、目視において、最長径が50μm以上か否かが判別困難なドロスについては、100倍の光学顕微鏡を用いて判別した。最長径が50μm以上のドロスの個数密度(個/10m
2)を表1中の「粗大ドロス個数密度」欄に示す。
【0167】
[ドロス欠陥評価試験]
各試験番号の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面を目視で観察して、上述の最大径が50μm以上のドロスを「ドロス欠陥」と認定した。
【0168】
ドロス欠陥評価の基準は、次のとおりとした。
A:ドロス欠陥の個数密度が10個/10m
2以下であった
C:ドロス欠陥の個数密度が10個/10m
2を超えた
ドロス欠陥評価がAの場合、ドロス欠陥が抑制されたと判断した。一方、ドロス欠陥評価がCの場合、ドロス欠陥が発生したと判断した。
【0169】
[不めっき評価試験]
各試験番号の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面を目視で観察して、不めっきの有無を判断した。不めっきが確認された場合、不めっきの個数密度を求めた。不めっきの個数密度(個/10m
2)は次の方法で求めた。合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面のうち、任意の幅中央位置からサンプルを採取した。採取したサンプルの合金化溶融亜鉛めっき層の表面のうち、1m×1mの矩形領域を1視野とし、任意の10視野を測定対象とした。各視野において、目視により、最長径が50μm以上の不めっきを観察した。10視野で特定された、最長径が50μm以上の不めっきの総個数をカウントした。最長径が50μm以上の不めっきの総個数と、10視野の総面積(10m
2)とに基づいて、最長径が50μm以上の不めっきの個数密度(個/10m
2)を求めた。なお、目視において、最長径が50μm以上か否かが判別困難な不めっきについては、100倍の光学顕微鏡を用いて判別した。最長径が50μm以上の不めっきの個数密度(個/10m
2)を、表1中の「不めっき個数密度」欄に示す。
【0170】
不めっき評価の基準は、次のとおりとした。
A:不めっきが存在しなかった。
B:不めっきの個数密度が10個/10m
2以下であった。
C:不めっきの個数密度が10個/10m
2を超えた。
不めっき評価がA及びBの場合、不めっきが抑制されたと判断した。一方、不めっき評価がCの場合、不めっきが発生したと判断した。
【0171】
[表面疵評価試験]
各試験番号の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面を目視で観察して、表面疵の有無を判断した。具体的には、合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面のうち、任意の幅中央位置からサンプルを採取した。採取したサンプルの合金化溶融亜鉛めっき層の表面のうち、1m×1mの矩形領域を1視野とし、任意の10視野を測定対象とした。各視野において目視で表面疵を観察した。具体的には、各視野において、物理的接触により形成された疵を「表面疵」と認定した。表面疵が確認された場合、表面疵の個数密度を求めた。表面疵の個数密度(個/m
2)は次の方法で求めた。各試験番号の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面を目視観察して、表面疵の総個数をカウントした。なお、表面疵は当業者であれば目視により確認可能である。確認された表面疵の総個数を、観察した総面積(1m×1m×10)で除して、表面疵の個数密度(個/m
2)を求めた。
【0172】
表面疵評価の基準は、次のとおりとした。
A:表面疵が存在しなかった。
B:表面疵の個数密度が0.1個/m
2以下であった。
C:表面疵の個数密度が0.1個/m
2を超えた。
表面疵評価がAの場合、表面疵が抑制されたと判断した。一方、表面疵評価がB又はCの場合、表面疵が発生したと判断した。
【0173】
[評価結果]
表1を参照して、試験番号1〜5では、溶融亜鉛めっき処理中の溶融亜鉛めっき浴におけるフリーFe濃度X及びフリーAl濃度Yが式(1)〜式(4)を満たした。そのため、合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層において、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2以上であり、最長径が50μm以上のドロスが、10個/10m
2以下であり、最長径が50μm以上の不めっきが10個/10m
2以下であった。その結果、ドロス欠陥が抑制され、不めっきが抑制され、表面疵が抑制された。
【0174】
一方、試験番号6及び7では、フリーFe濃度X及びフリーAl濃度Yが式(1)を満たさなかった。そのため、製造された合金化溶融亜鉛めっき鋼板の表面にドロス欠陥が確認された。なお、試験番号6及び7の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面では、最長径が50μm以上のドロスが10個/10m
2よりも多かった。また、試験番号6及び7では、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2未満であった。
【0175】
試験番号8及び9では、フリーFe濃度X及びフリーAl濃度Yが式(2)を満たさなかった。そのため、製造された合金化溶融亜鉛めっき鋼板の表面にドロス欠陥が確認された。なお、試験番号8及び9の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面では、最長径が50μm以上のドロスが10個/10m
2よりも多く、かつ、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2未満であった。
【0176】
試験番号10及び11では、フリーFe濃度Xが式(3)を満たさなかった。そのため、製造された合金化溶融亜鉛めっき鋼板の表面に不めっきが確認された。金属ヒュームが過剰に生成したためと考えられる。なお、試験番号10及び11の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面では、最長径が50μm以上の不めっきが10個/10m
2よりも多かった。
【0177】
試験番号12及び13では、フリーAl濃度Yが式(4)の上限を超えた。そのため、製造された合金化溶融亜鉛めっき鋼板の表面に表面疵が確認された。トップドロスが過剰に生成したためと考えられる。なお、試験番号12及び13の合金化溶融亜鉛めっき鋼板の合金化溶融亜鉛めっき層の表面では、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2未満であった。
【実施例2】
【0178】
実施例1と同様に、
図2と同じ構成を有する溶融亜鉛めっき設備を利用して、溶融亜鉛めっき鋼板を製造した。
【0179】
鋼板として、実施例1と同じ自動車外板用鋼板を用いた。各試験番号の鋼板の化学組成は同じであった。鋼板に対して、表2に示すフリーFe濃度X(質量%)及びフリーAl濃度Y(質量%)の溶融亜鉛めっき浴を準備した。準備された溶融亜鉛めっき浴を用いて、溶融亜鉛めっき処理を実施して、溶融亜鉛めっき鋼板を製造した。なお、本試験では、実施例1の各試験番号の溶融亜鉛めっき鋼板を製造後、合金化炉の電源を停止し(オフライン化し)、同じ浴条件の溶融亜鉛めっき浴を用いて続けて溶融亜鉛めっき鋼板を製造した。なお、溶融亜鉛めっき浴中のフリーFe濃度X及びフリーAl濃度Yは実施例1と同じ方法で求めた。また、溶融亜鉛めっき処理の実施中の溶融亜鉛めっき浴中の浴温は表2に示すとおりであった。
【0180】
【表2】
【0181】
[評価試験]
[溶融亜鉛めっき層の表面でのドロス個数密度測定試験]
製造された各試験番号の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面における、最長径が3〜50μm未満のδ
1相ドロスの個数密度(個/cm
2)、最長径が50μm以上のドロスの個数密度(個/10m
2)、最長径が50μm以上の不めっきの個数密度(個/10m
2)を、実施例1と同じ方法により求めた。最長径が3〜50μm未満のδ
1相ドロスの個数密度(個/cm
2)を、表2中の「微細δ
1相ドロス個数密度」欄に示す。また、最長径が50μm以上のドロスの個数密度(個/10m
2)を、表2中の「粗大ドロス個数密度」欄に示す。また、最長径が50μm以上の不めっきの個数密度(個/10m
2)を、表2中の「不めっき個数密度」欄に示す。
【0182】
さらに、実施例1と同じ方法により、ドロス欠陥評価試験、不めっき評価試験、表面疵評価試験を実施した。ドロス欠陥評価の基準、不めっき評価の基準、表面疵評価の基準はいずれも実施例1と同じとした。
【0183】
[評価結果]
表2を参照して、試験番号1〜5では、溶融亜鉛めっき処理中の溶融亜鉛めっき浴におけるフリーFe濃度X及びフリーAl濃度Yが式(1)〜式(4)を満たした。そのため、溶融亜鉛めっき鋼板の溶融亜鉛めっき層において、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2以上であり、最長径が50μm以上のドロスが、10個/10m
2以下であり、最長径が50μm以上の不めっきが10個/10m
2以下であった。その結果、ドロス欠陥が抑制され、不めっきが抑制され、表面疵が抑制された。
【0184】
一方、試験番号6及び7では、フリーFe濃度X及びフリーAl濃度Yが式(1)を満たさなかった。そのため、製造された溶融亜鉛めっき鋼板の表面にドロス欠陥が確認された。なお、試験番号6及び7の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面では、最長径が50μm以上のドロスが10個/10m
2よりも多かった。また、試験番号6及び7では、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2未満であった。
【0185】
試験番号8及び9では、フリーFe濃度X及びフリーAl濃度Yが式(2)を満たさなかった。そのため、製造された溶融亜鉛めっき鋼板の表面にドロス欠陥が確認された。なお、試験番号8及び9の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面では、最長径が50μm以上のドロスが10個/10m
2よりも多く、かつ、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2未満であった。
【0186】
試験番号10及び11では、フリーFe濃度Xが式(3)を満たさなかった。そのため、製造された溶融亜鉛めっき鋼板の表面に不めっきが確認された。金属ヒュームが過剰に生成したためと考えられる。なお、試験番号10及び11の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面では、最長径が50μm以上の不めっきが10個/10m
2よりも多かった。
【0187】
試験番号12及び13では、フリーAl濃度Yが式(4)の上限を超えた。そのため、製造された溶融亜鉛めっき鋼板の表面に表面疵が確認された。トップドロスが過剰に生成したためと考えられる。なお、試験番号12及び13の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面では、最長径が3〜50μm未満のδ
1相ドロスが2.5個/cm
2未満であった。
【0188】
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。