(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。
【0015】
(バイナリ発電装置100)
図1は、バイナリ発電装置100の概略的な構成を説明する図である。
図1中、冷却水の流れを実線の矢印で示し、加熱水の流れを二点鎖線の矢印で示し、作動媒体の流れを一点鎖線の矢印で示し、信号の流れを破線の矢印で示す。
【0016】
図1に示すように、バイナリ発電装置100は、循環ポンプ110と、蒸発器120と、タービン発電機130と、脱気システム200とを含んでいる。
【0017】
作動媒体用の循環ポンプ110は、脱気システム200(凝縮器220)によって冷却された作動媒体(凝縮器220によって凝縮された液体)を昇圧して蒸発器120に送出する。作動媒体は、例えば、R−245fa(HFC−245fa)である。ただし、作動媒体に限定はない。循環ポンプ110は、凝縮器220の媒体出口342bに吸入側が接続される。また、循環ポンプ110は、蒸発器120の媒体入口122aに吐出側が接続される。したがって、循環ポンプ110は、蒸発器120、タービン発電機130、脱気システム200(凝縮器220)に作動媒体(熱媒体)を循環させる。
【0018】
蒸発器120は、作動媒体と加熱水との熱交換を行い、作動媒体を加熱して、加熱水を冷却する。蒸発器120は、例えば、プレートタイプの熱交換器や、シェルアンドチューブタイプの熱交換器で構成される。蒸発器120には、媒体流路122、および、加熱水流路124が形成される。蒸発器120において、媒体流路122と加熱水流路124とは熱伝達可能に面接触している。また、蒸発器120において、作動媒体の流れと加熱水の流れとが対向流となるように、媒体流路122に媒体入口122aおよび媒体出口122bが形成され、加熱水流路124に加熱水入口124aおよび加熱水出口124bが形成される。
【0019】
媒体流路122には、媒体入口122aを通じて、循環ポンプ110から作動媒体(液体)が導入される。媒体流路122の通過過程において、加熱水によって加熱されることで気化した作動媒体は、媒体出口122bを通じて、タービン発電機130に導入される。
【0020】
一方、加熱水流路124には、加熱水入口124aを通じて、加熱水源から加熱水が導入される。加熱水源は、例えば、温泉やプラント排水源である。加熱水流路124の通過過程において、作動媒体に熱を伝達することで冷却された加熱水は、加熱水出口124bを通じて外部に排出される。
【0021】
タービン発電機130は、蒸発器120から導入された作動媒体(気体)によって発電する。具体的に説明すると、タービン発電機130は、作動媒体によって回転されるタービンと、タービンの回転によって発電する発電機とを含む。タービン発電機130のタービンを通過した作動媒体(気体)は、脱気システム200の凝縮器220に導入される。
【0022】
(脱気システム200)
脱気システム200は、冷却水ポンプ210(冷却液ポンプ)と、凝縮器220(熱交換器)と、冷却水導入管230、冷却水排出管232(第1排出管)と、媒体導入管234と、媒体排出管236と、ガス排出管240(第2排出管)と、バルブ242と、冷却塔250と、検知部260と、制御部270とを含んでいる。
【0023】
冷却水ポンプ210は、冷却塔250によって冷却された冷却水を昇圧して凝縮器220に送出する。冷却水ポンプ210は、冷却塔250の下部(後述する冷却塔250の塔本体252に貯留されている冷却水の水面250aより下方)に吸入側が接続される。また、冷却水ポンプ210は、凝縮器220の冷却水入口344aに吐出側が接続される。したがって、冷却水ポンプ210は、冷却水導入管230、凝縮器220、冷却水排出管232、冷却塔250に冷却水を循環させる。
【0024】
凝縮器220は、作動媒体と冷却水との熱交換を行い、作動媒体を冷却して、冷却水を加熱する。凝縮器220は、例えば、プレートタイプの熱交換器で構成される。
【0025】
図2は、凝縮器220の構成例を説明する図である。
図2(a)は、凝縮器220の分解斜視図である。
図2(b)は、第1プレート310の前面310aを示す平面図である。
図2(c)は、第2プレート320の前面320aを示す平面図である。
図2(d)は、第1プレート310、第2プレート320の後面310b、320bを示す平面図である。本実施形態の
図2をはじめとする以下の図では、垂直に交わるX軸(水平方向)、Y軸(水平方向)、Z軸(鉛直方向)を図示の通り定義している。なお、
図2(a)中、理解を容易にするために、第1プレート310、第2プレート320を実際より少なく示す。
【0026】
図2(a)に示すように、凝縮器220は、複数の第1プレート310と、複数の第2プレート320と、封止板330と、出入板340とを含んでいる。第1プレート310、第2プレート320、封止板330、出入板340は、金属等の熱伝導率が大きい材料で構成される。具体的に説明すると、凝縮器220は、封止板330と出入板340との間に、第1プレート310と第2プレート320とが交互に積層されて構成される。凝縮器220において、第1プレート310および第2プレート320は、例えば、166枚ずつ設けられる。
【0027】
第1プレート310は、
図2(b)に示すように、略矩形形状の平板である。第1プレート310には、前面310aから後面310bに貫通した4つの貫通孔312a〜312dが形成されている。貫通孔312a、312dは、第1プレート310の下部に形成され、貫通孔312b、312cは第1プレート310の上部に形成される。貫通孔312bは、貫通孔312aの鉛直上方に形成される。貫通孔312cは、貫通孔312dの鉛直上方に形成される。また、第1プレート310の前面310aには、
図2(a)、
図2(b)中−Y軸方向に突出した突出部314が設けられる。突出部314は、第1プレート310の前面310aのうち、貫通孔312a、312bが形成された領域と、貫通孔312cが形成された領域と、貫通孔312dが形成された領域とをそれぞれ囲繞し、これらの領域を区画する。突出部314の内側には、
図2(a)、
図2(b)中+Y軸方向に陥没した溝部316が形成される。
【0028】
第2プレート320は、第1プレート310と同一の構造であり、第1プレート310を180°回転させたものである。具体的に説明すると、第2プレート320は、
図2(c)に示すように、略矩形形状の平板である。第2プレート320には、前面320aから後面320bに貫通した4つの貫通孔322a〜322dが形成されている。貫通孔322a、322dは、第2プレート320の下部に形成され、貫通孔322b、322cは第2プレート320の上部に形成される。貫通孔322bは、貫通孔322aの鉛直上方に形成される。貫通孔322cは、貫通孔322dの鉛直上方に形成される。また、第2プレート320の前面320aには、
図2(a)、
図2(c)中−Y軸方向に突出した突出部324が設けられる。突出部324は、第2プレート320の前面320aのうち、貫通孔322aが形成された領域と、貫通孔322bが形成された領域と、貫通孔322c、322dが形成された領域とをそれぞれ囲繞し、これらの領域を区画する。突出部324の内側には、
図2(a)、
図2(c)中+Y軸方向に陥没した溝部326が形成される。
【0029】
また、
図2(d)に示すように、第1プレート310の後面310b、および、第2プレート320の後面320bは、
図2(d)中XZ平面に沿った平面形状である。
【0030】
図2(a)に戻って説明すると、封止板330は、第1プレート310、第2プレート320と実質的に同じ形状、同じ大きさの平板である。封止板330には、貫通孔は形成されていない。
【0031】
出入板340は、第1プレート310、第2プレート320と実質的に同じ形状、同じ大きさの平板である。出入板340には、媒体入口342a、媒体出口342b、冷却水入口344a(入口)、冷却水出口344b(出口)が形成される。第2プレート320と接続されたときに、媒体入口342aは貫通孔322cに、媒体出口342bは貫通孔322dに、冷却水入口344aは貫通孔322aに、冷却水出口344bは貫通孔322bに連通するように出入板340に形成される。なお、凝縮器220は、媒体入口342aの下方に媒体出口342bが、冷却水入口344aの上方に冷却水出口344bが位置するように設置される。
【0032】
図2(a)に示すように、第1プレート310の前面310aには、第2プレート320の後面320bが接続(例えば、ろう付け)される。詳細には、第1プレート310の突出部314が第2プレート320の後面320bに接続される。また、第2プレート320の前面320aには、第1プレート310の後面310bが接続される。詳細には、第2プレート320の突出部324が第1プレート310の後面310bに接続される。このようにして、第1プレート310、第2プレート320が交互に積層された積層体が形成される。そして、積層体の一方の端部に位置する第1プレート310の後面310bに封止板330が接続される。また、積層体の他方の端部に位置する第2プレート320の前面320a(突出部324)に出入板340の後面が接続される。
【0033】
このように、第1プレート310、第2プレート320、封止板330、出入板340が積層されることにより、媒体入口342a、貫通孔312c、貫通孔322cによって媒体流路222aが形成され、媒体出口342b、貫通孔312d、貫通孔322dによって媒体流路222bが形成される。つまり、媒体流路222a、媒体流路222bは、水平方向に延在している。また、媒体流路222aと媒体流路222bとは、溝部326(媒体流路)によって連通される。
【0034】
また、第1プレート310、第2プレート320、封止板330、出入板340が積層されることにより、冷却水入口344a、貫通孔312a、貫通孔322aによって冷却水流路224a(冷却液流路)が形成され、冷却水出口344b、貫通孔312b、貫通孔322bによって冷却水流路224b(冷却液流路)が形成される。つまり、冷却水流路224a、冷却水流路224bは、水平方向に延在している。また、冷却水流路224aと、冷却水流路224bとは、溝部316(冷却液流路)によって連通される。
【0035】
冷却水導入管230は、冷却水入口344aに連続した管であり、冷却水ポンプ210の吐出側に接続される。冷却水排出管232は、冷却水出口344bに連続した管であり、冷却塔250の散水部254に接続される。媒体導入管234は、媒体入口342aに連続した管であり、タービン発電機130のタービンに接続される。媒体排出管236は、媒体出口342bに連続した管であり、循環ポンプ110の吸入側に接続される。
【0036】
図3は、冷却水と作動媒体の流れを説明する図である。なお、
図3中、冷却水の流れを実線の矢印で示し、作動媒体の流れを破線の矢印で示す。
図3に示すように、冷却水入口344aから導入された冷却水は、第1の冷却水流路224aを(貫通孔322a、貫通孔312aを交互に)
図3中+Y軸方向に通過するとともに、溝部316を上昇する。溝部316を上昇した冷却水は、第2の冷却水流路224bを(貫通孔312b、貫通孔322bを交互に)
図3中−Y軸方向に通過して冷却水出口344bから排出される。
【0037】
一方、媒体入口342aから導入された作動媒体は、第1の媒体流路222aを(貫通孔322c、貫通孔312cを交互に)
図3中+Y軸方向に通過するとともに、溝部326を下降する。溝部326を下降した作動媒体は、第2の媒体流路222bを(貫通孔312d、貫通孔322dを交互に)
図3中−Y軸方向に通過して媒体出口342bから排出される。
【0038】
そして、凝縮器220内において、溝部316を上昇流となって流れる冷却水と、溝部326を下降流となって流れる作動媒体とで熱交換が為される。具体的に説明すると、溝部316と、溝部326とは、第1プレート310または第2プレート320によって区画されている。つまり、溝部316と、溝部326とは、第1プレート310または第2プレート320によって熱伝達可能に設けられている。このため、溝部316を流れる冷却水と、溝部326を流れる作動媒体とで熱交換が為されることになる。そして、溝部326の通過過程において、冷却水によって冷却されることで凝縮した作動媒体は、媒体出口342bを通じて、循環ポンプ110に吸引される。一方、溝部316の通過過程において、作動媒体から熱が伝達されて加熱された冷却水は、冷却水出口344bを通じて冷却塔250に送出される。
【0039】
図1に戻って説明すると、ガス排出管240は、冷却水排出管232から分岐され、端部240aが開放されている。ガス排出管240の端部240aは、冷却塔250の水面250aに浸漬される。バルブ242は、ガス排出管240に設けられ、制御部270によって開度が調整される。
【0040】
冷却塔250は、凝縮器220によって加熱された冷却水を冷却する。具体的に説明すると、冷却塔250は、中空形状の塔本体252と、散水部254とを含んでいる。塔本体252は、下部に冷却水を貯留可能な形状となっている。また、塔本体252は、下部側面に外気取り込み口が形成されている。散水部254は、例えば、ノズルで構成され、塔本体252内に配される。冷却水排出管232を通じて凝縮器220から導入された冷却水は、散水部254から散水される。散水された冷却水は、塔本体252内を落下する。冷却水は、落下する過程において、外気取り込み口から塔本体252内に取り込まれた外気と接触することにより冷却される。冷却された冷却水は、塔本体252の下部に貯留される。
【0041】
なお、例えば、冷却塔250が、散水部254が冷却水出口344bより下方に位置するように設けられた場合には、サイフォンの原理により、冷却水流路224bから自重で散水部254に冷却水を送出することができる。また、凝縮器220の冷却水出口344bと散水部254との水頭差分、冷却水出口344bの圧力を低く(負圧に)することが可能となる。
【0042】
検知部260は、冷却水排出管232における、冷却水出口344bとの接続箇所と、ガス排出管240との分岐箇所との間を流れる冷却水中の気泡を検知する。検知部260は、例えば、超音波を発振する超音波検知器で構成される。本実施形態において、検知部260は、冷却水のボイド率を測定する。ボイド率は、単位体積の冷却水に含まれる気泡(ボイド)の容積割合である。
【0043】
制御部270は、例えば、CPU(中央処理装置)を含む半導体集積回路で構成される。制御部270は、ROM(Read Only Memory:読み出し専用メモリ)からCPU自体を動作させるためのプログラムやパラメータ等を読み出す。制御部270は、ワークエリアとしてのRAM(Random Access Memory:読み書き可能なメモリ)や他の電子回路と協働して脱気システム200全体を管理および制御する。本実施形態において、制御部270は、検知部260の検知結果に基づいて、バルブ242を開閉制御する。
【0044】
上記したように、冷却塔250では、冷却水を外気に接触させて冷却しているため、冷却水に空気が少なからず含まれてしまう。具体的に説明すると、冷却水に含まれる空気は、冷却水中に溶解している溶解空気、直径が10μm未満の気泡(以下、「ナノバブル」と称する)、直径が10μm以上50μm未満の気泡(以下、「マイクロバブル」と称する)、直径が50μm以上の気泡(以下、「大気泡」と称する)が含まれる。凝縮器220内に供給される冷却水は、冷却水ポンプ210によって昇圧されるため、溶解空気の気化が抑制される。一方、昇圧により、冷却水ポンプ210の出口から凝縮器220の冷却水流路224aの端末(封止板330の近傍)までの間に、混在している一部の気泡が径の大きい順に冷却水に溶解して溶解量が増加する。この冷却水が、凝縮器220の溝部316に流入すると、作動媒体により加熱され、その後冷却水流路224bに送出される。加熱によって冷却水の温度が上昇して、気体の溶解許容値が減少するため、温度上昇が大きい場合には溶解空気の一部が気化して気泡が生成される。したがって、温度上昇が大きい程、気泡の生成量は多くなる。このため、冷却水流路224bに送出された冷却水の溶解空気から生成された気泡混在冷却水と、冷却水入口344aから溝部316を通過して一部残存している気泡混在冷却水の両方が冷却水流路224bに送出される。このため、冷却水流路224b内における流体の挙動によってはこれらの気泡の一部が冷却水から分離される。
【0045】
また、大気泡は浮上速度が大きいため、浮上時間が相対的に短い。このため、大気泡は、冷却塔250に貯留されている時間内に冷却水から分離される。
【0046】
一方、ナノバブルおよびマイクロバブルは、浮上時間が相対的に長いため、冷却塔250に貯留されている間に冷却水からほとんど分離されない。このため、ナノバブルおよびマイクロバブルは、冷却水とともに凝縮器220内に導入される。しかし、ナノバブルは、ブラウン運動によって冷却水中に浮遊(分散)されているため、ナノバブル同士の凝集が抑制される。したがって、ナノバブルは、冷却水の流れとともに凝縮器220を通過することになり、凝縮器220(冷却水流路224a、224b、溝部316)内に空気溜りを形成することはない。マイクロバブルは、ブラウン運動が為されないため、凝縮器220内においてマイクロバブル同士が凝集し、大気泡が形成される場合がある。ただし、凝縮器220内を流れる冷却水が乱流である場合、マイクロバブルは、冷却水の流れとともに凝縮器220を通過することになる。
【0047】
図4は、凝縮器220内の空気溜りAPを説明する図である。
図4中、理解を容易にするため、一部の部材を破線で示す。凝縮器220は、冷却水流路224a、224b、溝部316を通過する冷却水が乱流となるように設計される。このため、凝縮器220内のナノバブルおよびマイクロバブルは、ほとんどが冷却水とともに凝縮器220から排出される。
【0048】
しかし、冷却水流路224a、224bにおける封止板330の近傍は、他の箇所と比較して冷却水の流速が低下する。具体的に説明すると、上記したように冷却水入口344aから導入された冷却水は、冷却水流路224aを
図4中+Y軸方向に流れた後、溝部316において−Z軸方向の上昇流となって、冷却水流路224bに到達する。そして、冷却水は、冷却水流路224bを
図4中−Y軸方向に流れる。つまり、冷却水入口344aから導入された冷却水は溝部316に分流されるため、冷却水流路224a、224bのうち、冷却水入口344aからの距離が遠い封止板330の近傍において冷却水の流速が低下する。そうすると、
図4に示すように、上方に位置する冷却水流路224bにおける封止板330の近傍から冷却水出口344b近傍の冷却水の流速が極度に低下して冷却水が滞留する。このため、冷却水中の気泡が相対的に短時間で分離されやすくなり、冷却水流路224bにおいて、封止板330の近傍から冷却水出口344bに向かって空気が滞留し、空気溜りAPが形成される(空気層が形成)ことがある。
【0049】
また、溝部316を通過する冷却水が作動媒体と熱交換されることによって、昇温され、溶解空気が気化して気泡となる場合もある。このようにして生じた気泡が上昇し、冷却水流路224bにおいて空気溜りAPを形成することもある。
【0050】
空気溜りAPが形成されると、冷却水流路224bにおける空気溜りAPの下方の冷却水が、空気溜りAPを通過することができなくなる場合がある。具体的に説明すると、空気溜りAPが、冷却水流路224bにおける封止板330の近傍に形成されるに従い、溝部316の冷却水が冷却水流路224bに到達(上昇)する量が減少し、当該部分が空気だけになると冷却水は流れなくなる。つまり、空気溜りAPの下方の溝部316において、冷却水が停滞する。このため、空気溜りAPの下方の溝部316には、冷却された新たな冷却水が供給されなくなり、空気溜りAPの下方の溝部316の熱交換機能が失われてしまう。そうすると、凝縮器220全体の熱交換量が低下して作動媒体の凝縮量が低下し、ひいては、タービン発電機130の発電量が低下してしまう。
【0051】
そこで、制御部270は、検知部260が検知した冷却水のボイド率が所定の第1閾値(所定値)を上回った場合にバルブ242を開弁する。ここで、第1閾値は、0.2以下の所定の値である。
【0052】
冷却水流路224b内に空気溜りAPが形成されると、冷却水出口344bから排出される冷却水に気泡が随伴され始める。また、空気溜りAPによって、冷却水が溝部316に停滞し始めると、ボイド率が0.2を上回る。したがって、第1閾値を0.2以下とすることにより、空気溜りAPによる溝部316の冷却水の停滞が始まる前にバルブ242を開弁することができる。
【0053】
これにより、冷却水とともに空気を凝縮器220(冷却水流路224b)から外部に排出することが可能となる。つまり、冷却水に空気を随伴させて凝縮器220から排出することができる。
【0054】
なお、上記したように、ガス排出管240は、端部240aが塔本体252に貯留された冷却水の水面250aに浸漬されている。また、冷却水排出管232(冷却水流路224b)内の冷却水は、冷却水ポンプ210によって、塔本体252に貯留された冷却水より高い圧力に昇圧されている。したがって、ガス排出管240は、冷却水排出管232より低圧であるため、バルブ242を開弁するだけで、冷却水流路224bから冷却水とともに空気を外部に排出することが可能となる。
【0055】
また、ガス排出管240の端部240aは、塔本体252に貯留された冷却水の水面250aに浸漬されている。このため、冷却水流路224bから排出された冷却水を再利用することができる。したがって、冷却水が無駄に廃棄されてしまう事態を回避することが可能となる。
【0056】
また、上記したように、第1閾値を、0.2以下の値とすることにより、空気溜りAPが大きく形成される前に、冷却水流路224bから空気を取り除くことができる。これにより、凝縮器220の熱交換量が低下する前に空気を取り除くことが可能となる。したがって、発電量を低下させることなく、タービン発電機130を連続して運転させることが可能となる。
【0057】
そして、制御部270は、検知部260が検知したボイド率が所定の第2閾値以下になったと判定すると、バルブ242を閉弁する。ここで、第2閾値は、第1閾値未満の値である。
【0058】
以上説明したように、本実施形態の脱気システム200は、凝縮器220によって冷却された作動媒体を利用するタービン発電機130の能力の低下を予防することが可能となる。
【0059】
また、脱気システム200は、冷却水ポンプ210の吐出圧を高くして空気の溶解度を増加させる従来技術と比較して、低コストで空気溜りAPの形成を抑制することができる。
【0060】
以上、添付図面を参照しながら実施形態について説明したが、本開示は上記実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
【0061】
例えば、上記実施形態において、凝縮器220の冷却液として水(冷却水)を例に挙げて説明した。しかし、凝縮器220に導入される冷却液に限定はない。
【0062】
また、上記実施形態において、媒体流路222a、222b、冷却水流路224a、224bが水平方向に延在する構成を例に挙げて説明した。しかし、媒体流路222a、222b、冷却水流路224a、224bは、水平方向からある程度傾斜していてもよい。
【0063】
また、上記実施形態において、凝縮器220としてプレートタイプの熱交換器を例に挙げて説明した。しかし、凝縮器220の構成に限定はない。例えば、凝縮器220として、シェルアンドチューブタイプの熱交換器を利用してもよい。
【0064】
また、上記実施形態において、検知部260として超音波検知器を例に挙げて説明した。しかし、検知器260は、冷却水のボイド率を測定することができれば構成に限定はない。