特許第6962831号(P6962831)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 浜松ホトニクス株式会社の特許一覧

<>
  • 特許6962831-イオン化方法及び試料支持体 図000002
  • 特許6962831-イオン化方法及び試料支持体 図000003
  • 特許6962831-イオン化方法及び試料支持体 図000004
  • 特許6962831-イオン化方法及び試料支持体 図000005
  • 特許6962831-イオン化方法及び試料支持体 図000006
  • 特許6962831-イオン化方法及び試料支持体 図000007
  • 特許6962831-イオン化方法及び試料支持体 図000008
  • 特許6962831-イオン化方法及び試料支持体 図000009
  • 特許6962831-イオン化方法及び試料支持体 図000010
  • 特許6962831-イオン化方法及び試料支持体 図000011
  • 特許6962831-イオン化方法及び試料支持体 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6962831
(24)【登録日】2021年10月18日
(45)【発行日】2021年11月5日
(54)【発明の名称】イオン化方法及び試料支持体
(51)【国際特許分類】
   G01N 27/62 20210101AFI20211025BHJP
   H01J 49/04 20060101ALI20211025BHJP
   H01J 49/16 20060101ALI20211025BHJP
【FI】
   G01N27/62 G
   H01J49/04 180
   H01J49/16 400
【請求項の数】13
【全頁数】19
(21)【出願番号】特願2018-21902(P2018-21902)
(22)【出願日】2018年2月9日
(65)【公開番号】特開2019-138759(P2019-138759A)
(43)【公開日】2019年8月22日
【審査請求日】2020年9月24日
(73)【特許権者】
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100140442
【弁理士】
【氏名又は名称】柴山 健一
(74)【代理人】
【識別番号】100183081
【弁理士】
【氏名又は名称】岡▲崎▼ 大志
(72)【発明者】
【氏名】小谷 政弘
(72)【発明者】
【氏名】大村 孝幸
【審査官】 佐藤 仁美
(56)【参考文献】
【文献】 国際公開第2017/038709(WO,A1)
【文献】 国際公開第2017/159878(WO,A1)
【文献】 特開2004−354376(JP,A)
【文献】 特表2006−517671(JP,A)
【文献】 米国特許出願公開第2002/0051738(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
IPC
G01N 27/62−G01N 27/64
H01J 49/00−H01J 49/42
(57)【特許請求の範囲】
【請求項1】
互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板と、少なくとも前記第1表面に設けられ、前記第2表面よりも水に対する親和性が低い導電層と、を備える試料支持体を用意する第1工程と、
前記第1表面に対して前記第2表面が上側に位置するように前記試料支持体が支持された状態で、前記第2表面に対して試料を含む溶液を滴下する第2工程と、
前記第1表面に対して前記第2表面が上側に位置するように前記試料支持体が支持された状態で、前記試料の成分を前記第2表面側から前記複数の貫通孔内に移動させると共に、前記複数の貫通孔内に移動した前記試料の成分を乾燥させる第3工程と、
前記導電層に電圧を印加しつつ前記第1表面に対してエネルギー線を照射することにより、前記試料の成分をイオン化する第4工程と、
を含む、イオン化方法。
【請求項2】
前記第1工程において、前記第2表面及び前記貫通孔の前記第2表面側の縁部を含む部分の内面に親水性のコーティング層が設けられた前記試料支持体を用意する、請求項1に記載のイオン化方法。
【請求項3】
前記第1工程において、前記導電層の前記基板とは反対側の表面に、前記導電層よりも水に対する親和性が低い疎水性のコーティング層が設けられた前記試料支持体を用意する、請求項1又は2に記載のイオン化方法。
【請求項4】
導電性を有し、互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板を備え、前記第1表面側の面の方が前記第2表面側の面よりも水に対する親和性が低い試料支持体を用意する第1工程と、
前記第1表面に対して前記第2表面が上側に位置するように前記試料支持体が支持された状態で、前記第2表面に対して試料を含む溶液を滴下する第2工程と、
前記第1表面に対して前記第2表面が上側に位置するように前記試料支持体が支持された状態で、前記試料の成分を前記第2表面側から前記複数の貫通孔内に移動させると共に、前記複数の貫通孔内に移動した前記試料の成分を乾燥させる第3工程と、
前記基板に電圧を印加しつつ前記第1表面に対してエネルギー線を照射することにより、前記試料の成分をイオン化する第4工程と、
を含む、イオン化方法。
【請求項5】
前記第1工程において、前記第2表面及び前記貫通孔の前記第2表面側の縁部を含む部分の内面に親水性のコーティング層が設けられた前記試料支持体を用意する、請求項4に記載のイオン化方法。
【請求項6】
前記第1工程において、前記第1表面に疎水性のコーティング層が設けられた前記試料支持体を用意する、請求項4又は5に記載のイオン化方法。
【請求項7】
前記試料支持体には、前記基板の厚さ方向から見て互いに分離された複数の測定領域が設けられており、
前記複数の測定領域の各々において、複数の前記貫通孔が形成されており、
前記第2工程において、前記第2表面における前記複数の測定領域の各々に対して前記試料を含む溶液を滴下し、
前記第4工程において、前記測定領域毎に前記エネルギー線を照射し、前記測定領域毎に前記試料の成分をイオン化する、請求項1〜6のいずれか一項に記載のイオン化方法。
【請求項8】
前記試料支持体は、前記第2表面側において前記基板を支持する支持基板を備え、
前記支持基板には、前記複数の測定領域の各々に対応して前記支持基板の厚さ方向に貫通する複数の貫通部が形成されている、請求項7に記載のイオン化方法。
【請求項9】
前記貫通部は、前記第2表面から遠ざかるほど幅が広くなるテーパ形状をなしている、請求項8に記載のイオン化方法。
【請求項10】
前記第3工程を完了してから前記第4工程を開始するまでの間に、載置部の載置面に前記第2表面が対向するように、前記載置面に前記試料支持体を載置する工程を更に含む、
請求項1〜9のいずれか一項に記載のイオン化方法。
【請求項11】
互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板と、
少なくとも前記第1表面に設けられ、前記第2表面よりも水に対する親和性が低い導電層と、
前記第2表面側において前記基板を支持する支持基板と、
を備え、
前記支持基板には、前記基板の厚さ方向から見て互いに分離された複数の測定領域の各々に対応して前記支持基板の厚さ方向に貫通する複数の貫通部が形成されており、
前記複数の測定領域の各々は、前記基板の厚さ方向から見て複数の前記貫通孔を含む領域である、試料支持体。
【請求項12】
導電性を有し、互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板と、
前記第2表面側において前記基板を支持する支持基板と、
を備え、
前記第1表面側の面の方が前記第2表面側の面よりも水に対する親和性が低く、
前記支持基板には、前記基板の厚さ方向から見て互いに分離された複数の測定領域の各々に対応する複数の貫通部が形成されており、
前記複数の測定領域の各々は、前記基板の厚さ方向から見て複数の前記貫通孔を含む領域である、試料支持体。
【請求項13】
前記貫通部は、前記第2表面から遠ざかるほど幅が広くなるテーパ形状をなしている、請求項11又は12に記載の試料支持体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一側面は、イオン化方法及び試料支持体に関する。
【背景技術】
【0002】
従来、生体試料等の試料の質量分析において、試料をイオン化するための試料支持体が知られている(例えば、特許文献1参照)。このような試料支持体は、互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板を備えている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第6093492号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したような質量分析においては、イオン化された試料(試料イオン)が検出され、その検出結果に基づいて試料の質量分析が実施される。このような質量分析においては、信号強度(感度)の向上が望まれている。
【0005】
そこで、本発明の一側面は、試料イオンを検出する際における信号強度を向上させることができるイオン化方法及び試料支持体を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の第1の側面に係るイオン化方法は、互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板と、少なくとも第1表面に設けられ、第2表面よりも水に対する親和性が低い導電層と、を備える試料支持体を用意する第1工程と、第1表面に対して第2表面が上側に位置するように試料支持体が支持された状態で、第2表面に対して試料を含む溶液を滴下する第2工程と、第1表面に対して第2表面が上側に位置するように試料支持体が支持された状態で、試料の成分を第2表面側から複数の貫通孔内に移動させると共に、複数の貫通孔内に移動した試料の成分を乾燥させる第3工程と、導電層に電圧を印加しつつ第1表面に対してエネルギー線を照射することにより、試料の成分をイオン化する第4工程と、を含む。
【0007】
第1の側面に係るイオン化方法では、第1表面に対して第2表面が上側に位置するように試料支持体が支持された状態で、第2表面に対して試料を含む溶液(以下「試料溶液」)が滴下される。ここで、第2表面よりも水に対する親和性が低い導電層が第1表面に設けられているため、第2表面に対して試料溶液を滴下することにより、第1表面(導電層)に対して試料溶液を滴下する場合よりもスムーズに試料溶液を貫通孔内に流入させることができる。また、第1表面に設けられた導電層によって、第1表面側からの試料溶液の流出を抑制しつつ、当該試料の成分を乾燥させることができる。これにより、貫通孔内に試料の成分を適切に導入することができるため、エネルギー線の照射によってイオン化された成分を検出する際における信号強度を向上させることができる。
【0008】
第1の側面に係るイオン化方法では、第1工程において、第2表面及び貫通孔の第2表面側の縁部を含む部分の内面に親水性のコーティング層が設けられた試料支持体を用意してもよい。この場合、親水性のコーティング層によって、第2表面に対して滴下された試料溶液の貫通孔内への流入を効果的に促進することができる。
【0009】
第1の側面に係るイオン化方法では、第1工程において、導電層の基板とは反対側の表面に、導電層よりも水に対する親和性が低い疎水性のコーティング層が設けられた試料支持体を用意してもよい。この場合、疎水性のコーティング層によって、第1表面側からの試料溶液の流出を効果的に抑制することができる。
【0010】
本発明の第2の側面に係るイオン化方法は、導電性を有し、互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板を備え、第1表面側の面の方が第2表面側の面よりも水に対する親和性が低い試料支持体を用意する第1工程と、第1表面に対して第2表面が上側に位置するように試料支持体が支持された状態で、第2表面に対して試料を含む溶液を滴下する第2工程と、第1表面に対して第2表面が上側に位置するように試料支持体が支持された状態で、試料の成分を第2表面側から複数の貫通孔内に移動させると共に、複数の貫通孔内に移動した試料の成分を乾燥させる第3工程と、基板に電圧を印加しつつ第1表面に対してエネルギー線を照射することにより、試料の成分をイオン化する第4工程と、を含む。
【0011】
第2の側面に係るイオン化方法によれば、試料支持体において導電層を省略することができると共に、上述した導電層を有する試料支持体を用いる場合と同様の効果を得ることができる。
【0012】
第2の側面に係るイオン化方法では、第1工程において、第2表面及び貫通孔の第2表面側の縁部を含む部分の内面に親水性のコーティング層が設けられた試料支持体を用意してもよい。この場合、親水性のコーティング層によって、第2表面に対して滴下された試料溶液の貫通孔内への流入を効果的に促進することができる。
【0013】
第2の側面に係るイオン化方法では、第1工程において、第1表面に疎水性のコーティング層が設けられた試料支持体を用意してもよい。この場合、疎水性のコーティング層によって、第1表面側からの試料溶液の流出を効果的に抑制することができる。
【0014】
上記第1及び第2のイオン化方法では、試料支持体には、基板の厚さ方向から見て互いに分離された複数の測定領域が設けられており、複数の測定領域の各々において、複数の貫通孔が形成されており、第2工程において、第2表面における複数の測定領域の各々に対して試料を含む溶液を滴下し、第4工程において、測定領域毎にエネルギー線を照射し、測定領域毎に試料の成分をイオン化してもよい。この場合、複数の測定領域を用いて多数のサンプル(すなわち、各測定領域に滴下される試料溶液)のイオン化及び測定を効率的に実施することが可能となる。
【0015】
また、試料支持体は、第2表面側において基板を支持する支持基板を備え、支持基板には、複数の測定領域の各々に対応して支持基板の厚さ方向に貫通する複数の貫通部が形成されていてもよい。この場合、支持基板によって試料支持体のハンドリング性を向上させることができる。また、支持基板によって複数の測定領域が仕切られることにより、第2工程において、各測定領域に対して試料溶液を容易に滴下することが可能となる。
【0016】
また、貫通部は、第2表面から遠ざかるほど幅が広くなるテーパ形状をなしていてもよい。この場合、貫通部を上記テーパ形状としない場合(例えば柱状とする場合)と比較して、試料溶液が滴下される側の貫通部の開口を拡げることができる。これにより、第2工程における試料溶液の滴下の際に要求される精度(滴下位置に関する精度)を緩和することができる。
【0017】
また、上記イオン化方法は、第3工程を完了してから第4工程を開始するまでの間に、載置部の載置面に第2表面が対向するように、載置面に試料支持体を載置する工程を更に含んでもよい。この場合、第3工程の後に、試料支持体は、第2表面が下側に位置するように反転させられた上で載置面に載置される。これにより、試料支持体を載置部によって安定的に支持しつつ第1表面側を上方に露出させることができるため、第4工程におけるエネルギー線の照射を適切に実施することができる。
【0018】
本発明の第1の側面に係る試料支持体は、互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板と、少なくとも第1表面に設けられ、第2表面よりも水に対する親和性が低い導電層と、第2表面側において基板を支持する支持基板と、を備え、支持基板には、基板の厚さ方向から見て互いに分離された複数の測定領域の各々に対応して支持基板の厚さ方向に貫通する複数の貫通部が形成されており、複数の測定領域の各々は、基板の厚さ方向から見て複数の貫通孔を含む領域である。
【0019】
第1の側面に係る試料支持体では、第2表面よりも水に対する親和性が低い導電層が第1表面に設けられている。このため、例えば第2表面に対して試料溶液を滴下することにより、第1表面(導電層)に対して試料溶液を滴下する場合よりもスムーズに試料溶液を貫通孔内に流入させることができる。また、第1表面に設けられた導電層によって、第1表面側からの試料溶液の流出を抑制しつつ、当該試料の成分を乾燥させることができる。これにより、貫通孔内に試料の成分を適切に導入することができるため、エネルギー線の照射によってイオン化された成分を検出する際における信号強度を向上させることができる。また、上記試料支持体では、第2表面側に設けられた支持基板によって、試料支持体のハンドリング性が向上させられている。さらに、支持基板によって複数の測定領域が仕切られていることにより、各測定領域に対して試料溶液を容易に滴下することが可能となっている。したがって、上記試料支持体によれば、多数のサンプル(すなわち、各測定領域に滴下される試料溶液)のイオン化を効率的且つ容易に行うことができる。
【0020】
本発明の第2の側面に係る試料支持体は、導電性を有し、互いに対向する第1表面及び第2表面に開口する複数の貫通孔が形成された基板と、第2表面側において基板を支持する支持基板と、を備え、第1表面側の面の方が第2表面側の面よりも水に対する親和性が低く、支持基板には、基板の厚さ方向から見て互いに分離された複数の測定領域の各々に対応する複数の貫通部が形成されており、複数の測定領域の各々は、基板の厚さ方向から見て複数の貫通孔を含む領域である。
【0021】
第2の側面に係る試料支持体によれば、試料支持体において導電層を省略することができると共に、上述した導電層を有する試料支持体と同様の効果を得ることができる。
【0022】
上記第1及び第2の側面に係る試料支持体において、貫通部は、第2表面から遠ざかるほど幅が広くなるテーパ形状をなしていてもよい。この場合、貫通部を上記テーパ形状としない場合(例えば柱状とする場合)と比較して、第2表面側に対する溶液の滴下を容易に行うことができる。すなわち、溶液が滴下される側の貫通部の開口を拡げることができるため、溶液の滴下の際に要求される精度(溶液の滴下位置に関する精度)を緩和することができる。
【発明の効果】
【0023】
本発明の一側面によれば、試料イオンを検出する際における信号強度を向上させることができるイオン化方法及び試料支持体を提供することができる。
【図面の簡単な説明】
【0024】
図1】第1実施形態の試料支持体の平面図である。
図2図1のII−II線に沿った試料支持体の断面図である。
図3図2の破線部Aの要部拡大断面図である。
図4図1に示される試料支持体の基板の拡大像を示す図である。
図5】一実施形態の質量分析方法の工程を示す図である。
図6】一実施形態の質量分析方法の工程を示す図である。
図7】一実施形態の質量分析装置の構成図である。
図8】実施例及び比較例の質量分析結果を示す図である。
図9】第2実施形態の試料支持体の要部拡大断面図である。
図10】第3実施形態の試料支持体の断面図である。
図11図10に示される試料支持体を用いた場合の第2工程を示す図である。
【発明を実施するための形態】
【0025】
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。また、図面に示される各部材(又は部位)の寸法又は寸法の比率は、説明をわかり易くするために、実際の寸法又は寸法の比率とは異なることがある。
【0026】
[第1実施形態]
まず、一実施形態の質量分析方法(イオン化方法を含む)に用いられる試料支持体について説明する。図1図3に示されるように、試料支持体1は、基板2と、フレーム3(支持基板)と、導電層4と、を備えている。試料支持体1は、試料のイオン化用の試料支持体である。試料支持体1は、例えば質量分析を行う際に、測定対象の試料の成分をイオン化するために用いられる。基板2は、互いに対向する第1表面2a及び第2表面2bを有している。基板2には、複数の貫通孔2cが一様に(均一な分布で)形成されている。各貫通孔2cは、基板2の厚さ方向(第1表面2a及び第2表面2bに垂直な方向)に沿って延在しており、第1表面2a及び第2表面2bに開口している。
【0027】
基板2は、例えば、絶縁性材料によって矩形板状に形成されている。基板2の厚さ方向から見た場合における基板2の一辺の長さは、例えば数cm程度であり、基板2の厚さは、例えば1μm〜50μm程度である。基板2の厚さ方向から見た場合における貫通孔2cの形状は、例えば略円形である。貫通孔2cの幅は、例えば1nm〜700nm程度である。貫通孔2cの幅とは、基板2の厚さ方向から見た場合における貫通孔2cの形状が略円形である場合には、貫通孔2cの直径を意味し、当該形状が略円形以外である場合には、貫通孔2cに収まる仮想的な最大円柱の直径(有効径)を意味する。
【0028】
フレーム3は、基板2の第2表面2bに設けられており、第2表面2b側において基板2を支持している。例えば、フレーム3は、接着材料等によって基板2の第2表面2bに固定されている。接着材料としては、例えば放出ガスの少ない接着材料(例えば、低融点ガラス、真空用接着剤等)が用いられ得る。フレーム3は、基板2の厚さ方向から見た場合に基板2よりも大きい矩形板状に形成されている。フレーム3には、フレーム3の厚さ方向(すなわち、基板2の厚さ方向)に貫通する複数の貫通部3aが形成されている。図1に示されるように、複数の貫通部3aは、例えば格子状に配列されている。基板2のうち貫通部3aに対応する部分は、試料の測定(イオン化)を行うための測定領域Rとして機能する。1つの貫通部3aは、1つの測定領域Rに対応している。測定領域Rは、基板2に対して第2表面2b側から滴下された試料を含む溶液を、測定領域Rに設けられた複数の貫通孔2cを介した重力及び毛細管現象によって第1表面2a側に移動させるための領域として機能する。
【0029】
フレーム3は、例えば、磁性体金属材料(例えばステンレス鋼材(SUS400系)等)によって矩形板状に形成されている。基板2の厚さ方向から見た場合におけるフレーム3の一辺の長さは、例えば数cm〜200cm程度であり、フレーム3の厚さは、例えば3mm以下である。基板2の厚さ方向から見た場合における貫通部3aの形状は、例えば円形であり、その場合における貫通部3aの直径は、例えば数mm〜数十mm程度である。また、隣り合う貫通部3a同士の中心間の距離(ピッチ)は、例えば数mm〜数十mm程度である。本実施形態では一例として、貫通部3aの直径は1.6mmであり、隣り合う貫通部3a同士のピッチは2.3mmである。このようなフレーム3によって、試料支持体1のハンドリングが容易化すると共に、温度変化等に起因する基板2の変形が抑制される。
【0030】
導電層4は、基板2の第1表面2aに設けられている。具体的には、図2に示されるように、導電層4は、基板2の第1表面2aと、基板2の側面と、フレーム3における基板2側の表面3bの一部(基板2の厚さ方向から見て基板2の外側に位置する部分)と、に一続きに(一体的に)形成されている。なお、図2の例では、導電層4は、フレーム3の表面3bの縁部には形成されていないが、導電層4は、フレーム3の表面3bの縁部にも形成されていてもよい。図3に示されるように、導電層4は、測定領域Rにおいて、基板2の第1表面2aのうち貫通孔2cが形成されていない部分を覆っている。すなわち、各貫通孔2cの導電層4側の開口は、導電層4によって塞がれていない。
【0031】
導電層4は、導電性材料によって形成されている。ただし、導電層4の材料としては、以下に述べる理由により、試料との親和性(反応性)が低く且つ導電性が高い金属が用いられることが好ましい。
【0032】
例えば、タンパク質等の試料と親和性が高いCu(銅)等の金属によって導電層4が形成されていると、後述する試料のイオン化の過程において、試料分子にCu原子が付着した状態で試料がイオン化され、Cu原子が付着した分だけ、後述する質量分析法において検出結果がずれるおそれがある。したがって、導電層4の材料としては、試料との親和性が低い金属が用いられることが好ましい。
【0033】
一方、導電性の高い金属ほど一定の電圧を容易に且つ安定して印加し易くなる。そのため、導電性が高い金属によって導電層4が形成されていると、測定領域Rにおいて基板2の第1表面2aに均一に電圧を印加することが可能となる。また、導電性の高い金属ほど熱伝導性も高い傾向にある。そのため、導電性が高い金属によって導電層4が形成されていると、基板2に照射されたエネルギー線(例えばレーザ光)のエネルギーを、導電層4を介して試料に効率的に伝えることが可能となる。したがって、導電層4の材料としては、導電性の高い金属が用いられることが好ましい。
【0034】
以上の観点から、導電層4の材料としては、例えば、Au(金)、Pt(白金)等が用いられることが好ましい。導電層4は、例えば、メッキ法、原子層堆積法(ALD:Atomic Layer Deposition)、蒸着法、スパッタ法等によって、厚さ1nm〜350nm程度に形成される。なお、導電層4の材料としては、例えば、Cr(クロム)、Ni(ニッケル)、Ti(チタン)等が用いられてもよい。
【0035】
また、導電層4は、基板2の第2表面2bよりも水に対する親和性が低い。これにより、試料支持体1の第1表面2a側の面(ここでは導電層4の外面)よりも第2表面2b側の面(ここでは第2表面2b)の方が、水に対する親和性が高くなっている。すなわち、第2表面2b側の方が第1表面2a側よりも、貫通孔2c内に試料を含む溶液が流入し易くなっている。また、第1表面2a側の方が第2表面2b側よりも、貫通孔2c内から試料を含む溶液が流出し難くなっている。
【0036】
図4は、基板2の厚さ方向から見た場合における基板2の拡大像を示す図である。図4において、黒色の部分は貫通孔2cであり、白色の部分は貫通孔2c間の隔壁部である。図4に示されるように、基板2は、略一定の幅を有する複数の貫通孔2cが一様に形成されている。1つの測定領域Rにおける貫通孔2cの開口率(基板2の厚さ方向から見た場合に当該測定領域Rに対して貫通孔2cが占める割合)は、実用上は10〜80%であり、特に60〜80%であることが好ましい。複数の貫通孔2cの大きさは互いに不揃いであってもよいし、部分的に複数の貫通孔2c同士が互いに連結していてもよい。
【0037】
図4に示される基板2は、Al(アルミニウム)を陽極酸化することにより形成されたアルミナポーラス皮膜である。例えば、Al基板に対して陽極酸化処理が施されることにより、Al基板の表面部分が酸化されると共に、Al基板の表面部分に複数の細孔(貫通孔2cになる予定の部分)が形成される。続いて、酸化された表面部分(陽極酸化皮膜)がAl基板から剥離され、剥離された陽極酸化皮膜に対して上記細孔を拡幅するポアワイドニング処理が施されることにより、上述した基板2が得られる。なお、基板2は、Ta(タンタル)、Nb(ニオブ)、Ti(チタン)、Hf(ハフニウム)、Zr(ジルコニウム)、Zn(亜鉛)、W(タングステン)、Bi(ビスマス)、Sb(アンチモン)等のAl以外のバルブ金属を陽極酸化することにより形成されてもよいし、Si(シリコン)を陽極酸化することにより形成されてもよい。
【0038】
次に、図5及び図6を参照して、試料支持体1を用いた試料のイオン化方法について説明する。ここでは一例として、試料のイオン化のために照射されるエネルギー線としてレーザ光を用いたレーザ脱離イオン化法(後述する質量分析装置10による質量分析方法の一部)について説明する。
【0039】
まず、上述した試料支持体1が用意される(第1工程)。試料支持体1は、質量分析方法を実施する者によって製造されることで用意されてもよいし、試料支持体1の製造者又は販売者等から取得されることで用意されてもよい。
【0040】
続いて、図5の(A)に示されるように、第1表面2aに対して第2表面2bが上側に位置するように試料支持体1が支持された状態で、第2表面2bに対して試料Sを含む溶液(以下「試料溶液」)が滴下される(第2工程)。試料溶液は、例えばピペットP等によって、フレーム3の各貫通部3a(すなわち、各測定領域R)に向けて滴下される。試料溶液の滴下は、オペレータによって手動で実行されてもよいし、装置によって機械的に実行されてもよい。上記第2工程により、基板2の第2表面2bにおいて、複数の測定領域Rの各々に対して試料溶液が滴下される。
【0041】
続いて、第1表面2aに対して第2表面2bが上側に位置するように試料支持体1が支持された状態で、試料Sの成分S1が第2表面2b側から複数の貫通孔2c内に移動させられると共に、複数の貫通孔2c内に移動した試料Sの成分S1が乾燥させられる(第3工程)。具体的には、図6の(A)に示されるように、上記第2工程の後、第1表面2aに対して第2表面2bが上側に位置する状態が維持されることにより、試料溶液が重力及び毛細管現象によって貫通孔2c内に移動すると共に、試料溶液に含まれる試料の成分S1が乾燥する。ここで、第2表面2bの方が導電層4よりも水に対する親和性が高いため、第2表面2bに対して試料溶液を滴下することにより、第1表面2a(導電層4)に対して試料溶液を滴下する場合よりもスムーズに試料溶液を貫通孔2c内に流入させることができる。また、第1表面2aに設けられた導電層4によって、第1表面2a側からの試料溶液の流出(導電層4の表面を伝った移動)を抑制しつつ、試料Sの成分S1を乾燥させることができる。
【0042】
続いて、図5の(B)及び図6の(B)に示されるように、試料支持体1が、第2表面2bに対して第1表面2aが上側に位置するように反転させられ、第2表面2bに対して第1表面2aが上側に位置する状態で、保持基板5(図7参照)の載置面5aに載置される。すなわち、載置面5aに第2表面2bが対向するように、載置面5aに試料支持体1が載置される。保持基板5(載置部)は、例えば磁性体金属材料(例えば、ステンレス400系等からなる基板等)である。或いは、保持基板5は、好ましくはフレーム3を固定するためのマグネットホルダである。マグネットホルダの材質は、例えばフェライト、アルニコ等である。また、試料支持体1及び保持基板5は、後述する質量分析装置10(図7参照)の支持部12(図7参照)上に載置される。
【0043】
続いて、導電層4に電圧が印加されつつ第1表面2aに対してレーザ光Lが照射されることにより、試料Sの成分S1がイオン化される(第4工程)。具体的には、基板2の貫通孔2c内(特に第1表面2a側)に留まっている成分S1がイオン化され、試料イオンS2(イオン化された成分S1)が放出される。より具体的には、レーザ光Lのエネルギーを吸収した導電層4(図2参照)から、貫通孔2c内に留まっている試料Sの成分S1にエネルギーが伝達され、エネルギーを獲得した試料Sの成分S1が気化すると共に電荷を獲得して、試料イオンS2となる。以上の第1工程〜第4工程が、試料支持体1を用いた試料Sのイオン化方法(ここでは、レーザ脱離イオン化法)に相当する。
【0044】
放出された試料イオンS2は、支持部12(図7参照)側とイオン検出部15(図7参照)との圧力差、及びイオンガイド151(図7参照)の電場によって、質量分離部152(図7参照)に引き込まれる。質量分離部152では、試料イオンS2が質量に応じて分離される。質量に応じて分離された試料イオンS2は、イオン検出器153(図7参照)によって検出される(第5工程)。なお、ここでの質量分析装置10は、飛行時間型質量分析法(TOF−MS:Time-of-Flight Mass Spectrometry)を利用する質量分析装置である。以上の第1工程〜第5工程が、試料支持体1を用いた質量分析方法に相当する。
【0045】
なお、上記第4工程及び上記第5工程は、測定領域R毎に実施される。すなわち、上記第4工程では、測定領域R毎にレーザ光Lが照射され、測定領域R毎に成分S1がイオン化される。また、このようにイオン化された成分S1(試料イオンS2)が、イオン検出器153によって測定領域R毎に検出される。これにより、測定領域R毎に、質量分析結果(質量スペクトル等)が得られる。
【0046】
以上の試料支持体1の構成及び質量分析方法の説明を踏まえて、一実施形態の質量分析装置について説明する。図7に示されるように、質量分析装置10は、チャンバ11と、支持部12と、レーザ光照射部13と、電圧印加部14と、イオン検出部15と、支持機構16と、試料滴下部17と、制御部18と、操作部19と、表示部20と、を備えている。
【0047】
チャンバ11は、真空引きされる空間を形成する。支持部12は、試料支持体1が保持基板5上に載置された状態で、チャンバ11内の空間において、保持基板5及び試料支持体1を支持する。支持部12は、例えば、基板2の厚さ方向に垂直な平面に沿って動作可能なステージである。
【0048】
レーザ光照射部13は、上記第4工程において、チャンバ11に設けられた窓部11aを介して、支持部12に支持された試料支持体1の第1表面2aに対してレーザ光Lを照射する。レーザ光Lは、例えば、紫外域の波長を有する光である。
【0049】
電圧印加部14は、上記第4工程において、支持部12に支持された試料支持体1の導電層4(図2参照)に、例えば保持基板5の載置面5a及び図示しない導電部材を介して、電圧を印加する。上記導電部材は、例えば、導電性を有し、載置面5aと導電層4(例えばフレーム3の表面3b上の部分)とを接続するテープである。上述したように導電層4が基板2の第1表面2a上だけでなくフレーム3の表面3bにも延びていることにより、フレーム3の表面3b上で導電層4とテープとを導通させることができる。このため、基板2の実効領域(貫通孔2cが設けられており、測定に利用可能な領域)を減らすことなく、導電層4に電圧を印加することができる。
【0050】
イオン検出部15は、上記第5工程において、チャンバ11内の空間において、試料イオンS2(すなわち、導電層4に電圧が印加されつつ第1表面2aに対してレーザ光Lが照射されることによりイオン化された試料Sの成分S1)を検出する。導電層4に電圧が印加されつつ第1表面2aに対してレーザ光Lが照射される際には、試料Sの成分S1が毛細管現象によって複数の貫通孔2cを介して第1表面2a側に移動して乾燥した状態にある。
【0051】
質量分析装置10では、制御部18によって支持部12が動作させられることにより、レーザ光照射部13が、各測定領域Rに対してレーザ光Lを走査及び照射し、イオン検出部15が、各測定領域Rについて、試料イオンS2を検出する。なお、各測定領域Rに対するレーザ光Lの走査は、制御部18によって支持部12及びレーザ光照射部13の少なくとも1つが動作させられることにより、実施可能である。
【0052】
イオン検出部15は、イオンガイド151と、質量分離部152と、イオン検出器153と、を有している。チャンバ11内の空間に放出された試料イオンS2は、支持部12側とイオン検出部15側との圧力差、及びイオンガイド151の電場によって、質量分離部152に引き込まれる。質量分離部152では、試料イオンS2が質量に応じて分離される。質量に応じて分離された試料イオンS2は、イオン検出器153によって検出される。
【0053】
支持機構16は、試料支持体1を支持すると共に、当該試料支持体1を反転させる。例えば、支持機構16は、試料支持体1の側部(例えばフレーム3の縁部)を把持する把持部16Aと、把持部16Aに接続されたアーム部16Bと、を含んで構成される。アーム部16Bは、伸縮可能に構成されている。本実施形態では一例として、アーム部16Bが伸縮することによって、把持部16Aに把持された試料支持体1が、試料滴下位置(図7において破線で示した位置)から支持部12上の位置(図7において実線で示した位置)へと移動可能とされている。また、アーム部16Bは、軸方向周りに回転可能に構成されている。アーム部16Bの回転によって、試料支持体1は反転可能とされている。
【0054】
試料滴下部17は、試料溶液が収容されたピペットPを保持し、制御部18によって動作させられることにより、指定された位置に対してピペットP内の試料溶液を滴下する。
【0055】
例えば上記第2工程では、支持機構16は、上記試料滴下位置において、第1表面2aに対して第2表面2bが上側に位置するように、試料支持体1を支持する。この状態で、試料滴下部17は、フレーム3の各貫通部3a(すなわち、各測定領域R)に対して、試料溶液を滴下する。例えば、試料滴下部17は、制御部18によって動作させられることにより、ピペットPを各測定領域Rの上方位置に順次移動させながら、各測定領域Rに対してピペットPの先端から試料溶液を滴下する。これにより、複数の測定領域Rの各々に試料溶液が滴下される。
【0056】
また、例えば上記第3工程の後、支持機構16は、第2表面2bに対して第1表面2aが上側に位置するように、試料支持体1を反転させる。その後、支持機構16は、試料支持体1を上記試料滴下位置から支持部12上の位置まで移動させ、把持部16Aによる試料支持体1の把持を解除することにより、試料支持体1を支持部12上(ここでは保持基板5上)に載置する。
【0057】
制御部18は、質量分析装置10の各部の動作を制御すると共に、イオン検出部15による試料イオンS2の検出結果に基づいて、試料Sを構成する分子の質量分析(スペクトル解析等)を実施する。制御部18は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。操作部19は、オペレータが指示等を入力するためのインタフェースである。表示部20は、試料Sを構成する分子の質量分析結果等を表示するディスプレイである。
【0058】
以上述べたように、上記イオン化方法では、第1表面2aに対して第2表面2bが上側に位置するように試料支持体1が支持された状態で、第2表面2bに対して試料Sを含む溶液(試料溶液)が滴下される。ここで、第2表面2bよりも水に対する親和性が低い導電層4が第1表面2aに設けられているため、第2表面2bに対して試料溶液を滴下することにより、第1表面2a(導電層4)に対して試料溶液を滴下する場合よりもスムーズに試料溶液を貫通孔2c内に流入させることができる。また、第1表面2aに設けられた導電層4によって、第1表面2a側からの試料溶液の流出を抑制しつつ、当該試料Sの成分S1を乾燥させることができる。これにより、貫通孔2c内に試料Sの成分S1を適切に導入することができるため、エネルギー線(本実施形態ではレーザ光L)の照射によってイオン化された成分S1を検出する際における信号強度(すなわち、イオン検出部15により検出される信号強度)を向上させることができる。
【0059】
図8を参照して、上記効果について具体的に説明する。図8の(A)は、比較例の質量分析方法(以下単に「比較例」)により得られた質量スペクトルを示しており、図8の(B)は、上記実施形態の質量分析方法(以下「実施例」)により得られた質量スペクトルを示している。いずれにおいても、アセチルコリンエステラーゼ(AChE)を試料Sとして含む試料溶液が用いられた。比較例は、上記第2工程及び上記第3工程の代わりに、以下の工程が実施された点で、実施例と相違している。すなわち、比較例では、第2表面2bに対して第1表面2aが上側に位置するように試料支持体1が支持された状態で、第1表面2a(導電層4)に対して試料溶液が滴下された。ここで、試料溶液を貫通孔2c内に流入させるために、表面張力を下げるための有機溶媒(例えばアセトニトリル等)が試料溶液に混合された。続いて、第2表面2bに対して第1表面2aが上側に位置するように試料支持体1が支持された状態で、試料Sの成分S1が第1表面2a側から複数の貫通孔2c内に移動させられると共に、複数の貫通孔2c内に移動した試料Sの成分S1が乾燥させられた。つまり、比較例では、第1表面2a側が上面となる状態が維持されたままで、レーザ光Lが照射される側である第1表面2a側から試料の滴下及び乾燥が実施された。その後のレーザ光Lの照射(上記第4工程)については、実施例と同様に実施された。
【0060】
図8の(A)に示されるように、比較例では、信号強度が比較的小さく、相対的にノイズが大きい結果が得られた。これに対し、図8の(B)に示されるように、実施例では、信号強度が比較的大きく、相対的にノイズが小さい結果が得られた。また、実施例では、比較例のように試料溶液の表面張力を下げるための有機溶媒を添加せずとも試料溶液を貫通孔2c内に適切に導入でき、有機溶媒が添加された比較例よりも信号強度を向上させられるということも確認された。
【0061】
また、本実施形態の質量分析方法では、水に対する親和性が比較的高い側(第2表面2b側)から試料溶液を比較的スムーズに貫通孔2c内に導くことができると共に、水に対する親和性が比較的低い側(第1表面2a側)からの試料溶液の流出を抑制できるため、貫通孔2cをあたかも試験管のように機能させることができる。例えば、互いに異なる複数の溶液(例えば測定対象の試料Sを含む試料溶液とマトリックス等を含むマトリックス溶液)を貫通孔2c内において適切に混合及び反応させることができる。従って、本実施形態の質量分析方法は、互いに異なる複数の溶液を貫通孔2c内で反応させた上で測定を行う場合(例えば試料溶液にマトリックスを加えて測定する場合)等において有効である。
【0062】
また、本実施形態の質量分析方法では、貫通部3a内に流入した試料溶液は、第1表面2a側から染み出し難くなっている。このため、第1表面2a側において、一の貫通部3aに対応して設けられた貫通孔2c内から流出した試料溶液が他の貫通部3aに対応して設けられた貫通孔2cへと染み出すこと(いわゆるクロストーク)の発生が抑制される。
【0063】
また、上記イオン化方法は、上記第3工程を完了してから上記第4工程を開始するまでの間に、載置面5aに第2表面2bが対向するように、載置面5aに試料支持体1を載置する工程が実施される。この場合、上記第3工程の後に、試料支持体1は、第2表面2bが下側に位置するように反転させられた上で載置面5aに載置される。これにより、試料支持体1を保持基板5によって安定的に支持しつつ第1表面2a側を上方に露出させることができるため、上記第4工程におけるレーザ光Lの照射を適切に実施することができる。
【0064】
また、上記イオン化方法に用いられる試料支持体1には、基板2の厚さ方向から見て互いに分離された複数の測定領域Rが設けられている。複数の測定領域Rの各々において、複数の貫通孔2cが形成されている。上記第2工程において、第2表面2bにおける複数の測定領域Rの各々に対して試料溶液が滴下される。上記第4工程において、測定領域R毎にレーザ光Lが照射され、測定領域R毎に試料Sの成分S1がイオン化される。このように、複数の測定領域Rが形成された試料支持体1を用いることにより、複数の測定領域Rを用いて多数のサンプル(すなわち、各測定領域Rに滴下される試料溶液)のイオン化及び測定を効率的に実施することができる。すなわち、1つの試料支持体1(基板2)に複数のサンプルを同時にセットすることができるため、複数のサンプルの質量分析結果(測定領域R毎の質量分析結果)を効率良く得ることができる。
【0065】
また、上記イオン化方法に用いられる試料支持体1は、第2表面2b側において基板2を支持するフレーム3を備えており、フレーム3には、複数の測定領域Rの各々に対応してフレーム3の厚さ方向に貫通する複数の貫通部3aが形成されている。このようなフレーム3によれば、試料支持体1のハンドリング性を向上させることができる。具体的には、基板2と一体的に設けられたフレーム3によって基板2の変形が抑制されるため、例えば上述したような支持機構16による試料支持体の1の支持又は反転時において、基板2が折れ曲がってしまうことを防止できる。また、フレーム3によって複数の測定領域Rが仕切られることにより(図1参照)、上記第2工程において、各測定領域Rに対して試料溶液を容易に滴下することが可能となる。例えばオペレータが手動で試料溶液を滴下する場合には、オペレータは、フレーム3の貫通部3aを目印として各測定領域Rを容易に把握することができる。また、上記実施形態のように試料滴下部17によって機械的に試料溶液を滴下する場合においても、例えば以下のような効果が奏される。すなわち、図示しない撮像部(カメラ等)によって試料支持体1の第2表面2b側を撮像し、制御部18が撮像部によって撮像された画像を解析して貫通部3aに対応する位置を認識することにより、試料滴下位置を精度良く調整することが可能となる。
【0066】
また、試料支持体1では、第2表面2bよりも水に対する親和性が低い導電層4が第1表面2aに設けられている。このため、例えば第2表面2bに対して試料溶液を滴下することにより、第1表面2a(導電層4)に対して試料溶液を滴下する場合よりもスムーズに試料溶液を貫通孔2c内に流入させることができる。また、第1表面2aに設けられた導電層4によって、第1表面2a側からの試料溶液の流出を抑制しつつ、当該試料Sの成分S1を乾燥させることができる。これにより、貫通孔2c内に試料Sの成分S1を適切に導入することができるため、レーザ光Lの照射によってイオン化された成分S1を検出する際における信号強度を向上させることができる。また、試料支持体1では、第2表面2b側に設けられたフレーム3によって、試料支持体1のハンドリング性が向上させられている。さらに、フレーム3によって複数の測定領域Rが仕切られていることにより、各測定領域Rに対して試料溶液を容易に滴下することが可能となっている。したがって、試料支持体1によれば、多数のサンプル(すなわち、各測定領域Rに滴下される試料溶液)のイオン化を効率的且つ容易に行うことができる。
【0067】
[第2実施形態]
図9に示されるように、上記第1工程において、試料支持体1の代わりに試料支持体1Aが用意されてもよい。試料支持体1Aは、基板2の第2表面2b及び貫通孔2cの第2表面2b側の縁部を含む部分の内面に親水性のコーティング層6が設けられている点で試料支持体1と相違している。また、試料支持体1Aは、導電層4の基板2とは反対側の表面に、導電層4よりも水に対する親和性が低い疎水性のコーティング層6が設けられている点で試料支持体1と相違している。試料支持体1Aのその他の構成は、試料支持体1と同様である。
【0068】
親水性のコーティング層6は、少なくとも測定領域Rに対応する領域に設けられている。コーティング層6は、例えば、酸化チタン(TiO2)又は酸化亜鉛(ZnO)の成膜により形成された層である。コーティング層6は、例えば、原子層堆積法によって形成されている。コーティング層6の厚さは、例えば1nm〜50nmである。また、コーティング層6のうち各貫通孔2cの第2表面2b側の縁部を含む部分の内面に沿った部分(すなわち、貫通孔2c内に入り込んだ部分)の幅(基板2の厚さ方向における長さ)は、例えば1nm〜1000nmである。
【0069】
疎水性のコーティング層7は、少なくとも測定領域Rに対応する領域に設けられている。コーティング層7は、例えば、金属の蒸着により形成された層(金属膜)である。コーティング層7は、導電層4よりも水に対する親和性が低い材料によって形成されている。コーティング層7の材料としては、例えばAu等を用いることができる。或いは、コーティング層7は、自己組織化単分子膜(SAM膜:Self-Assembled Monolayer)により形成された層であってもよい。本実施形態では一例として、コーティング層7は、導電層4の基板2とは反対側の表面に設けられると共に、各貫通孔2c内に入り込んだ部分を有している。ただし、コーティング層7は、少なくとも導電層4の基板2とは反対側の表面に設けられていればよく、各貫通孔2c内に入り込んだ部分を有していなくてもよい。コーティング層7の厚さは、例えば1nm〜100nmである。
【0070】
親水性のコーティング層6によって、第2表面2bに対して滴下された試料溶液の貫通孔2c内への流入を効果的に促進することができる。すなわち、上記第2工程において、第2表面2b上(コーティング層6上)に滴下された試料溶液が、コーティング層6を伝って、各貫通孔2cの内部に流入し易くなっている。つまり、コーティング層6は、第2表面2b側の試料溶液を各貫通孔2c内へと適切に導く役割を果たす。これにより、試料Sの成分S1を各貫通孔2c内に適切に流入させることができる。その結果、イオン化された成分S1を検出する際における信号強度をより一層向上させることができる。
【0071】
疎水性のコーティング層7によって、第1表面2a側からの試料溶液の流出を効果的に抑制することができる。すなわち、上記第2工程及び上記第3工程において、各貫通孔2cの第1表面2a側の開口から流出しようとする試料溶液が、第1表面2aに沿って(コーティング層7を伝って)外部に流出し難くなっている。つまり、コーティング層7は、各貫通孔2c内の試料溶液が第1表面2aに沿って外部に流出することを妨げる役割を果たす。これにより、各貫通孔2c内に流入した試料Sの成分S1の第1表面2a側からの流出を抑制し、当該成分S1を各貫通孔2c内に適切に留めることができる。その結果、各貫通孔2c内において、試料Sの成分S1が濃縮させられ、イオン化された成分S1を検出する際における信号強度をより一層向上させることができる。
【0072】
なお、上記第2実施形態では、コーティング層6及びコーティング層7の両方を備える試料支持体1A及び試料支持体1Aを用いたイオン化方法について説明したが、上記イオン化方法では、上記第1工程において、コーティング層6及びコーティング層7のいずれか一方のみを備える試料支持体が用意されてもよい。その場合には、試料支持体が備えるコーティング層6又はコーティング層7に応じた上述した効果を得ることができる。
【0073】
[第3実施形態]
図10に示されるように、上記第1工程において、試料支持体1の代わりに試料支持体1Bが用意されてもよい。試料支持体1Bは、フレーム3の代わりにフレーム3Bを備える点で試料支持体1と相違している。試料支持体1Bのその他の構成は、試料支持体1と同様である。
【0074】
フレーム3Bは、貫通部3aの代わりに貫通部3cが設けられている点でフレーム3と相違している。フレーム3Bのその他の構成は、フレーム3と同様である。貫通部3cは、基板2の第2表面2bから遠ざかるほど幅が広くなるテーパ形状をなしている。これにより、貫通部を上記テーパ形状としない場合(例えばフレーム3の貫通部3aのように柱状とする場合)と比較して、試料溶液が滴下される側の貫通部3cの開口を拡げることができる。その結果、上記第2工程における試料溶液の滴下の際に要求される精度(滴下位置に関する精度)を緩和することができる。具体的には、図11に示されるように、ピペットPの先端部を貫通部3c内に進入させ易くなるため、測定領域Rに対する試料溶液の滴下が容易となる。また、ピペットPの先端部を貫通部3cの上方に位置させて(すなわち、貫通部3c内に進入させずに)試料溶液を滴下する場合には、ピペットPの先端部の位置が目標位置(例えば基板2の厚さ方向から見た場合における測定領域Rの中心位置)から多少ずれたとしても、試料溶液が貫通部3cの側面に当たって重力によって測定領域Rに導入されるようになる。
【0075】
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
【0076】
例えば、上述した基板2は、導電性を有していてもよく、上記イオン化方法において基板2に電圧が印加されてもよい。また、基板2が導電性を有する場合には、試料支持体において導電層4を省略することができると共に、上述した導電層4を備える試料支持体を用いる場合と同様の効果を得ることができる。なお、この場合、基板2には、第1表面2a側の面の方が第2表面2b側の面よりも水に対する親和性が低くなるような表面処理がされていればよい。例えば、導電性を有する基板2の第2表面2b及び貫通孔2cの第2表面2b側の縁部を含む部分の内面に、上述した親水性のコーティング層6が設けられていてもよい。この場合、上述したように、上記第2工程において、第2表面2bに対して滴下された試料溶液の貫通孔2c内への流入を促進することができる。また、導電性を有する基板2の第1表面2aに、上述した疎水性のコーティング層7が設けられていてもよい。この場合、上述したように、上記第2工程及び上記第3工程において、貫通孔2c内を第1表面2a側まで移動した試料溶液の流出を抑制することができる。
【0077】
また、上述した実施形態では、上記第3工程と上記第4工程との間に、試料支持体1は、第2表面2bが上側に位置する状態から第1表面2aが上側に位置する状態へと反転させられたが、試料支持体1を反転させる処理は省略されてもよい。例えば、第2表面2bが上側に位置する状態で試料支持体1が支持機構16によって支持され、下方からレーザ光Lが照射されるような場合等には、試料支持体1を反転させる処理、及び試料支持体1を載置部の載置面に載置する処理が省略されてもよい。
【0078】
また、質量分析装置10による質量分析方法を実施する際には、試料支持体1は、支持部12上に直接載置及び固定されてもよい。すなわち、保持基板5は省略されてもよい。この場合、支持部12が載置部として機能し、支持部12の上面が載置面として機能する。
【0079】
また、上述した実施形態では、フレーム3の複数の貫通部3a(又はフレーム3Bの複数の貫通部3c)によって、複数の測定領域Rが規定されていたが、測定領域Rの数(すなわち、貫通部3a又は貫通部3cの数)は1つであってもよい。
【0080】
また、上述した試料のイオン化法は、試料Sを構成する分子の質量分析だけでなく、イオンモビリティ測定等の他の測定・実験にも利用することができる。
【0081】
また、上述した実施形態では、試料をイオン化するためのエネルギー線としてレーザ光Lが用いられたが、エネルギー線は、レーザ光Lに限定されず、例えばイオンビーム、電子線等であってもよい。
【符号の説明】
【0082】
1,1A,1B…試料支持体、2…基板、2a…第1表面、2b…第2表面、2c…貫通孔、3,3B…フレーム(支持基板)、3a,3c…貫通部、4…導電層、5…保持基板(載置部)、5a…載置面、6…コーティング層(親水性のコーティング層)、7…コーティング層(疎水性のコーティング層)、L…レーザ光(エネルギー線)、R…測定領域、S…試料、S1…成分、S2…試料イオン。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11