(58)【調査した分野】(Int.Cl.,DB名)
前記処理部は、複数の前記区域のうち第1の区域における前記第1の空撮経路と前記第1の区域の内側に存在する第2の区域とが接する第1の点及び第2の点とが、前記第2の区域における前記第1の空撮経路の両端点となるように、前記第2の区域における前記第1の空撮経路を生成する、
請求項1〜4のいずれか1項に記載の情報処理装置。
前記第1の空撮経路を生成するステップは、複数の前記区域のうち第1の区域における前記第1の空撮経路と前記第1の区域の内側に存在する第2の区域とが接する第1の点及び第2の点とが、前記第2の区域における前記第1の空撮経路の両端点となるように、前記第2の区域における前記第1の空撮経路を生成するステップを含む、
請求項10〜13のいずれか1項に記載の空撮経路生成方法。
【発明を実施するための形態】
【0029】
以下、発明の実施形態を通じて本開示を説明するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須とは限らない。
【0030】
特許請求の範囲、明細書、図面、及び要約書には、著作権による保護の対象となる事項が含まれる。著作権者は、これらの書類の何人による複製に対しても、特許庁のファイル又はレコードに表示される通りであれば異議を唱えない。ただし、それ以外の場合、一切の著作権を留保する。
【0031】
以下の実施形態では、情報処理装置として、無人航空機(UAV:Unmanned Aerial Vehicle)を主に例示する。無人航空機は、飛行体の一例であり、空中を移動する航空機を含む。本明細書に添付する図面では、無人航空機を「UAV」とも表記する。また、情報処理装置は、無人航空機以外の装置でもよく、例えば端末、PC(Personal Computer)、又はその他の装置でもよい。空撮経路生成方法は、情報処理装置における動作が規定されたものである。記録媒体は、プログラム(例えば、情報処理装置に各種の処理を実行させるためのプログラム)が記録されたものである。
【0032】
(第1の実施形態)
図1は、第1の実施形態における空撮経路生成システム10の第1構成例を示す模式図である。空撮経路生成システム10は、無人航空機100及び端末80を備える。無人航空機100及び端末80は、相互に有線通信又は無線通信(例えば無線LAN(Local Area Network))により通信可能である。
図1では、端末80が携帯端末(例えばスマートフォン、タブレット端末)であることを例示している。
【0033】
図2は、第1の実施形態における空撮経路生成システム10の第2構成例を示す模式図である。
図2では、端末80がPCであることを例示している。
図1及び
図2のいずれであっても、端末80が有する機能は同じでよい。
【0034】
図3は、無人航空機100のハードウェア構成の一例を示すブロック図である。無人航空機100は、UAV制御部110と、通信インタフェース150と、メモリ160と、ストレージ170と、ジンバル200と、回転翼機構210と、撮像部220と、撮像部230と、GPS受信機240と、慣性計測装置(IMU:Inertial Measurement Unit)250と、磁気コンパス260と、気圧高度計270と、超音波センサ280と、レーザー測定器290と、を含む構成である。
【0035】
UAV制御部110は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)又はDSP(Digital Signal Processor)を用いて構成される。UAV制御部110は、無人航空機100の各部の動作を統括して制御するための信号処理、他の各部との間のデータの入出力処理、データの演算処理及びデータの記憶処理を行う。
【0036】
UAV制御部110は、メモリ160に格納されたプログラムに従って無人航空機100の飛行を制御する。UAV制御部110は、端末80又は無人航空機100により生成された空撮経路に従って、飛行を制御してよい。UAV制御部110は、端末80又は無人航空機100により生成された空撮位置に従って、画像を空撮させてよい。なお、空撮は、撮像の一例である。
【0037】
UAV制御部110は、無人航空機100の位置を示す位置情報を取得する。UAV制御部110は、GPS受信機240から、無人航空機100が存在する緯度、経度及び高度を示す位置情報を取得してよい。UAV制御部110は、GPS受信機240から無人航空機100が存在する緯度及び経度を示す緯度経度情報、並びに気圧高度計270から無人航空機100が存在する高度を示す高度情報をそれぞれ位置情報として取得してよい。UAV制御部110は、超音波センサ280による超音波の放射点と超音波の反射点との距離を高度情報として取得してよい。
【0038】
UAV制御部110は、磁気コンパス260から無人航空機100の向きを示す向き情報を取得してよい。向き情報は、例えば無人航空機100の機首の向きに対応する方位で示されてよい。
【0039】
UAV制御部110は、撮像部220が撮像すべき撮像範囲を撮像する時に無人航空機100が存在すべき位置を示す位置情報を取得してよい。UAV制御部110は、無人航空機100が存在すべき位置を示す位置情報をメモリ160から取得してよい。UAV制御部110は、無人航空機100が存在すべき位置を示す位置情報を、通信インタフェース150を介して他の装置から取得してよい。UAV制御部110は、3次元地図データベースを参照して、無人航空機100が存在可能な位置を特定して、その位置を無人航空機100が存在すべき位置を示す位置情報として取得してよい。
【0040】
UAV制御部110は、撮像部220及び撮像部230のそれぞれの撮像範囲を示す撮像範囲情報を取得してよい。UAV制御部110は、撮像範囲を特定するためのパラメータとして、撮像部220及び撮像部230の画角を示す画角情報を撮像部220及び撮像部230から取得してよい。UAV制御部110は、撮像範囲を特定するためのパラメータとして、撮像部220及び撮像部230の撮像方向を示す情報を取得してよい。UAV制御部110は、例えば撮像部220の撮像方向を示す情報として、ジンバル200から撮像部220の姿勢の状態を示す姿勢情報を取得してよい。撮像部220の姿勢情報は、ジンバル200のピッチ軸及びヨー軸の基準回転角度からの回転角度を示してよい。
【0041】
UAV制御部110は、撮像範囲を特定するためのパラメータとして、無人航空機100が存在する位置を示す位置情報を取得してよい。UAV制御部110は、撮像部220及び撮像部230の画角及び撮像方向、並びに無人航空機100が存在する位置に基づいて、撮像部220が撮像する地理的な範囲を示す撮像範囲を画定し、撮像範囲情報を生成することで、撮像範囲情報を取得してよい。
【0042】
UAV制御部110は、メモリ160から撮像範囲情報を取得してよい。UAV制御部110は、通信インタフェース150を介して撮像範囲情報を取得してよい。
【0043】
UAV制御部110は、ジンバル200、回転翼機構210、撮像部220及び撮像部230を制御する。UAV制御部110は、撮像部220の撮像方向又は画角を変更することによって、撮像部220の撮像範囲を制御してよい。UAV制御部110は、ジンバル200の回転機構を制御することで、ジンバル200に支持されている撮像部220の撮像範囲を制御してよい。
【0044】
撮像範囲とは、撮像部220又は撮像部230により撮像される地理的な範囲をいう。撮像範囲は、緯度、経度、及び高度で定義される。撮像範囲は、緯度、経度、及び高度で定義される3次元空間データにおける範囲でよい。撮像範囲は、緯度及び経度で定義される2次元空間データにおける範囲でもよい。撮像範囲は、撮像部220又は撮像部230の画角及び撮像方向、並びに無人航空機100が存在する位置に基づいて特定されてよい。撮像部220及び撮像部230の撮像方向は、撮像部220及び撮像部230の撮像レンズが設けられた正面が向く方位と俯角とから定義されてよい。撮像部220の撮像方向は、無人航空機100の機首の方位と、ジンバル200に対する撮像部220の姿勢の状態とから特定される方向でよい。撮像部230の撮像方向は、無人航空機100の機首の方位と、撮像部230が設けられた位置とから特定される方向でよい。
【0045】
UAV制御部110は、複数の撮像部230により撮像された複数の画像を解析することで、無人航空機100の周囲の環境を特定してよい。UAV制御部110は、無人航空機100の周囲の環境に基づいて、例えば障害物を回避して飛行を制御してよい。
【0046】
UAV制御部110は、無人航空機100の周囲に存在するオブジェクトの立体形状(3次元形状)を示す立体情報(3次元情報)を取得してよい。オブジェクトは、例えば、建物、道路、車、木等の風景の一部でよい。立体情報は、例えば、3次元空間データである。UAV制御部110は、複数の撮像部230から得られたそれぞれの画像から、無人航空機100の周囲に存在するオブジェクトの立体形状を示す立体情報を生成することで、立体情報を取得してよい。UAV制御部110は、メモリ160又はストレージ170に格納された3次元地図データベースを参照することにより、無人航空機100の周囲に存在するオブジェクトの立体形状を示す立体情報を取得してよい。UAV制御部110は、ネットワーク上に存在するサーバが管理する3次元地図データベースを参照することで、無人航空機100の周囲に存在するオブジェクトの立体形状に関する立体情報を取得してよい。
【0047】
UAV制御部110は、回転翼機構210を制御することで、無人航空機100の飛行を制御する。つまり、UAV制御部110は、回転翼機構210を制御することにより、無人航空機100の緯度、経度、及び高度を含む位置を制御する。UAV制御部110は、無人航空機100の飛行を制御することにより、撮像部220の撮像範囲を制御してよい。UAV制御部110は、撮像部220が備えるズームレンズを制御することで、撮像部220の画角を制御してよい。UAV制御部110は、撮像部220のデジタルズーム機能を利用して、デジタルズームにより、撮像部220の画角を制御してよい。
【0048】
撮像部220が無人航空機100に固定され、撮像部220を動かせない場合、UAV制御部110は、特定の日時に特定の位置に無人航空機100を移動させることにより、所望の環境下で所望の撮像範囲を撮像部220に撮像させてよい。あるいは撮像部220がズーム機能を有さず、撮像部220の画角を変更できない場合でも、UAV制御部110は、特定された日時に、特定の位置に無人航空機100を移動させることで、所望の環境下で所望の撮像範囲を撮像部220に撮像させてよい。
【0049】
通信インタフェース150は、端末80と通信する。通信インタフェース150は、任意の無線通信方式により無線通信してよい。通信インタフェース150は、任意の有線通信方式により有線通信してもよい。通信インタフェース150は、空撮画像や空撮画像に関する付加情報(メタデータ)を、端末80に送信してよい。
【0050】
メモリ160は、UAV制御部110がジンバル200、回転翼機構210、撮像部220、撮像部230、GPS受信機240、慣性計測装置250、磁気コンパス260、気圧高度計270、超音波センサ280、及びレーザー測定器290を制御するのに必要なプログラム等を格納する。メモリ160は、コンピュータ読み取り可能な記録媒体でよく、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、及びUSB(Universal Serial Bus)メモリ等のフラッシュメモリの少なくとも1つを含んでよい。メモリ160は、無人航空機100から取り外し可能であってもよい。メモリ160は、作業用メモリとして動作してよい。
【0051】
ストレージ170は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、SDカード、USBメモリ、その他のストレージの少なくとも1つを含んでよい。ストレージ170は、各種情報、各種データを保持してよい。ストレージ170は、無人航空機100から取り外し可能であってもよい。ストレージ170は、空撮画像やその付加情報を記録してよい。
【0052】
メモリ160又はストレージ170は、端末80又は無人航空機100により生成された空撮位置や空撮経路の情報を保持してよい。空撮位置や空撮経路の情報は、無人航空機100により予定された空撮に係る空撮パラメータ、又は、無人航空機100により予定された飛行に係る飛行パラメータ、の1つとして、UAV制御部110により設定されてよい。この設定情報は、メモリ160又はストレージ170に保持されてよい。
【0053】
ジンバル200は、ヨー軸、ピッチ軸、及びロール軸を中心に撮像部220を回転可能に支持してよい。ジンバル200は、ヨー軸、ピッチ軸、及びロール軸の少なくとも1つを中心に撮像部220を回転させることで、撮像部220の撮像方向を変更してよい。
【0054】
ヨー軸、ピッチ軸、及びロール軸は、以下のように定められてよい。例えば、水平方向(地面と平行な方向)にロール軸が定義されたとする。この場合、地面と平行であってロール軸に垂直な方向にピッチ軸が定められ、地面に垂直であってロール軸及びピッチ軸に垂直な方向にヨー軸(z軸参照)が定められる。
【0055】
回転翼機構210は、複数の回転翼と、複数の回転翼を回転させる複数の駆動モータと、を有する。回転翼機構210は、UAV制御部110により回転を制御されることにより、無人航空機100を飛行させる。回転翼211の数は、例えば4つでもよいし、その他の数でもよい。また、無人航空機100は、回転翼を有さない固定翼機でもよい。
【0056】
撮像部220は、所望の撮像範囲に含まれる被写体(例えば、空撮対象となる上空の様子、山や川等の景色、地上の建物)を撮像する撮像用のカメラでよい。撮像部220は、所望の撮像範囲の被写体を撮像して撮像画像のデータを生成する。撮像部220の撮像により得られた画像データ(例えば空撮画像)は、撮像部220が有するメモリ、又はストレージ170に格納されてよい。
【0057】
撮像部230は、無人航空機100の飛行を制御するために無人航空機100の周囲を撮像するセンシング用のカメラでよい。2つの撮像部230が、無人航空機100の機首である正面に設けられてよい。さらに、他の2つの撮像部230が、無人航空機100の底面に設けられてよい。正面側の2つの撮像部230はペアとなり、いわゆるステレオカメラとして機能してよい。底面側の2つの撮像部230もペアとなり、ステレオカメラとして機能してよい。複数の撮像部230により撮像された画像に基づいて、無人航空機100の周囲の3次元空間データ(3次元形状データ)が生成されてよい。なお、無人航空機100が備える撮像部230の数は4つに限定されない。無人航空機100は、少なくとも1つの撮像部230を備えてよい。無人航空機100は、無人航空機100の機首、機尾、側面、底面、及び天井面のそれぞれに少なくとも1つの撮像部230を備えてよい。撮像部230で設定できる画角は、撮像部220で設定できる画角より広くてよい。撮像部230は、単焦点レンズ又は魚眼レンズを有してよい。撮像部230は、無人航空機100の周囲を撮像して撮像画像のデータを生成する。撮像部230の画像データは、ストレージ170に格納されてよい。
【0058】
GPS受信機240は、複数の航法衛星(つまり、GPS衛星)から発信された時刻及び各GPS衛星の位置(座標)を示す複数の信号を受信する。GPS受信機240は、受信された複数の信号に基づいて、GPS受信機240の位置(つまり、無人航空機100の位置)を算出する。GPS受信機240は、無人航空機100の位置情報をUAV制御部110に出力する。なお、GPS受信機240の位置情報の算出は、GPS受信機240の代わりにUAV制御部110により行われてよい。この場合、UAV制御部110には、GPS受信機240が受信した複数の信号に含まれる時刻及び各GPS衛星の位置を示す情報が入力される。
【0059】
慣性計測装置250は、無人航空機100の姿勢を検出し、検出結果をUAV制御部110に出力する。慣性計測装置250は、無人航空機100の姿勢として、無人航空機100の前後、左右、及び上下の3軸方向の加速度と、ピッチ軸、ロール軸、及びヨー軸の3軸方向の角速度とを検出してよい。
【0060】
磁気コンパス260は、無人航空機100の機首の方位を検出し、検出結果をUAV制御部110に出力する。
【0061】
気圧高度計270は、無人航空機100が飛行する高度を検出し、検出結果をUAV制御部110に出力する。
【0062】
超音波センサ280は、超音波を放射し、地面や物体により反射された超音波を検出し、検出結果をUAV制御部110に出力する。検出結果は、無人航空機100から地面までの距離つまり高度を示してよい。検出結果は、無人航空機100から物体(被写体)までの距離を示してよい。
【0063】
レーザー測定器290は、物体にレーザー光を照射し、物体で反射された反射光を受光し、反射光により無人航空機100と物体(被写体)との間の距離を測定する。レーザー光による距離の測定方式は、一例として、タイムオブフライト方式でよい。
【0064】
図4は、端末80のハードウェア構成の一例を示すブロック図である。端末80は、端末制御部81、操作部83、通信部85、メモリ87、表示部88、及びストレージ89を備えてよい。端末80は、空撮経路の生成を希望するユーザに所持され得る。
【0065】
端末制御部81は、例えばCPU、MPU又はDSPを用いて構成される。端末制御部81は、端末80の各部の動作を統括して制御するための信号処理、他の各部との間のデータの入出力処理、データの演算処理及びデータの記憶処理を行う。
【0066】
端末制御部81は、通信部85を介して、無人航空機100からのデータや空撮画像や情報を取得してよい。端末制御部81は、操作部83を介して入力されたデータや情報(例えば飛行パラメータや空撮パラメータ等の各種パラメータ)を取得してよい。端末制御部81は、メモリ87に保持されたデータや空撮画像や情報を取得してよい。端末制御部81は、通信部85を介して、無人航空機100へ、データや情報(例えば生成された空撮位置、空撮経路の情報)を送信させてよい。端末制御部81は、データや情報や空撮画像を表示部88に送り、このデータや情報や空撮画像に基づく表示情報を表示部88に表示させてよい。
【0067】
端末制御部81は、空撮経路を生成するためのアプリケーションや空撮経路の生成を支援するためのアプリケーションを実行してよい。端末制御部81は、アプリケーションで用いられる各種のデータを生成してよい。
【0068】
操作部83は、端末80のユーザにより入力されるデータや情報を受け付けて取得する。操作部83は、ボタン、キー、タッチパネル、マイクロホン、等を含んでよい。ここでは、主に、操作部83と表示部88とがタッチパネルにより構成されることを例示する。この場合、操作部83は、タッチ操作、タップ操作、ドラック操作等を受付可能である。操作部83は、各種パラメータの情報を受け付けてよい。操作部83により入力された情報は、無人航空機100へ送信されてよい。各種パラメータは、空撮経路の生成に関するパラメータ(例えば、空撮経路に従って空撮する際の無人航空機100の飛行パラメータや空撮パラメータの少なくとも1つ、の情報)を含んでよい。
【0069】
通信部85は、各種の無線通信方式により、無人航空機100との間で無線通信する。この無線通信の無線通信方式は、例えば、無線LAN、Bluetooth(登録商標)、又は公衆無線回線を介した通信を含んでよい。通信部85は、任意の有線通信方式により有線通信してもよい。
【0070】
メモリ87は、例えば端末80の動作を規定するプログラムや設定値のデータが格納されたROMと、端末制御部81の処理時に使用される各種の情報やデータを一時的に保存するRAMを有してよい。メモリ87は、ROM及びRAM以外のメモリが含まれてよい。メモリ87は、端末80の内部に設けられてよい。メモリ87は、端末80から取り外し可能に設けられてよい。プログラムは、アプリケーションプログラムを含んでよい。
【0071】
表示部88は、例えばLCD(Liquid Crystal Display)を用いて構成され、端末制御部81から出力された各種の情報やデータや空撮画像を表示する。表示部88は、アプリケーションの実行に係る各種データや情報を表示してよい。
【0072】
ストレージ89は、各種データ、情報を蓄積し、保持する。ストレージ89は、HDD、SSD、SDカード、USBメモリ、等でよい。ストレージ89は、端末80の内部に設けられてよい。ストレージ89は、端末80から取り外し可能に設けられてよい。ストレージ89は、無人航空機100から取得された空撮画像や付加情報を保持してよい。付加情報は、メモリ87に保持されてもよい。
【0073】
次に、空撮経路生成に関する機能について説明する。ここでは、端末80の端末制御部81が空撮経路生成に関する機能を有することを主に説明するが、無人航空機100が空撮経路生成に関する機能を有してもよい。端末制御部81は、処理部の一例である。端末制御部81は、空撮経路生成に関する処理を行う。
【0074】
端末制御部81は、無人航空機100が備える撮像部230又は撮像部230が空撮する際の空撮パラメータを取得する。端末制御部81は、空撮パラメータをメモリ87から取得してよい。端末制御部81は、操作部83を介してユーザの操作を受け、空撮パラメータを取得してよい。端末制御部81は、通信部85を介して、他の装置から空撮パラメータを取得してよい。
【0075】
空撮パラメータは、空撮画角情報、空撮方向情報、空撮姿勢情報、撮像範囲情報、被写体距離情報、その他の情報(例えば解像度、画像範囲、重複率の情報)のうち少なくとも1つを含んでよい。
【0076】
空撮画角情報は、空撮画像が空撮される際の撮像部220又は撮像部230の画角FOV(Field Of View)の情報を示す。空撮方向情報は、空撮画像が空撮される際の撮像部220又は撮像部230の撮像方向(空撮方向)を示す。空撮姿勢情報は、空撮画像が空撮される際の撮像部220又は撮像部230の姿勢を示す。撮像範囲情報は、空撮画像が空撮される際の撮像部220又は撮像部230の撮像範囲を示し、例えばジンバル200の回転角度に基づいてよい。
【0077】
被写体距離情報は、空撮画像が空撮される際の撮像部220又は撮像部230から被写体までの距離の情報を示す。この被写体は地面であってよい。この場合、撮像部220又は撮像部230から被写体までの距離は、地面から撮像部220又は撮像部230までの距離であり、つまり無人航空機100の飛行高度に一致する。よって、被写体距離情報は、空撮画像が空撮される際の無人航空機100の飛行高度の情報であってよい。また、端末制御部81は、被写体距離情報とは別に、飛行パラメータの1つとして、空撮画像が空撮される際の無人航空機100の飛行高度の情報を取得してよい。
【0078】
端末制御部81は、空撮範囲A1を取得する。空撮範囲A1は、無人航空機100により空撮される範囲である。端末制御部81は、メモリ87や外部サーバから空撮範囲A1を取得してよい。端末制御部81は、操作部83を介して、空撮範囲A1を取得してよい。操作部83は、空撮範囲A1として、地図データベース等から取得された地図情報に示された空撮を望む所望の範囲のユーザ入力を受け付けてよい。また、操作部83は、空撮を望む所望の地名、場所を特定可能な建造物やその他の情報の名称(地名等とも称する)を入力してよい。この場合、端末制御部81が、地名等の示す範囲を空撮範囲A1として取得してよいし、地名等の周囲の所定範囲(例えば地名が示す位置を中心として半径100mの範囲)を空撮範囲A1として取得してよい。
【0079】
端末制御部81は、空撮範囲A1における地形情報を取得する。地形情報は、地面の3次元位置(緯度、経度、高度)を示す情報でよい。端末制御部81は、メモリ87や外部サーバから地形情報を取得してよい。地形情報は、地図データベースに保持された標高地図やDEM(Digital Elevation Model)や3次元地図の情報であってよい。
【0080】
端末制御部81は、空撮範囲A1における地形情報を基に、空撮範囲A1における等高線を算出し、等高線図を生成してよい。等高線図は、同じ高度の点の集合を示し、山や谷などの地表の起伏を示す。等高線により包囲された領域を、等高線領域と称してもよい。等高線領域は、各位置の高度が一致する領域(例えば高度10mの領域)でもよいし、各位置の高度が任意の範囲にある領域(例えば高度10m〜20mの領域)でもよいし、各位置の高度が閾値th1以上である領域(例えば高度10m以上の領域)でもよい。
【0081】
図5は、地面の高度に応じた等高線領域の一例を示す図である。
図5は、地面を上から見た図である。
図5では、空撮範囲A1は、等高線領域Z1,Z2,Z3を含む。等高線領域Z1は、例えば、等高線領域Z2,Z3よりも高度が低くてよい。等高線領域Z2,Z3は、高度が同じでも異なってもよい。なお、これらの高度の関係は一例であり、これ以外の関係であってもよい。なお、空撮範囲A1の外周は、一番外側の等高線領域Z1の外周に一致してもよい。
【0082】
なお、地面の高度毎に分かれた領域は、
図5では等高線領域Z1〜Z3により示されているが、空撮範囲A1における地形情報から直接導出(例えば算出)されてもよい。即ち、等高線の算出や等高線図の生成が省略されてもよい。
【0083】
端末制御部81は、空撮範囲A1における地面の高度毎に、空撮範囲A1を分割して複数の区域を生成(区域分割)する。この区域は、空撮経路を生成するための領域の単位となる。複数の区域における空撮経路が合成されて、全体の空撮経路が生成される。端末制御部81は、地面の高度が同じ領域毎に、1つの区域とし、区域分割してよい。端末制御部81は、例えば、等高線や等高線図に基づいて、区域分割してよい。
【0084】
端末制御部81は、等高線領域を包囲するバウンディングボックスを、区域として生成してよい。バウンディングボックスは、例えば軸平行境界ボックス(AABB:Axis-Aligned Bounding Box)でよい。軸平行境界ボックスBXは、等高線領域を包囲する最小サイズの矩形でよい。なお、バウンディングボックスは、軸平行境界ボックス以外であってもよい。バウンディングボックスに包囲された領域は、区域の一例である。
【0085】
図6は、軸平行境界ボックスBX(BX1,BX2,BX3)の一例を示す図である。
図6は、地面を上から見た図である。
図6では、等高線領域Z1を包囲する軸平行境界ボックスBX1と、等高線領域Z2を包囲する軸平行境界ボックスBX2と、等高線領域Z3を包囲する軸平行境界ボックスBX3と、が示されている。軸平行境界ボックスBX1〜BX3を示す矩形における直交する2辺は、軸平行境界ボックスBX1〜BX3のそれぞれにおいて平行になる。
【0086】
端末制御部81は、軸平行境界ボックスBX毎に、空撮経路AP1(AP1a,AP1b,AP1c,…)を生成する。つまり、端末制御部81は、例えば軸平行境界ボックスBXに包囲された領域毎に、空撮経路AP1を生成してよい。空撮経路AP1は、1つ以上の空撮位置を含む。空撮経路AP1は、公知の方法により生成されてよい。空撮位置は、公知の方法により生成されてよい。空撮経路AP1は、例えばスキャン方式に従って空撮する空撮経路でよい。また、他の方式に従って空撮する空撮経路が生成されてもよい。空撮位置は、空撮経路AP1において等間隔の位置に配置されるように生成されてよい。なお、複数の空撮位置は、等間隔に配置されず、異なる間隔で配置されてもよい。空撮経路AP1は、第1の空撮経路の一例である。なお、空撮経路の生成を、単に「経路生成」とも称する。
【0087】
なお、スキャン方式は、所定方向に沿って空撮する方式である。具体的には、スキャン方式は、まず所定方向(例えば
図7の左右方向)に沿って空撮し、空撮範囲A1の端部に到達すると所定方向に直交する方向(例えば
図7の上下方向)に位置をずらし、再度所定方向に沿って空撮することを繰り返す方式である。また、他の方式は、例えば、地形に合わせて最適化された空撮経路で空撮する方式を含んでよい。
【0088】
端末制御部81は、軸平行境界ボックスBX毎に、飛行高度や空撮パラメータを変更せずに、空撮経路AP1を生成してよい。なお、端末制御部81は、軸平行境界ボックスBX毎に、飛行高度や空撮パラメータを多少変更してもよいが、画質の変化量が所定量以下となるようにし、画質があまり変化しないようにする。したがって、端末制御部81は、例えば、軸平行境界ボックスBX毎に、飛行高度や空撮パラメータを固定値(変化しない値)として取得し、決定してよい。
【0089】
端末制御部81は、空撮範囲A1において外側に位置する軸平行境界ボックスBX1から順に、空撮経路AP1を生成してよい。この場合、端末制御部81は、外側に位置する軸平行境界ボックスBX1における経路生成では、その内側に位置する軸平行境界ボックスBX2,BX3を除外して、経路生成する。
【0090】
空撮範囲A1では、最も外側に位置する軸平行境界ボックスBX1が最も高度が低い領域であり、軸平行境界ボックスBXが内側に位置する程、高度が高い領域であってよい。例えば山全体の場合、このような高度の関係を有し得る。また、空撮範囲A1では、最も外側に位置する軸平行境界ボックスBX1が最も高度が高い領域であり、軸平行境界ボックスBXが内側に位置する程、高度が低い領域であってよい。例えば山における噴火口付近やカルデラの場合、このような高度の関係を有し得る。
【0091】
図7は、軸平行境界ボックスBX内の空撮経路AP1の第1例を示す図である。
図7は、地面を上から見た図である。
図7では、軸平行境界ボックスBX1における空撮経路AP1(AP1a)がスキャン方式に従って生成されている。例えば、端末制御部81は、軸平行境界ボックスBX1における端部(例えば下端部)から所定方向(例えば左右方向)に沿って直線的に経路を生成し、軸平行境界ボックスBX1の所定方向の端部(例えば左端部又は右端部)に到達すると、所定方向に直交する直交方向(例えば上下方向)にずらして、再び所定方向に沿って直線的に経路を生成する。また、端末制御部81は、所定方向に沿って生成中の経路が軸平行境界ボックスBX2の端辺(例えば軸平行境界ボックスBX2の右辺)に到達すると、端末制御部81は、空撮経路AP1aの生成を中断し、軸平行境界ボックスBX2では軸平行境界ボックスBX1の空撮経路AP1aを生成しない。その後、軸平行境界ボックスBX2を所定方向に沿って移動し、軸平行境界ボックスBX2の端辺(例えば軸平行境界ボックスBX2の左辺)に到達すると、端末制御部81は、空撮経路AP1aの生成を再開し、再び所定方向に沿って直線的に軸平行境界ボックスBX1の経路を生成する。
【0092】
なお、生成中の経路が最初(1回目)に軸平行境界ボックスBX2の端辺に接触する点を、除外始点とも称する。生成中の経路が2回目に軸平行境界ボックスBX2の端辺に接触する点を、除外終点とも称する。軸平行境界ボックスBX2だけでなく、軸平行境界ボックスBX3についても同様である。
【0093】
端末制御部81は、空撮範囲A1において外側に位置する軸平行境界ボックスBX1における経路生成が終了すると、その内側に位置する軸平行境界ボックスBX2,BX3における経路生成を行ってよい。この場合、端末制御部81は、軸平行境界ボックスBX毎に、スキャン方向の向きを決定してよい。例えば、端末制御部81は、外側に位置する軸平行境界ボックスBX1と比較して、その内側に位置する軸平行境界ボックスBX2,BX3のスキャン方向を、90度回転させてよい。この場合、外側に位置する軸平行境界ボックスBX1における空撮経路AP1aの直線的な方向と、内側に位置する軸平行境界ボックスBX2,BX3における空撮経路AP1b,AP1cの直線的な方向とが、垂直な方向となる。なお、複数の軸平行境界ボックスBX1〜BX3において、スキャン方向の向きが変更されず、同じであってもよい。
【0094】
図8は、軸平行境界ボックスBX内の空撮経路AP1の第1例を示す図である。
図8は、地面を上から見た図である。
図8では、空撮経路AP1(AP1a〜AP1c)がスキャン方式に従って生成されている。
図8では、軸平行境界ボックスBX1における経路生成後、軸平行境界ボックスBX2,BX3における経路生成が行われてよい。軸平行境界ボックスBX3における経路生成は、軸平行境界ボックスBX2における経路生成後に行われてよいし、軸平行境界ボックスBX2における経路生成前に行われてよいし、軸平行境界ボックスBX2における経路生成と同時に行われてよい。また、
図8では、軸平行境界ボックスBX1における空撮経路AP1aのスキャン方向(左右方向)と、軸平行境界ボックスBX2,BX3における空撮経路AP1b,AP1cのスキャン方向(上下方向)とは、90度異なる。
【0095】
端末制御部81は、軸平行境界ボックスBX1〜BX3毎に生成された空撮経路AP1a〜AP1cを接続して、空撮範囲A1を空撮するための空撮経路AP2を生成する。この場合、端末制御部81は、軸平行境界ボックスBX1における空撮経路AP1aと軸平行境界ボックスBX2における空撮経路AP1bとを接続する際、軸平行境界ボックスBX1における空撮経路AP1aの除外始点p1を、軸平行境界ボックスBX2における空撮経路AP1bの始点とし、軸平行境界ボックスBX1における空撮経路AP1aの除外終点p2を、軸平行境界ボックスBX2における空撮経路AP1bの終点としてよい。軸平行境界ボックスBX3における空撮経路AP1cについても、軸平行境界ボックスBX2における空撮経路AP1bと同様である。空撮経路AP2は、第2の空撮経路の一例である。
【0096】
なお、空撮経路AP2において、軸平行境界ボックスBX1における空撮経路AP1aの除外始点p1と、軸平行境界ボックスBX2における空撮経路AP1bの始点とは、高度は異なるが、同一の二次元位置(緯度・経度)となる。同様に、空撮経路AP2において、軸平行境界ボックスBX1における空撮経路AP1aの除外終点p2と、軸平行境界ボックスBX2における空撮経路AP1bの終点とは、高度は異なるが、同一の二次元位置(緯度・経度)となる。そのため、空撮経路AP2における空撮位置の1つとして、軸平行境界ボックスBX1における空撮経路AP1aの除外始点p1と、軸平行境界ボックスBX2における空撮経路AP1bの始点と、の2カ所の双方に、空撮位置が配置されず、いずれか一方の空撮位置の配置が省略されてよい。同様に、空撮経路AP2における空撮位置の1つとして、軸平行境界ボックスBX1における空撮経路AP1aの除外終点p2と、軸平行境界ボックスBX2における空撮経路AP1bの終点と、の2カ所の双方に空撮位置が配置されず、いずれか一方の空撮位置の配置が省略されてよい。この空撮位置において無人航空機100が地面を空撮する場合、いずれも同じ位置を含む画像が空撮可能であるためである。
【0097】
このように、端末80は、複数の軸平行境界ボックスBXのうち空撮範囲A1における外側の軸平行境界ボックスBX1から順に空撮経路AP1を生成することで、広い軸平行境界ボックスBX1から先に空撮経路AP1aを生成し、その内側の狭い軸平行境界ボックスBX2,BX3における空撮経路AP1b,AP1cを後で生成する。そのため、端末80は、外側の軸平行境界ボックスBX1と内側の軸平行境界ボックスBX2,BX3とにおける空撮経路AP1の連続性を、端末80もユーザも認識し易くなる。
【0098】
また、端末80は、軸平行境界ボックスBX1における空撮経路AP1aと軸平行境界ボックスBX1の内側に存在する軸平行境界ボックスBX2,BX3とが接する軸平行境界ボックスBX1の除外始点p1(第1の点の一例)及び除外終点p2(第2の点の一例)とが、軸平行境界ボックスBX2,BX3における空撮経路AP1b,AP1cの両端点(始点及び終点)となるように、軸平行境界ボックスBX2,BX3における空撮経路AP1b,AP1cを生成してよい。これにより、軸平行境界ボックスBX1の除外始点p1及び軸平行境界ボックスBX2,BX3における始点と、軸平行境界ボックスBX1の除外終点p2及び軸平行境界ボックスBX2,BX3における終点と、において、空撮経路AP1を連続的に接続できる。したがって、空撮経路AP1を一筆書きのように接続することができ、一度の飛行により空撮範囲A1における高低差のある地形を空撮できる。
【0099】
また、端末80は、軸平行境界ボックスBX1と軸平行境界ボックスBX2とにおいてスキャン方向を90度異なるようにすることで、スキャン方向を同じ方向にする場合と比較して、除外始点p1と空撮経路AP1bの始点とを接続し易くなり、除外終点p2と空撮経路AP1bの終点とを接続し易くなる。よって、軸平行境界ボックスBX1の内側に位置する軸平行境界ボックスBX2の空撮経路AP1bにおける空撮効率の低下を抑制して、空撮範囲A1における各区域の空撮経路AP1を接続した空撮経路AP2を生成できる。また、スキャン方向を同じ方向にする場合、除外始点p1と除外終点p2とがスキャン方向に沿うことになり、軸平行境界ボックスBX1の除外終点p2と軸平行境界ボックスBX2の空撮経路AP1bの終点とがずれる。そのため、軸平行境界ボックスBX2の空撮経路AP1の終点から軸平行境界ボックスBX11の除外終点p2まで無人航空機100が移動する必要があり、飛行の無駄が発生し易い。これに対し、軸平行境界ボックスBX1と軸平行境界ボックスBX2とにおいてスキャン方向を90度異なるようにする場合、端末80は、この飛行の無駄を抑制し、飛行効率を向上できる。
【0100】
なお、端末制御部81は、
図7及び
図8に示したように、軸平行境界ボックスBXの全域を通るように、空撮経路AP1を生成してよい。また、
図9に示すように、端末制御部81は、空撮範囲A1の地形情報に基づいて、空撮経路AP1を生成してよい。
【0101】
図9は、軸平行境界ボックスBX内の空撮経路AP1の第2例を示す図である。
図9は、地面を上から見た図である。
図9では、空撮経路AP1(AP1a〜AP1c)がスキャン方式に従って生成されている。つまり、軸平行境界ボックスBX内の全域を通る空撮経路AP1を生成するのではなく、軸平行境界ボックスBXにおける特定の領域を通る空撮経路AP1を生成してよい。
図9では、等高線領域Z1〜Z3の内側において、空撮経路AP1a〜AP1cが生成されている。
【0102】
これにより、端末80は、地形に応じて特定の箇所に限って空撮経路AP1を生成し、無人航空機100を飛行させることができる。例えば、端末80は、複雑に入り組んだ海岸沿いの陸地のみを通過する空撮経路AP1を生成できる。したがって、ユーザが海を除く陸地を空撮したい場合に、端末80は、空撮効率が高い空撮経路AP1,AP2を生成できる。
【0103】
また、端末制御部81は、軸平行境界ボックスBX内の全域において空撮位置を配置してよい。また、端末制御部81は、空撮範囲A1の地形情報に基づいて、空撮位置を配置してよい。つまり、軸平行境界ボックスBX内の全域において空撮位置を配置するのではなく、軸平行境界ボックスBX内の特定の領域において、空撮経路AP1における空撮位置を配置してよい。
【0104】
これにより、端末80は、地形に応じて特定の箇所に限って空撮位置を配置できる。例えば、端末80は、複雑に入り組んだ海岸沿いの陸地のみに空撮位置を配置できる。したがって、ユーザが海を除く陸地を空撮したい場合に、端末80は、空撮効率が高くなるように空撮経路AP1,AP2における空撮位置を配置できる。
【0105】
次に、空撮経路生成システム10の動作例について説明する。
【0106】
本実施形態では、空撮経路の生成に係る動作は、例えば端末80により実施される。
図10は、端末80による動作例を示すフローチャートである。ここでは、空撮範囲A1における外側の区域が最も高度が低く、内側の区域となる程、高度が高くなることを想定している。
【0107】
まず、端末制御部81は、空撮範囲A1を取得する。端末制御部81は、空撮範囲A1の地形情報を取得する(S11)。端末制御部81は、空撮範囲A1の地形情報を基に、空撮範囲A1の等高線を算出し、等高線図を生成する(S12)。端末制御部81は、空撮範囲A1における地面の高度毎に、空撮範囲A1を分割して複数の区域(例えば軸平行境界ボックスBX)を生成する(S13)。
【0108】
端末制御部81は、高度が最も低い区域(つまり最も外側の区域)を経路生成区域に設定する(S14)。経路生成区域は、本動作例において空撮経路AP1の生成対象となる区域である。端末制御部81は、区域内(経路生成区域内)における空撮経路AP1を生成する(S15)。
【0109】
端末制御部81は、空撮範囲A1における全区域(例えば軸平行境界ボックスBX1〜BX3)内の空撮経路AP1の生成が終了したか否かを判定する(S16)。空撮範囲A1における全区域内の空撮経路AP1の生成が終了していない場合、端末制御部81は、次に高度が低い区域(次に外側の区域)を経路生成区域に設定する(S17)。端末制御部81は、S17において設定された経路生成区域における経路生成方向(スキャン方向)を回転する(S18)。この場合、端末制御部81は、S17における経路生成区域の設定前と設定後とにおいて、スキャン方向が90度異なるように、経路生成方向を回転してよい。そして、端末制御部81は、S15の処理に進む。
【0110】
S16において空撮範囲A1における全区域内の空撮経路AP1の生成が終了した場合、各区域の空撮経路AP1を接続して、全区域(つまり空撮範囲A1)の空撮経路AP2を生成する(S19)。
【0111】
端末制御部81は、全区域の空撮経路AP2の情報を出力する(S20)。例えば、端末制御部81は、通信部85を介して、空撮位置を含む空撮経路AP2の情報を無人航空機100へ送信してよい。端末制御部81は、ストレージ89としての外部記録装置(例えばSDカード)に、空撮位置を含む空撮経路AP2の情報を書き込んで記録させてよい。
【0112】
無人航空機100では、UAV制御部110は、端末80により出力された空撮経路AP2の情報を取得する。例えば、UAV制御部110は、通信インタフェース150を介して、空撮経路AP2の情報を受信してよい。UAV制御部110は、外部記録装置を介して、空撮経路AP2の情報を取得してよい。そして、UAV制御部110は、取得された空撮経路AP2を設定する。この場合、UAV制御部110は、空撮経路AP2の情報をメモリ160に保持し、空撮経路AP2の情報がUAV制御部110による飛行制御に使用され得る状態としてよい。これにより、無人航空機100は、端末80で生成された空撮経路AP2に従って飛行し、空撮経路AP2における空撮位置において画像を空撮できる。この空撮画像は、例えば空撮範囲A1における合成画像の生成やステレオ画像の生成に使用され得る。
【0113】
次に、比較例における空撮経路の生成と本実施形態における空撮経路の生成とを比較する。
【0114】
比較例として、高低差がある被写体の空撮画像の画質を向上するために、高低差が存在する被写体の各部分と無人航空機との距離を一定にするとする。例えば、無人航空機が、被写体としての地面の高度に応じて無人航空機の高度を変更する飛行経路を生成し、空撮するとする。
図11は、比較例における空撮経路の途中で頻繁に空撮高度が変化することを示す図である。
図11では、直線状の空撮経路APXの途中において、地面の比較的高度が高い部分ptxになると、毎回、無人航空機100が飛行する高度が高くなることを示している。この場合、無人航空機の飛行高度の変更の頻度が多くなるので、無人航空機の飛行時間が長くなり、無人航空機が飛行するためのエネルギーコストが高くなる。
【0115】
また、比較例として、無人航空機を操縦するための送信機が、被写体としての地面の高度に応じて無人航空機の高度を変更するよう無人航空機に指示し、無人航空機により空撮するとする。この場合、送信機の操縦が必要となり、送信機を操縦するユーザの手間が増加する。
【0116】
また、比較例として、空撮を行うべき対象領域をユーザ指示に基づいて手動で複数の区域に分割し、分割された区域毎に、予め設定された固定経路を通りながら空撮するとする。この場合、対象領域の分割を行うために操作部を介したユーザの指示が必要となり、つまりユーザの手作業が発生するため、ユーザの手間が増加する。
【0117】
これに対し、端末80の動作例によれば、区域毎に空撮経路AP1を生成するので、区域毎に空撮経路AP1を区分して生成可能であるので、空撮高度が大きく変化しなくて済む。よって、端末80は、地面の高度に応じて無人航空機100の高度が頻繁に上がったり下がったりすることを抑制できる。したがって、端末80は、無人航空機100の飛行高度の変更を抑制し、無人航空機100の飛行時間を短くでき、無人航空機100が飛行するためのエネルギーコストを小さくできる。
【0118】
また、端末80は、地面の高度に応じて無人航空機100の高度を変更するよう無人航空機100に指示することを不要にできるので、端末80及び送信機50のユーザの手間を増加させずに、画質の低下を抑制して高低差がある(例えば階段状の)地形を空撮できる。
【0119】
また、端末80は、空撮範囲A1の地形情報に基づいて空撮範囲A1を区域分割するので、操作部83を介して、空撮範囲A1(空撮を行うべき対象領域)を区域分割するためのユーザ指示を受けなくてよい。そのため、空撮範囲A1を区域分割するためのユーザの手作業を不要にでき、端末80及び送信機50のユーザの手間を増加させずに、画質の低下を抑制して高低差がある地形を空撮できる。
【0120】
また、端末80は、画質の低下を抑制して高低差がある地形を空撮できるので、得られた複数の空撮画像を基に生成される合成画像やステレオ画像の画質の低下を抑制できる。また、端末80は、得られた複数の空撮画像を基に生成される距離画像の距離の精度の低下を抑制できる。
【0121】
また、端末80は、空撮位置を含む空撮経路AP2の情報を無人航空機100へ送信することで、無人航空機100に空撮位置及び空撮経路AP2を設定させることができる。よって、無人航空機100は、端末80により生成された空撮経路AP22に従って飛行し、空撮位置において画像を空撮できる。
【0122】
本実施形態の空撮経路生成は、無人航空機100により実施されてもよい。この場合、無人航空機100のUAV制御部110が、端末80の端末制御部81が有する空撮経路生成に関する機能と同様の機能を有する。UAV制御部110は、処理部の一例である。UAV制御部110は、空撮経路の生成に関する処理を行う。なお、UAV制御部110による空撮経路の生成に関する処理において、端末制御部81が行う空撮経路の生成に関する処理と同様の処理については、その説明を省略又は簡略化する。
【0123】
図12は、無人航空機100による動作例を示すフローチャートである。ここでは、空撮範囲A1における外側の区域が最も高度が低く、内側の区域となる程、高度が高くなることを想定している。
【0124】
まず、UAV制御部110は、空撮範囲A1を取得する。UAV制御部110は、空撮範囲A1の地形情報を取得する(S21)。UAV制御部110は、空撮範囲A1の地形情報を基に、空撮範囲A1の等高線を算出し、等高線図を生成する(S22)。UAV制御部110は、空撮範囲A1における地面の高度毎に、空撮範囲A1を分割して複数の区域(例えば軸平行境界ボックスBX)を分割する(S23)。
【0125】
UAV制御部110は、高度が最も低い区域(つまり最も外側の区域)を経路生成区域に設定する(S24)。経路生成区域は、本動作例において空撮経路AP1の生成対象となる区域である。UAV制御部110は、区域内(経路生成区域内)における空撮経路AP1を生成する(S25)。
【0126】
UAV制御部110は、空撮範囲A1における全区域(例えば軸平行境界ボックスBX1〜BX3)内の空撮経路AP1の生成が終了したか否かを判定する(S26)。空撮範囲A1における全区域内の空撮経路AP1の生成が終了していない場合、次に高度が低い区域(次に外側の区域)を経路生成区域に設定する(S27)。UAV制御部110は、S27において設定された経路生成区域における経路生成方向(スキャン方向)を回転する(S28)。この場合、UAV制御部110は、S27における経路生成区域の設定前と設定後とにおいて、スキャン方向が90度異なるように、経路生成方向を回転してよい。そして、UAV制御部110は、S25の処理に進む。
【0127】
S26において空撮範囲A1における全区域内の空撮経路AP1の生成が終了した場合、各区域の空撮経路AP1を接続して、全区域(つまり空撮範囲A1)の空撮経路AP2を生成する(S29)。
【0128】
UAV制御部110は、全区域の空撮経路AP2の情報を設定する(S30)。この場合、UAV制御部110は、生成された空撮経路AP2の情報をメモリ160に保持し、空撮位置を含む空撮経路AP2の情報がUAV制御部110による飛行制御に使用され得る状態としてよい。これにより、無人航空機100は、無人航空機100で生成された空撮経路AP2に従って飛行し、空撮経路AP2における空撮位置において画像を空撮できる。この空撮画像は、例えば空撮範囲A1における合成画像の生成やステレオ画像の生成に使用され得る。
【0129】
無人航空機100の動作例によれば、区域毎に空撮経路AP1を生成するので、区域毎に空撮経路AP1を区分して生成可能であるので、空撮高度が大きく変化しなくて済む。よって、無人航空機100は、地面の高度に応じて無人航空機100の高度が頻繁に上がったり下がったりすることを抑制できる。したがって、無人航空機100は、無人航空機100の飛行高度の変更を抑制し、無人航空機100の飛行時間を短くでき、無人航空機100が飛行するためのエネルギーコストを小さくできる。
【0130】
また、無人航空機100は、地面の高度に応じて無人航空機100の高度を変更するよう無人航空機100に指示することを不要にできるので、端末80及び送信機50のユーザの手間を増加させずに、画質の低下を抑制して高低差がある地形を空撮できる。
【0131】
また、無人航空機100は、空撮範囲A1の地形情報に基づいて空撮範囲A1を区域分割するので、例えば端末80の操作部83を介して、空撮範囲A1(空撮を行うべき対象領域)を区域分割するためのユーザ指示を受けることを不要にできる。そのため、空撮範囲A1を区域分割するためのユーザの手作業を不要にでき、端末80及び送信機50のユーザの手間を増加させずに、画質の低下を抑制して高低差がある地形を空撮できる。
【0132】
また、無人航空機100は、画質の低下を抑制して高低差がある地形を空撮できるので、得られた複数の空撮画像を基に生成される合成画像やステレオ画像の画質の低下を抑制できる。また、無人航空機100は、得られた複数の空撮画像を基に生成される距離画像の距離の精度の低下を抑制できる。
【0133】
また、無人航空機100は、空撮位置を含む空撮経路AP2を設定することで、無人航空機100により生成された空撮経路AP2に従って飛行し、空撮位置において画像を空撮できる。よって、無人航空機100は、空撮された画像の加工(例えば合成画像の生成やステレオ画像の生成)に係る加工精度を向上でき、加工により得られる画像の画質を向上できる。
【0134】
なお、無人航空機100が空撮経路生成を実施する場合、端末80では、端末制御部81は、空撮経路の生成を支援(例えば端末80の操作部83に対する各種操作や表示部88による各種表示)するための処理を行ってよい。
【0135】
例えば、端末80では、端末制御部81は、操作部83を介して、空撮範囲A1を指定するための入力を受け付け、通信インタフェース150を介して、この入力情報を無人航空機100へ送信してよい。無人航空機100は、空撮範囲A1を指定する入力情報を受信して取得してよい。
【0136】
例えば、無人航空機100では、UAV制御部110は、通信インタフェース150を介して、区域毎の空撮経路AP1や空撮範囲A1の空撮経路AP2の情報を端末80へ送信してよい。端末80では、端末制御部81は、通信部85を介して空撮経路AP1や空撮経路AP2を受信し、空撮経路AP1,AP2を表示部88に表示させてよい。また、端末制御部81は、空撮経路AP1,AP2における空撮位置を表示させてよい。
【0137】
次に、空撮経路AP1を生成するための区域の変形例について説明する。
【0138】
端末制御部81は、軸平行境界ボックスBXを生成する代わりに、等高線領域を包囲する直角多角形ボックスRPを生成してよい。直角多角形ボックスRPは、直角多角形の外周を有するバウンディングボックスである。直角多角形ボックスRPにより包囲された領域は、区域の一例である。直角多角形は、正交多邊形(Rectilinear Polygon)とも称される。直角多角形は、多角形における隣り合う2辺の角度が直角となる。端末制御部81は、直角多角形の各辺を、等高線領域の形状に合わせて短くしていくと、辺の数を多くする程、等高線領域の形状に近似させることができる。
【0139】
図13Aは、直角多角形ボックスRPの第1例を示す図である。
図13Bは、直角多角形ボックスRPの第2例を示す図である。
図13A及び
図13Bは、地面を上から見た図である。
図13Aでは、最も外側の等高線領域Z1が軸平行境界ボックスBX1により包囲され、その内側の等高線領域Z2,Z3が直角多角形ボックスRP(RP2,RP3)により包囲されている。
図13Bでは、最も外側の等高線領域Z1及びその内側の等高線領域Z2,Z3がともに、直角多角形ボックスRP(RP1,RP2,RP3)により包囲されている。
【0140】
端末制御部81は、直角多角形ボックスRP毎に空撮経路AP1を生成し、直角多角形ボックスRP毎の空撮経路AP1を接続して空撮範囲A1の空撮経路AP2を生成してよい。直角多角形ボックスRPを用いる場合、軸平行境界ボックスBXを用いる場合と比較すると、等高線領域を包囲する包囲線の形状は異なるが、その他の点については同様である。
【0141】
このように、端末80は、直角多角形ボックスRPを用いて各区域の空撮経路AP1を生成することで、等高線領域の形状に近似した外周を基に空撮経路AP1を生成し、空撮できるので、実空間における同程度の高度の領域における画像を過不足を低減して空撮できる。また、端末80は、複数の空撮画像に基づく合成画像やステレオ画像の画質を向上できる。
【0142】
一方、端末80は、軸平行境界ボックスBXを用いて各区域の空撮経路AP1を生成することで、直角多角形のように空撮経路において非連続部分が発生することがないので、空撮効率が良好であり、空撮時間を短くできる。例えば、直角多角形ボックスRPが凹部や凸部を有する場合、凹部や凸部とこれら以外の部分で空撮経路AP1が非連続となることがあり、飛行効率が低下することがある。軸平行境界ボックスBXを用いる場合、このような飛行効率の低下の可能性は低く、空撮効率を高くできる。
【0143】
また、軸平行境界ボックスBXや直角多角形ボックスRPを生成せずに、等高線領域を区域として、等高線領域毎に、空撮経路AP1を生成してよい。この場合、端末80は、実際の地形に沿って空撮経路AP1を生成し、空撮できるので、実空間における同程度の高度の領域における画像を過不足なく空撮できる。また、端末80は、複数の空撮画像に基づく合成画像やステレオ画像の画質を向上できる。
【0144】
次に、複数の等高線領域の扱いについて説明する。
【0145】
端末制御部81は、同程度の高度を有する複数の等高線領域が存在する場合、この複数の等高線領域の間の距離によらず、複数の等高線領域を別個の領域(例えば
図5の等高線領域Z2,Z3)として認識してよい。この場合、端末制御部81は、別個の等高線領域について、それぞれの等高線領域毎に区域を生成し、空撮経路AP1を生成する。
【0146】
一方、同程度の高度を有する複数の等高線領域が閾値th2以内の距離で近接する場合、端末制御部81は、1つの等高線領域として認識してもよい。この場合、端末制御部81は、モルフォロジー処理を行うことで、同程度の高度を有する複数の等高線領域を1つの等高線領域として認識してよい。モルフォロジー処理は、膨張処理(Dilation)及び収縮処理(Erosion)を含んでよい。
【0147】
図14は、同程度の高度を有する複数の等高線領域を1つの領域として認識することを説明するための図である。
【0148】
図14では、同程度の高度(高度10m同士、高度10mと高度15m、高度10m〜20m同士、等)を有する複数の等高線領域Z11,Z12が存在する。等高線領域Z11,Z12の間の距離は、距離dであり、閾値th2以下である。この場合、端末制御部81は、等高線領域Z11,Z12のそれぞれに対して、膨張処理を行い、1つの等高線領域Z21を生成する。膨張処理により、等高線領域Z11,Z12が膨張し、等高線領域Z11の右端部と等高線領域Z12の左端部が重なり合い、1つの等高線領域Z21となる。
【0149】
等高線領域Z21は、等高線領域Z11,Z12が膨張することで生成されるので、元の等高線領域Z11,Z12と比較して、全体的に領域のサイズが大きくなっている。そのため、端末制御部81は、等高線領域Z21に対して縮小処理を行い、等高線領域Z22を生成する。縮小処理により、等高線領域Z21が縮小するので、等高線領域Z21と元の領域である等高線領域Z11,Z12とのサイズの差分を小さくできる。端末制御部81は、例えば、等高線領域Z11,Z12の基準位置rp11,rp12(例えば中心位置、重心位置)と、等高線領域Z22における等高線領域Z11,Z12に対応する左側の領域及び左側の領域の基準位置rp21,rp22(例えば中心位置、重心位置)と、が一致するように、等高線領域Z21を縮小させてよい。
【0150】
このように、端末80は、互いに近くに存在する2つの等高線領域Z11,Z12に対して膨張処理や縮小処理を行うことで、元の等高線領域Z11,Z12の形状やサイズをなるべく変更せずに、1つの等高線領域Z22を生成できる。これにより、端末80は、2つの等高線領域Z11,Z12を1つの等高線領域Z22に擬制して、1つの等高線領域Z22に基づく区域を生成し、空撮経路AP1を生成できる。よって、端末80は、区域毎に空撮経路AP1を生成する際、1つの等高線領域Z22に対して1つの軸平行境界ボックスBXや直角多角形ボックスRPを生成でき、1つの軸平行境界ボックスBXや直角多角形ボックスRPにおいて空撮経路AP1を連続的に生成できる。したがって、元の等高線領域Z11,Z12を連続して飛行して空撮経路AP1の空撮位置において空撮でき、複数の等高線領域Z11,Z12が近くに存在する場合の空撮効率を向上できる。
【0151】
以上、実施形態を用いて本開示を説明したが、本開示の技術的範囲は上述した実施形態に記載の範囲には限定されない。上述した実施形態に、多様な変更又は改良を加えることが当業者に明らかである。その様な変更又は改良を加えた形態も本開示の技術的範囲に含まれ得ることが、特許請求の範囲の記載からも明らかである。
【0152】
特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現可能である。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「先ず、」、「次に」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。