(58)【調査した分野】(Int.Cl.,DB名)
前記液相触媒交換塔での前記トリチウム源からのトリチウムの選択的抽出が、第1の温度及び第1の圧力で行われ、前記第1の温度は60℃〜100℃であり、前記第1の圧力は500〜1100mbarである、請求項1に記載のシステム。
前記液相触媒交換塔での前記トリチウム源からのトリチウムの選択的抽出が、第1の温度及び第1の圧力で行われ、前記第1の温度は60℃〜100℃であり、前記第1の圧力は500〜1100mbarである、請求項5に記載の方法。
【背景技術】
【0005】
トリチウムは、半減期が約12.3年である水素の放射性同位体である。トリチウムは、放射性汚染物質であると共におそらくは非常に数多くの科学的及び商業的な適用例で有用な材料であるので、加圧水型原子炉(PWR:pressurized water reactors)内でのトリチウムの発生は、極めて関心が持たれる事柄である。通常の原子炉の運転は、多量のトリチウム水(HTO)を生成する。特に、原子炉システム内での減速材としてのホウ素の使用は、当然、トリチウムの生成と、原子炉を冷却するために使用される水及び放射性廃棄物材料用貯蔵プールで使用される水の両方におけるトリチウム含有水分子の存在とをもたらす。
【0006】
しかし、通常の原子炉の運転に加え、チェルノブイリ、スリー・マイル島、及び福島第一原発での核災害を含め、何年にもわたって著しい核事件があり、また起こり得る。福島第一原子力発電所での核災害は2011年3月11に始まり、発電所の6基の原子炉のうち3つの炉心溶融をもたらした。
【0007】
故障は、マグニチュード9.0の東北地震によって誘発された津波に発電所が襲われたときに生じた。翌日3月12日、かなりの量の放射性物質が放出され始めたが、これは1986年4月のチェルノブイリでの災害以来最大の原子力事故をもたらし、国際原子力事象評価尺度でレベル7を測定する最大規模(チェルノブイリ後)をもたらした(当初は、初期の事故の放射線の推定10〜30%が放出された)。2013年8月の報道発表では、浄化待機中の現場に貯蔵された著しい量の放射性水は、浄化プロセスに影響を及ぼす最も差し迫った課題の1つであり、何十年も要すると予測されることが述べられた。プラントでは汚染水が溢れ続けており、一部は海に流れている。プラントの労働者は、流入を低減させるための地下凍土壁を建設するなどの方策を使用して汚染水の蓄積を低減させようとしているが、未だ状況が十分に改善されていない。
【0008】
利用可能な公開されている水処理プロセスは、多くの放射性汚染物質を除去するが、トリチウムには効果がない。トリチウムは、有機系において時間と共に濃縮され且つおそらくは環境及び公衆衛生に悪影響を及ぼしつつ食物連鎖に進入する、いくつかの放射性同位体の1種である。原子力発電所付近、特に福島原発での地下水のトリチウム汚染は、トリチウム抽出プロセスに対する新しい手法を求めている。今日まで、高純度トリチウムの抽出及び生成に焦点が当てられていた。既存の実践手法の多くは、スケーラブルなプロセスに用いられず、処分という1つの目的に合わせたトリチウム抽出に関するものにさえ用いられない。福島原発からの放射性廃棄物材料などの液体から、トリチウムを分離し除去するための方法、システム、及び装置を有することが、有利と考えられる。原子炉水及び放射性廃棄物材料からトリチウムを分離する能力は、清浄、安全で、確実な放射性廃棄物管理に極めて重要であり;このことは、原子力の安全で費用効果のある使用のために重要である。
【0009】
関連技術は主に、Pt/C/不活性担体(Pt/C/IC(inert carrier))、Pt/C/ポリ−テトラ−フルオロ−エチレン(Pt/C/PTFE(poly−tetra−fluoro−ethylene))、及びPt/スチレン−ジビニル−ベンゼンコポリマー(Pt/SDB(styrene−divinyl−benzene))を含めた、液相触媒交換プロセスに使用される3つのタイプの疎水性触媒を開示する。Pt/C/ICは、高い強度、良好な化学安定性、及び強力な活性を有するが、同時に、複雑な形成技法を有する。Pt/C/PTFE分子のサイズ及び形状は容易に制御されるが、白金族金属(PGM:Platinum Group Metal)の利用率は低い。Pt/SDBは良好な活性を示すが、低い強度及び小さい粒度を示す。
【0010】
触媒交換による水素同位体のCECE抽出は、トリチウム抽出の分野において周知である。追加の関連技術は、液相触媒交換で使用される触媒の防湿を開示する。下記は、基礎をなす交換反応:
HT+H
2O⇔HTO+H
2 (1)
の例である。
【0011】
異なる水素同位体濃度、異なる温度、及び異なる圧力が、異なった予測可能な分離係数をもたらすことも開示されている。追加の技術は、化学交換反応の開始時のトリチウムの物理化学的形態に応じて、3つの反応が可能であることを開示し:
HT(g)+H
2O(l)⇔H
2(g)+HTO(l) (正反応) (2)
HTO(v)+H
2(g)⇔H
2O(v)+HT(g) (逆反応) (3)
HTO(l)+H
2(g)⇔H
2O(l)+HT(g) (4)
式中、(g)、(v)、及び(l)は、気相、蒸気相、及び液相を示す。
【0012】
上記明らかにされた交換反応(例えば、反応式(4)及び反応式(2))とは無関係に、温度、濃度、流量、及び圧力を含む条件が、LPCE塔内での上記所望の反応(2)、(3)、又は(4)の1つを最適にするよう設定された場合、疎水性触媒の存在下で触媒反応の多数の可能性ある結果があることが、明らかに理解され且つ当技術分野で公知であった。しかし関連技術が予期しなかったのは、トリチウムの連続抽出用に実現可能な解決策としての、異なる温度、圧力、濃度、及び流量で運転可能なLPCE塔の組合せである。関連技術は、現場展開型トリチウム修復システム(TRS)に対するモジュール式アプローチと、液相触媒交換/閉ループ連続プロセス(LPCE(Liquid Phase Catalytic Exchange)/CLCP(Closed Loop Continuous Process))システムで混合床触媒交換プロセスを使用するための方法とを開示しておらず、これは新しい廃棄物流の形で望ましくない生成物を発生させることなく同位体特異的生成物を急速に抽出し単離するよう設計された、低温及び低圧連続バランス・プロセスで動作するものである。
【0013】
必要なのは、純度のためではなく修復任務のために特に設計された、モジュール式のスケーラブルで費用効果のあるトリチウム抽出システムである。さらに、特定の任務のために急速に展開し構成できることが、有利である。
【0014】
詳細な仕様の複雑さ及び長さを低減させるように、且つある技術領域での現況技術を完全に確立するように、出願人(ら)は、下記のそれぞれ番号を付した段落に特定された下記の文献を、参照により本明細書に明らかに組み込む。
【0015】
参照によりその全体が本明細書に組み込まれる、優先日が2014年6月24日の、2015年6月24日に出願された米国特許出願第14/748,535号、Mobile Processing System for Hazardous and Radioactive Isotope Removal。
【0016】
参照によりその全体が本明細書に組み込まれる、優先日が2013年5月31日の、2014年6月2日に出願された米国特許出願第14/294,033号、Balanced Closed Loop Continuous Extraction Process for Hydrogen Isotopes。
【0017】
参照によりその全体が本明細書に組み込まれる、優先日が2013年3月29日の、2014年3月28日に出願された国際出願第PCT/CA2014/000293号、Low−Energy Electrochemical Separation of Isotopes。
【0018】
参照によりその全体が本明細書に組み込まれる、2015年10月9日に出願された米国仮出願第62/239,660号、Advanced Tritium System and Advanced Permeation System for Separation of Tritium from Radioactive Wastes and Reactor Water in Light Water Systems。
【0019】
出願人は、上記組み込まれた文献のいくつかが、米国特許規則1.57(c)(1)〜(3)(37 CFR 1.57(c)(1)〜(3))の意味において「必須の文献」を構成すると考え、出願人は、適用可能な規則により可能になるように、本明細書に組み込まれた必須の文献を明らかに列挙するよう明細書を補正する。
【0020】
本明細書に提示される本発明の態様及び適用例を、以下に、図面と本発明の詳細な説明とにおいて記述する。特に指示しない限り、明細書及び特許請求の範囲における単語及び文言には、当業者にとってそれらの平易な、通常の、及び慣例上の意味が与えられるものとする。本発明者らは、望みに応じて自ら辞書編集者となることができることを、完全に理解する。本発明者らは、自らの辞書編集者として、他の内容を明らかに述べない限り、したがってさらにその用語の「特別な」定義を明確に述べ且つそれが平易な通常の意味とどのように異なるのか説明しない限り、明細書及び特許請求の範囲においてその用語の平易で通常の意味のみを使用することを明らかに選択する。「特別な」定義を適用しようとする、そのような明確な記載がない場合、本発明者らは、その用語の単純で平易な通常の意味が、明細書及び特許請求の範囲の解釈に適用されることを意図し且つ望む。
【0021】
本発明者らは、英文法の通常の規則も理解する。したがって名詞、用語、又は文言が、何らかの方法によってさらに特徴付けられ、指定され、又は狭められることが意図される場合、そのような名詞、用語、又は文言は、英文法の通常の規則に従って追加の形容詞、記述用語、又はその他の修飾語を明らかに含むことになる。そのような形容詞、記述用語、又は修飾語を使用しない場合、そのような名詞、用語、又は文言には、上述のように適用可能な分野の当業者にとってそれらの平易な通常の英語の意味が与えられることが意図される。
【0022】
さらに本発明者らは、米国特許法第112条6項(35 U.S.C.§112、¶6)の標準及び特別な規定の適用について、十分に精通している。したがって、詳細な説明及び図面の説明又は特許請求の範囲における「機能」、「手段」、又は「ステップ」という用語の使用は、本発明を定義するために米国特許法第112条6項の特別の規定を発動したいと望むことを示すものでは少しもない。対照的に、本発明を定義するために米国特許法第112条6項の規定が行使されようとする場合、請求項は、具体的且つ明らかに、そのような「〜ための手段」又は「〜ためのステップ」という正確な文言を述べることになり、機能を裏付けるに際して任意の構造、材料、又は動作をそのような文言で列挙することもなしに、「機能」という単語を説明することになる(即ち、「[機能の挿入]の機能を発揮するための手段」を述べることになる)。したがって、請求項が「...の機能を発揮するための手段」又は「...の機能を発揮するためのステップ」と述べるとしても、請求項が、その手段若しくはステップを裏付けし又は列挙される機能を発揮することを裏付けるに際して任意の構造、材料、又は動作も列挙する場合には、米国特許法第112条6項の規定を行使しないことが、本発明の明らかな意図である。さらに、特許請求の範囲に記載された発明を定義するのに、米国特許法第112条6項の規定が行使される場合であっても、本発明は、好ましい実施例に記述される特定の構造、材料、又は動作にのみ限定されるものではなく、追加として、本発明の代替の実施例若しくは形態に記載された、請求項の機能を発揮する任意の及び全ての構造、材料、若しくは動作、又は請求項の機能を発揮するための、周知の現在の若しくは後に開発される均等な構造、材料、若しくは動作を含むものとする。
【0023】
本発明のより完全な理解は、以下の例示的な図と併せて考えるとき、詳細な記述を参照することによって誘導され得る。図において、同様の参照番号は、図全体を通じて同様の要素及び動作を指す。
【発明を実施するための形態】
【0026】
図の要素及び動作は、わかり易くするために示されており、必ずしも何らかの特定の順序又は実施例に従ってはいない。
【0027】
以下の記述において且つ説明の目的で、本発明の様々な態様の完全な理解を得るために、数多くの具体的な詳細について述べる。しかし当業者なら、本発明は、これらの具体的な詳細なしに実施され得ることが理解されよう。その他の場合には、本発明を不明瞭にするのを避けるために、公知の構造及びデバイスがより概略的に示され又は論じられる。多くの場合、操作の記述は、特にその操作がソフトウェアで実施される場合に、本発明の様々な形態を実施可能にするのに十分である。
【0028】
開示された発明が適用され得る多くの異なる代替の構成、デバイス、及び技術があることに留意されたい。本発明の全範囲は、以下に記述される実例に限定されない。以下の実施例の実例では、本発明を実施し得る様々な実施例を参照する。その他の実施例を利用してもよく、且つ本発明の範囲から逸脱することなく構造及び機能の変更を行ってもよいことが、理解されよう。
【0029】
本明細書には、放射性廃棄物材料からトリチウムを且つ原子炉から廃水を分離するための、システム、方法、及び装置が開示されている。詳細には、本発明の概略的な概念は、そのいくつかの実施例の一部において、高度に可動性があり且つモジュール式の再構成可能なシステムと、トリチウム汚染廃棄物流の濃縮、分離、及び安全な処分のための汚染水の高スループット及び処置のためのプロセスとを含む。モジュラリティは、現場の条件及び水濃度レベルに応じて、最適な構成を可能にする。
【0030】
本明細書に特に関心が持たれているのは、トリチウム生成物の発生に関する低スループット高濃度高純度システムに対して、体積低減を目的とした高スループット低濃度システムの開発である。本明細書に教示されるシステムは、トリチウム抽出の分野で公知の、理解されているシステムの組合せを含み−新規な態様は、相対的閉ループ手法で使用される技術のバランスの取れた組合せであり、これらのモジュールは:
・電解槽;
・第1の液相触媒交換(LPCE)塔;
・第2の液相触媒交換(LPCE)塔;
・新型透過システム(APS:advanced permeation system)モジュール;及び
・並流又は向流のいずれかの交換(CCE:co−current or counter−current exchange)モジュール
を含む。
【0031】
モジュールは:
・電解槽を備えた第1の液相触媒交換(LPCE)塔;
・電解槽を備えた第2の液相触媒交換(LPCE)塔;
・電解槽を備えた新型透過システム(MPS);
・参照によりその全体が本明細書に組み込まれる、優先日が2013年5月31日の、同時係属の、2014年6月2日に出願された米国特許出願第14/294,033号、Balanced Closed Loop Continuous Extraction Process for Hydrogen Isotopesに記載された、正及び逆触媒反応の両方を実行する2重塔LPCEであって、電解槽に代えて第2の塔を使用するもの;
・水素ガスの気状拡散及び回収のためにAPSモジュールを使用し且つHTを生成するために第2のLPCE塔を使用する、2重塔システム;及び
・並流又は向流のいずれかの交換(CCE)プロセスに連結された、水素ガスの気状拡散及び回収のためのAPSモジュールを使用する、2重塔システム
を含む、多数の構成に組み合わせてもよい。
【0032】
いくつかの実施例では、これらの構成を連続して組み合わせてもよい。
【0033】
いくつかの実施例では、触媒は、白金族金属(PGM)を含む。
【0034】
いくつかの実施例では、前記触媒は、疎水性材料で被覆されたPGMを含む。
【0035】
いくつかの実施例では、前記触媒は、フルオロポリマーで被覆されたPGMを含む。
【0036】
いくつかの実施例では、前記触媒は、ポリテトラフルオロエチレンで被覆されたPGMを含む。
【0037】
いくつかの実施例は、気状排気のトリチウム含量を、前記気状排気サブシステム内でモニタするトリチウム・モニタをさらに含む。
【0038】
いくつかの実施例は、気状排気の少なくとも一部を凝縮させる復水器をさらに含む。
【0039】
いくつかの実施例は、前記濃縮されたトリチウム廃棄物生成物を処置するための、安定化サブシステムをさらに含む。
【0040】
いくつかの実施例では、方法はさらに、トリチム・モニタで流出液のトリチウム含量をモニタするステップを含む。
【0041】
いくつかの実施例では、方法はさらに、流出液の少なくとも一部を凝縮するステップを含む。
【0042】
いくつかの実施例では、方法はさらに、高活性トリチウム廃棄物生成物を安定化させるステップをさらに含む。
【0043】
本明細書には、放射性廃棄物材料からトリチウムを、且つ原子炉から廃水を分離するための、システム、方法、及び装置が開示されている。詳細には、本発明の概略的な概念は、そのいくつかの実施例の一部において、高度に可動性があり且つモジュール式の再構成可能なシステムと、トリチウム汚染廃棄物流の濃縮、分離、及び安全な処分のための汚染水の最適な高スループット及び処置のためのプロセスとを含む。本明細書において、「分離」という用語は、分離、単離、及び/又は除去のいずれかを指す。
【0044】
図1は、当技術分野で公知の5つの異なるトリチウム分離システム(モジュール)を示す。モジュールは、比較的バランスのとれた閉ループが形成されるように組み合わせてもよい。モジュールは:
・トリチウム水(HTO)をトリチウム水素(HT)と酸素(O
2)とに分離する電解槽120;
・トリチウムを入力水(H
2O)に通し、トリチウム水(HTO)と清浄な水素(H
2)とを形成することによって、気状トリチウム水素(HT)を分離する、第1の液相触媒交換(LPCE)塔600;
・トリチウム水(HTO)からのトリチウムを清浄な水素ガス(H
2)に通してトリチウム水素(HT)及び清浄な水(H
2O)を生成することによって、トリチウム水(HTO)及び水素(H
2)を分離する、第2の液相触媒交換(LPCE)塔700;
・トリチウム・ガスを、第1の端部で清浄な水素(H
2)に、且つ第2の端部でトリチウム(T
2)に分離する、新型透過システム(APS)モジュール201;及び
・トリチウム・イオンをトリチウム水(HTO)からトリチウム水素(HT)及びトリチウム(T
2)に移送する、並流又は向流のいずれかの交換(CCE)モジュール2000
を含む。
【0045】
これらの公知のトリチウム分離モジュールのそれぞれは、最終トリチウム化生成物の濃度とシステムの全体効率とをさらに増大させるよう、別のものと併せて且つ/又は連続させて使用されてもよい。
図2は、それぞれが
図1からの2つの異なるモジュールを利用する、6つの潜在的なシステムを示す。6つの潜在的システムのそれぞれを、後続の図に、より詳細に示す。一連の2つ以上の同じ又は異なるモジュールをカスケード形式にするなど、その他のシステムが可能である。
・電解槽を備えた第1の液相触媒交換(LPCE)塔;
・電解槽を備えた第2の液相触媒交換(LPCE)塔;
・電解槽を備えた新型透過システム(MPS);
・参照によりその全体が本明細書に組み込まれる、優先日が2013年5月31日の、同時係属米国特許出願である2014年6月2日に出願された米国特許出願第14/294,033号、Balanced Closed Loop Continuous Extraction Process for Hydrogen Isotopesに記載された、正及び逆触媒反応の両方を実行する2重塔LPCEであって、電解槽に代えて第2の塔を使用するもの;
・水素ガスの気状拡散及び回収のためにAPSモジュールを使用し且つHTを生成するために第2のLPCE塔を使用する、2重塔システム;及び
・並流又は向流のいずれかの交換(CCE)プロセスに連結された、水素ガスの気状拡散及び回収のためのAPSモジュールを使用する、2重塔システム。
【0046】
図3は、連続した
図2のシステムFを示す。この構成を、
図25に、さらに詳細に図示し記述する。
【0047】
「分離」
図4は、トリチウム分離用の新型トリチウム・システム(ATS)44が構成要素である、より大きいシステムの実例の実施例を示す。図に示されるように、原子炉10からの放射性廃棄物材料15は、最初に廃棄物タンク20に搬送され、そこで廃棄物材料を水中に浸漬したままにし;放射性廃棄物を貯蔵した結果、水自体は、ある濃度の放射性同位体を含有するようになる。この段階で液体及び固体の廃棄物25の両方を含む廃棄物材料は、廃棄物タンク20から液/固分離システム30に搬送され、そこで液体廃棄物38(廃棄物タンク20からの水を含む)が固体廃棄物から分離される。液/固分離システム30から、固体廃棄物32は安定化34及び貯蔵36に進む。ある場合には、固体廃棄物32と混合された水分又は液体の全てが、液/固分離システム30によって固体廃棄物32から必ずしも分離されなくなる可能性があり、その場合、それら廃棄物の安定化及び貯蔵は、異なった状態で進行することになる。
【0048】
液/固分離システム30から、固体廃棄物材料を実質的に含まない液体廃棄物38は、液体処理システム40に進む。
図4に示されるものなどの、いくつかの実施例において、液体処理システム40は、特定のイオンを分離するための、イオン特異的媒体(ISM:ion−specific−media)をベースにしたシステム42と、トリチウムを液体廃棄物38から分離し又は除去するためのATS44とを含む。液体廃棄物38からISMによって除去された、分離されたイオン52は、安定化54され、貯蔵56に又はその他の処分へと移動する(最終処分又は貯蔵条件は、関係する特定イオンにしばしば依存する)。液体廃棄物から除去されたトリチウム64は、それ自体の処分66に進む。液体70(ほとんど水)は、ここでは指定された放射性同位体及びトリチウムを実質的に含まないものであり、通常は原子炉10にリサイクルされ、そこで、原子炉10に供給されたその他の水72と合わせられる。いくつかの実施例において、液体処理システム40から出現する液体は、リサイクルされる原子炉にではなく、低分類廃棄物用の貯蔵に進む。
【0049】
図5Aは、本発明によるATS44が原子炉10と共に使用される、別の方法を示す。例示される実施例では、水入力72が、原子炉10に供給される。廃水15が原子炉10から出現し、水からトリチウム汚染物質を除去するためにATS44内を通る。分離されたトリチウムは、現場若しくは現場外のいずれかで、処分66へと逸れ、又は濃縮生成物にされる。或いは、トリチウム汚染物質を実質的に含まない水70が、
図5Bに示されるように、元の原子炉10にリサイクルされる。
【0050】
原子炉10から(
図4及び
図5)又は放射性廃棄物からのトリチウム水を、ATS44に通すことにより、濃縮トリチウム水の生成物が得られる。ATS44は、トリチウムを含む水の体積を低減させる。
【0051】
本発明のいくつかの実施例は、炉水中のトリチウムを、小体積の濃縮トリチウム水に濃縮するのに、ATS44を使用するステップを含む。
図6は、本発明の概略的概念の、1つの実例の実施例を示す。例示的な実例の実施例では、HTO(及びその他のトリチウム化化合物、T
2Oなど)を含有する低活性廃水を、電解槽120又はその他の分離システム−−一般にアルカリ電解槽であるが、その他の電解槽及び分離手法が考えられる−−に入力し、トリチウム水を分離して、酸素ガス(O
2)と、いくつかの水素同位体及び同位体の組合せ(例えば、H
2、HT、T
2)を含む水素ガスを生成する。酸素ガスは逸れてATS44から放出され、一方、水素ガスは加熱水蒸気と加熱器140内で結合し(水素ガスと加熱水蒸気とを結合させることにより、システムのスループットを増大させる);次いで水素ガスと加熱水蒸気との混合物は、入口133を経てLPCE塔130の底部に向けられる。精製水(脱イオン化又は蒸留された)は、入口131からLPCE塔130の頂部に進入する。LPCE塔130内で、電気分解システム120からのトリチウム・ガス(HT、T
2)を触媒中に保持し、一方、水素ガス(H
2)は、LPCE塔130内を通過して出口132に至り、気状排気332として排出される。電気分解システム120からのトリチウム・ガスがLPCE塔130内を上昇し且つ触媒上に保持されるにつれ、脱イオン水がLPCE塔130を滴り落ち、保持されているトリチウム・ガス分子と反応して、HTO(及び、場合によってはT
2O)を形成する。新たに形成されたトリチウム水生成物は、濃縮高活性トリチウム生成物として、出口134で塔130から出て行く。いくつかの実施例では、濃縮高活性トリチウム生成物が電解槽120及びLPCE塔130内を多数回通過して、濃縮高活性トリチウム生成物中のトリチウムの濃度を高める。いくつかの実施例では、濃縮高活性トリチウム生成物がシステムから出て行って、貯蔵、安定化、又は処分66を行う。
【0052】
述べたように、電気分解によって生成され且つLPCE塔130を通過した水素ガス(H
2)は、一般に、
図6に示されるように気状排気332として、水蒸気と共に排出される。いくつかの実施例では、トリチウム・モニタ375が、LPCE塔130から離れるときに排気ガス中のトリチウム含量を測定し、したがってトリチウムがATS44から放出されるか否かをモニタする。排出された水素ガス排気332を処分するための、いくつかの選択肢が存在する。いくつかの実施例では、水素ガス及び水蒸気が、任意選択で復水器336内を通過し、次いで貯蔵タンク338に入る。いくつかの実施例では、水素ガスを燃料として使用する。いくつかの実施例では、水素ガスを酸素と再結合させて水を形成する。いくつかの実施例では、水素ガスを燃焼させる。
【0053】
ATS44により分離され濃縮された後のトリチウムのさらなる処分のための、多数の選択肢が存在する。いくつかの実施例では、濃縮トリチウム水を、キャニスタ内で長期貯蔵に向けて埋設し又は配置する。いくつかの実施例では、トリチウム・ガスを濃縮トリチウム水から回収する。
【0054】
本発明のいくつかの実施例では、トリチウム水が、連続した多数の触媒交換塔内を通過する。
図7は、本発明の一実施例を示し、原子炉10(
図4及び
図5)又は廃棄物源からのトリチウム水が、第1の電解槽120a、第1のガス精製器125a、及び第1の触媒交換塔130a内を通過し;次いで第1の触媒交換塔130aから出力されたトリチウム水が、第2の電解槽120b、第2のガス精製器125b、及び第2の触媒交換塔130b内を通過し;次いで第2の触媒交換塔130bから出力されたトリチウム水が、第3の電解槽120c、第3のガス精製器125c、及び第3の触媒交換塔130c内を通過し、その後、処分66へと進む。トリチウム水が多数の触媒交換塔内を通過することで、より完全に、プロトン性水素をトリチウムから分離し、より純粋な、より濃縮された最終トリチウム生成物をもたらし、且つ/又はトリチウム汚染廃水の体積を最小限に抑えると共に汚染水の環境への放出を最小限に抑え又はなくす。
【0055】
「触媒交換塔の科学」
従来技術では、異なる水素同位体濃度、異なる温度、及び異なる圧力が、化学交換反応の開始時のトリチウムの物理化学的形態に応じて、異なる予測可能な分離係数をもたらすことも開示されており、3つの反応が可能である:
HT(g)+H
2O(l)⇔H
2(g)+HTO(l) (正反応) (1)
HTO(v)+H
2(g)⇔H
2O(v)+HT(g) (逆反応) (2)
HTO(l)+H
2(g)⇔H
2O(l)+HT(g) (3)
(式中、(g)、(v)、及び(l)は、気相、蒸気相、及び液相を示す)。
【0056】
上記明らかにされた交換反応(例えば、反応式(2)及び反応式(1))とは無関係に、温度、濃度、流量、及び圧力を含む条件が、LPCE塔内で上記所望の反応(1)、(2)、又は(3)の最適なものに設定された場合、疎水性触媒の存在下で触媒反応の多数の可能性ある結果があることが、明らかに理解され且つ当技術分野で公知であった。
【0057】
表1は、異なる温度での、反応(1)の平衡定数
【数1】
を示す。Kが温度と共に減少するという事実は、逆反応(2)が、より高い温度で熱力学的に好ましいことを示唆している。
【0059】
実施例では、上記内容に留意して、先の実施例の電解槽を、
図10及び
図11により例示されるように、逆反応(2)を触媒する第2のLPCE塔に置き換えることが可能である。次いで2重塔システムは、下記の通り作用する。「正塔」とも呼ばれる第1の塔では、所与の温度T
fで、正反応(1)に従ってトリチウムが水素ガスから水に移送される。「逆塔」とも呼ばれる第2の塔では、温度T
r>T
fで、逆反応(2)に従いトリチウムが水から水素ガスに移送される。したがって濃度プロファイルは、最も高いトリチウム濃度が正(逆)塔の底部603、604(頂部701、702)で見出されるように、平衡時に確立される。逆に、正(逆)塔の出口での水素(水)流602(704)は、トリチウムを本質的に含まず、
図11Cにより例示されるように逆(正)塔の入口703(601)に再循環させることができる。
【0060】
システムの最適な効率及びモル・スループットのために、正塔の温度は、T
f=20〜60℃の範囲にあるべきことが期待され、逆塔の温度はT
r=80〜140℃の範囲にあり、どちらの塔のガス圧も5〜20atmの範囲にあることが期待される。
【0061】
「電解槽LPCEモジュール式システムA、B、及びC」
「モジュール1〜3、システムA〜C」
したがって、
図1〜3に示される、本発明のいくつかの実例の実施例の一部では、水素及びトリチウム・ガスが生成されるように、トリチウム水の少なくともいくらかの分離を含む、低活性トリチウム水の高スループット、低濃度処理のモジュール式TRSに関するシステム、方法、及びプロセスが開示される。
【0062】
これらの概念を具体化し、且つ次に
図8を参照すると、第1のLPCE塔600(以後、第1の塔と呼ぶ)は、清浄な水(H
2O)が導入される頂部の入口601;清浄な水素ガス(H
2)が排気される頂部の出口602;トリチウム水素ガス(HT)が導入される底部の入口603;及びトリチウム水(HTO)が第1の塔600から出て行く底部の出口604を含む。この動作は反応式(1)により定められる。電解槽120は、122で、酸素ガス(O
2)を大気中に逃す。
【0063】
次に
図9を参照すると、この図は、いくつかの実施例では第1の塔600と同じ触媒;トリチウム水(HTO)が導入される頂部の入口701;トリチウム水素ガス(HT)が排気される頂部の出口702;清浄な水素ガス(H
2)が導入される底部の入口703;及び清浄な水(H
2O)が第2の塔700から出て行く底部の出口704を含む、第2のLPCE塔700(以後、第2の塔と呼ぶ)を示す。この動作は反応式(2)によって定められる。電解槽120は、酸素ガス(O
2)を122で大気中に逃す。
【0064】
図6、
図8、及び
図9における電解槽120とそのそれぞれの入力及び出力の役割について論じる際:
図6では、電解槽120が、出口134でLPCE塔130の少なくとも1つから及び/又は廃水入力からHTO(l)を受け取り、HT(g)が電解槽から出て行き且つLPCE塔130に入口133から進入し;したがって代替の実施例では、
図10A及び10Bに示すように、電解槽120を、H
2(以後、「清浄な水素ガス」)を受け取り且つHTOを含有する水を供給し且ついくつかの水素同位体及び同位体の組合せ(例えば、H
2、HT、T
2)を含む水素ガスを生成するように構成された、第2の塔700により置き換えてもよい。
【0065】
図8の電解槽120は、第1の塔出口604から液相でトリチウム水を取り入れ(HTO)、HTガスを元の第1の塔600の入口603に出力する。
図9は、
図8の電解槽120と同じ入力及び出力を有する第2の塔700を示す。
図10Aは、第1の塔600と電解槽120との間に出口を追加した、
図8の電解槽120の実施例を示し、高活性トリチウム生成物を、貯蔵、安定化、又は処分66のために除去することができる。
図10Bは、
図8及び
図9の実施例によれば、共に同じ入力及び出力を有するので、
図8の電解槽120を
図9の第2の塔700で置き換えるように簡単な置換を行うことができることを示す。
【0066】
「第2の塔(モジュール3)による電解槽の置換え」
「モジュール2及びシステムD」
図11は、
図10A及び
図10Bに示される置換に従った、システムの自然な進化をさらに示す。
図11Aは、第1の塔600が電解槽120と共にシステム内にある、
図8の実施例を示す。
図11Bは、電解槽120の代わりに第2の塔700を用いた状態を示す。出口604からの第1の塔600の出力は、入口701での第2の塔700の入力と同じであり、入口603での第1の塔600の入力は、出口702での第2の塔700と同じであり、システムは、
図11Cに示されるように閉ループになることができる。
【0067】
実施例において、第1の塔600は、第1の端部、第2の端部、加熱マントルで包まれたステンレス鋼管材、絶縁材を備えたオーバー・コートを有する、細長い円筒状の塔を含む。第1の塔600は、第1の塔600内での分配及び混合が増強されるよう、液体及び/又はガス流分配器又は拡散器を含有していてもよい。いくつかの実施例では、供給水が第1の塔600の中間点で又は中間点よりも上で導入される。
【0068】
図12は、
図11Cのシステムの実施例を示す。
図12の実施例は、システムへの追加の入力及び出力を含む。トリチウム水は、第1の塔の出口604と第2の塔の入口701との間から収集1100されてもよい。HTガスは、第2の塔の出口702と第1の塔の入口603との間から収集1110されてもよい。液状の水は、第2の塔の出口704と第1の塔の入口601との間の、第2の塔700の底部から引き出されてもよい。
【0069】
図12の実施例では、H
2供給ガスが予熱され(加熱器又は乾燥器1120などの加熱手段によって)、第2の塔700の底部に、入口703から導入され、第2の塔700内でトリチウム水(HTO)への向流を創出する(即ち、反対方向に流れることになる)。第2の塔700は、トリチウム軽水(HTO)とH
2ガスとの反応を触媒して、反応式(2)によりHTガスと清浄な水とを形成するための触媒を含んでいてもよい。
【0070】
H
2ガスが、H
2ガスを生成するように適合させた電解槽120から、第2の塔700に供給される。或いはH
2ガスは、貯蔵タンクなどの遠隔地から供給されてもよい。H
2供給ガスは、第2の塔700に、入口703から導入される。触媒反応を開始し維持するのを助けるため、摂氏35〜250度の温度範囲が、500〜1100mbarの圧力で使用され;代替の実施例では、圧力及び温度は、好ましい実施例の倍数又は分数であってもよい。
【0071】
これらの反応は、第2の塔700の頂部及び第1の塔600の底部で最高濃度であり、且つ各塔の外側の端部で最低濃度である、トリチウム濃度勾配を創出する。HTガスは、第の塔700の頂部の出口702から出現し、第1の塔600の底部に入口603から進入する。水(H
2O)は、第2の塔700の底部の出口704から出現し、第1の塔600の頂部の入口601に進入する。水(H
2O)の一部は、第2の塔700の底部のドレインを介してシステムから外に移送される。排水(H
2O)は、貯蔵されても再使用されてもよい。例えば、排水(H
2O)は、後の輸送又は使用のために、容器、リザーバ、又は保持タンクに貯蔵されてもよい。
【0072】
水(H
2O)は、第1の塔600の頂部の入口601に移送される。第1の塔600には触媒が満たされる。HTガスが第1の塔600の底部の入口603に移送される。第2及び第1の塔700及び600はそれぞれ、好ましい実施例では、第1の塔600が水(H
2O)及びHTガスからトリチウム水(HTO)及びH
2ガスへの反応を触媒することが可能になるように構成され;この反応は、反応式(1)によって表される。
【0073】
図12の実施例は、第1の塔600の頂部の入口601に導入される水(H
2O)が、第1の塔600の底部の入口603に導入された上昇HTガスの向流として作用するように実施される。沈下していく水(H
2O)は、正触媒を横断するときに、イオンと、導入されたHTガスとを交換し、清浄な水(H
2O)と混合され、その結果、反応式(2)による触媒反応が得られる。トリチウム水(HTO)は、第1の塔600の底部の出口604から出現する。
【0074】
図12の実施例では、清浄なH
2ガスが第2の塔700の底部の入口703に導入され、H
2ガスは、第1の塔600から進入し得る。第1の塔600の出口604から出現するトリチウム水(HTO)は、第2の塔700の頂部の入口701に導入される。
【0075】
閉ループ・システムでは、供給水の一貫した導入がなく且つ清浄な水(H
2O)がドレインを介してシステムから除去されない場合、生成物の発生はなく、水素ガスと供給水とのモル比は1で操作上効率的である。代替の実施例では、閉ループを保持したままで、0.5から4に及ぶモル比が望ましいと考えられる。トリチウム濃度勾配が塔内で確立されると、トリチウム水(HTO)供給物1100を塔の間に導入することができ、脱トリチウム水(H
2O)500を、貯蔵、輸送、又はその他の処分のためにドレインから抜き出すことができる。
【0076】
図12の実施例では、トリチウム供給水(HTO)1100が、第1の塔600の中間点と第2の塔700の頂部との間の任意の点で導入される。この供給物中のトリチウムは、濃縮されて第2の塔700の頂部及び第1の塔600の底部に入ることになり、供給物からの過剰な液体は、清浄な水(H
2O)として、ドレインを介して第2の塔700の底部から抜き出すことができる。このプロセスは、いかなる電気分解又は再結合も必要とせずに、トリチウム水(HTO)の供給物及び脱トリチウム水(H
2O)の生成物を可能にし、したがって、プロセス全体の複雑さ及びエネルギーの必要性を大幅に低減させる。さらに、システムは、任意の事前に設定された限度よりも低い値で、いくつかの実施例では典型的には全トリチウム保有量の0.1%から10%の範囲内で、排水により放出されたトリチウムの一部を保持するように、サイズを合わせることができる。システムDの運転に関する連続操作は、参照によりその全体が本明細書に組み込まれる、同時係属出願の、2015年10月9日に出願された米国仮出願第62/239,660号、Advanced Tritium System and Advanced Permeation System for Separation of Tritium from Radioactive Wastes and Reactor Water in Light Water Systemsに論じられている。
【0077】
図12の実施例では、第2の塔700に供給される水素ガスの一部が、様々なサイズの電解槽によって補われるが、これは固定された廃水供給物で正及び逆塔の断面を低減させるのに使用され得るものである。次いでこの実施例は、システム内の塔の全容積と電解槽のエネルギー消費量との間の妥協点を設計者に見出させることによって最適化するための、追加の機会を提供する。いくつかのその他の実施例では、電解槽に、トリチウム水の一部が第1の塔の底部604から満たされ、トリチウム水素を同じ塔の底部603に供給するのに使用される。
【0078】
図13は、
図12のシステムを連続させた状態で示す。
図12のように、廃水は第1の塔600aに入力され、或いは第1の塔600aと第2の塔700aとの間に入力される。この構成では、第2の塔700aの出口704aからのH
2O生成物が、元の第1の塔600a、bの入口601a、bの両方へと送られる。第2の塔700bの出口704bから出力されたH
2Oは、抜き出されるか電解槽120の入口121内に供給されるかの少なくとも1つがなされ、出口123から得られたH
2は、第2の塔700aの入口703aに入る。第1の塔600aの出口602aから出力されたH
2は、第1の塔700aの入口703aの代わりに第2の塔700bの入口703bに供給される。
図12のように、HTO及びHTガスは、第1の塔600b及び第2の塔700bの1100及び1110の間からそれぞれ収集することができる。第1の塔600bの出口602bから出力されたH
2は、H
2収集システムで収集される。
【0079】
「モジュール4−透過」
本発明のいくつかの実施例において、トリチウムは、ガス・クロマトグラフィ又は気状拡散と、金属を経た水素透過との組合せ−−まとめて新型透過システム(APS)201と呼ばれる組合せを経て、プロトン性水素から分離される。
図14に示されるAPS201の一実施例では、トリチウム廃水(HTO)が電解槽120に進入し、電気分解により分解して、酸素ガス(O
2)と、いくつかの水素同位体及び同位体の組合せ(例えば、H
2、HT、T
2)を含むトリチウム水素ガスとの組合せになる。次いでトリチウム化水素ガスは、
図14において外壁210が銅、ステンレス鋼、又は類似の材料から製作されたクロマトグラフィ・カラム又はシリンダの断面図によって示される、APSモジュール201に進入する。キャリア・ガス源197からの、ヘリウム又はアルゴンなどのキャリア・ガスも、トリチウム水素ガスと共にAPSモジュール201に挿入される。多くの実施例では、ガスは、APSモジュール201に進入するときに加圧される。いくつかの実施例では、ガスは、APSモジュール201に進入するときに加熱される。
【0080】
例示された実例の実施例において、圧力及び僅かに高い温度の下にあるガスは、円筒状APSモジュール201の第1の端部203に進入し、APSモジュール201の長さに沿って移行する。APSモジュール201内で、トリチウム水素ガス及びキャリア・ガス197が最初に、少なくとも1つの内側シリンダの内部空間220内に移行する。内側シリンダは、水素に対して少なくとも半透過性である材料から製作される。例示される
図14の実施例では、内側シリンダは、2層:内側シリンダの内部空間220に直接接触しているステンレス鋼フリットの第1の層222;及びPGM又はPGM合金、例えばPGM/銀合金の、第2の層224を含む。いくつかの実施例では、ステンレス鋼フリット層が省略され、PGM層が内側シリンダの内部空間220に直接接触している。内側シリンダの第1の層222及び第2の層224を取り囲み、APSモジュール201の外壁210により閉じ込められているのは、分離空間230である。
【0081】
加圧されたトリチウム水素ガスとキャリア・ガスとの混合物は、APSモジュール201の第1の端部203に進入し、内側シリンダの内部空間220を通過し、圧力によって水素分子はステンレス鋼フリット222及びPGM層224を透過するよう推進され、したがって水素ガスは、PGM層224と外壁210との間の分離空間230内に収集される。ステンレス鋼フリット222及びPGM層224を透過しないキャリア・ガスは、APSモジュール201の第2の端部205より、内側シリンダの内部空間220から出て行き、ベント238から通気され又は再循環される。ガス・クロマトグラフィと矛盾することなく、より軽い水素分子(H
2)が、円筒状APSモジュール201の第1の端部203近くでステンレス鋼フリット222及びPGM層224を透過し;より重い水素分子(例えば、HT、T
2)が、円筒状APSモジュール201の第2の端部205近くでステンレス鋼フリット222及びPGM層224を透過する。いくつかの実施例では、APSモジュール201は、分離空間230を個別の区画230a〜dに分割する隔壁215を含み;APSモジュール201の第1の端部203に近い区画は、より軽い水素分子を受け取るためであり、APSモジュール201の第2の端部に近い区画は、トリチウム原子を持つ分子を含めた、より重い水素分子を受け取るためである。区画230a内の、より軽い水素ガス(H
2)は、APSモジュール201から放出される。APSモジュール201の第2の端部205から区画230dに収集された、より重いトリチウム水素ガスは、APSモジュール201から最終処分又はさらなる分離処理66へと通過する。中間の1つ又は複数のチャンバ230b、cに収集されたガスは、水素(H
2)とトリチウム水素(HT、T
2)との混合物であり、水素をトリチウム・ガス混合物からさらに分離するために、APSモジュール201を経てリサイクル234される。いくつかの実施例では、APSモジュール201の第2の端部205でガス流中に残る全てのトリチウム・ガスを含有し再処理し、キャリア・ガスの利用を最小限に抑え、且つ熱を回収するために、キャリア・ガスもAPSモジュール201を経てリサイクル235される。
【0082】
本発明のいくつかの実施例において、水素(H
2)と、より重い水素同位体(例えば、HT、T
2)との混合物を含む水素ガスは、トリチウムを含めたより重い水素同位体からのより軽い水素の分離を強化するために、連続したいくつかのAPSモジュールを通過する。
図15は、そのような、3つのAPSモジュール201a〜cを連続して持つシステムを示す。トリチウム廃水は、電解槽120に供給されて、大気中に通気される酸素と、トリチウム水素ガスとを生成する。トリチウム水素ガスは、ヘリウム又はアルゴンなどのキャリア・ガス源197からのキャリア・ガスと混合され;加圧され、加熱されて、第1のAPSモジュール201aを通過し;APSモジュール201a内では、ガスがステンレス鋼フリット及びPGM層を異なる速度で透過し、より軽い水素は、より重いトリチウム水素(例えば、HT、T
2)よりも速く透過する。したがって、水素ガスの画分は、前述のようにAPSモジュール201aの第1の領域から外に抜き出されてもよく238a、その他の用途のために通気され又は捕獲されてもよい。モジュール201aから出て行くキャリア・ガスは、大気中に通気されてもよく、又は好ましくはモジュール201aを経て再循環されてもよい。キャリア・ガスを通気し又は再循環させることは、モジュール201b及び201cにも適用される。次いで、より重い水素分子を含有するガスは、第2のAPSモジュール201b内に向けられて235a、そこでさらに分離を行う。ここでも、より軽い水素画分が外に抜き出され238b、その他の用途のために通気され又は捕獲されてもよい。より重い水素分子を含有するガスは、第3のモジュール201c内に向けられる235b。やはり、より軽い水素画分が外に抜き出されてもよく238c、その他の用途のために通気され又は捕獲されてもよい。第3及び最終のAPSモジュール201cの中央領域で捕獲されたガスは、モジュール201a、201b、又は201c内を再循環する。APSモジュール201cの最後の領域に捕獲されたガスは、第1の処分66へと通過する。ガスを各APSモジュール201に通すことによって、より軽い水素分子がより重い水素分子からさらに分離され、その結果、より純粋な、より濃縮された最終トリチウム生成物が得られる。
【0083】
「モジュール4及びシステムE」
図16は、
図14の電解槽120を第2の塔700で置き換えたことによる、システムの自然な進化を示す。
図16Aは、APS塔201が電解槽120と共にシステム内にある、
図14の実施例を示す。
図16Bは、電解槽120を第2の塔700で置き換えた状態を示す。APS塔201の入力は、第2の塔700の出力と同じであるので、システムは、
図16Cに示されるようにほぼ閉ループにすることができる。
【0084】
図17Aは、APSモジュールとLPCE塔とを組み合わせた
図16Cの実施例を示す。その結果が、透過をベースにしたトリチウム分離システムであり、いずれかの手法を個別に行って実現された場合よりも高い、最終トリチウム生成物の濃度及び純度を実現することができる。
図17Bは、出口に弁を付加した
図17Aの実施例を示す。
【0085】
汚染された(即ち、トリチウム化された)廃水は、第2の塔700の頂部の入口701で、システムに導入される。液体は、前述の触媒135を経て塔を滴り落ち、そのトリチウムを除去し、塔700の出口704から(
図17Bの弁1201を経て)、清浄な水として出て行き、処分又は再使用される。同時に、最初は供給源705から得られ、後にチャンバ230aからのガスによって補われる(即ち、それらの組合せ)水素は、第2の塔700に、入口703から導入される。上昇する水素ガスは、触媒135からトリチウムを除去し、いくつかの水素同位体及び同位体の組合せ(例えば、H
2、HT、T
2)を含む複合水素ガスとして、第2の塔700の出口702から出て行く。
【0086】
出口702のガスは、最初はキャリア・ガス源197からの、後にAPSモジュール201の出口203からの、ヘリウム又はアルゴンなどのキャリア・ガスと混合されて、APSモジュール201の入口205に進入してもよい(即ち、キャリア・ガスはリサイクルされる)。多くの実施例では、ガスは、APSモジュール201に進入するときに加圧される。いくつかの実施例では、ガスは、APSモジュール201に進入するときに加熱される。例示される実例の実施例では、圧力及び僅かに高い温度の下にあるガスは、円筒状APSモジュール201の入口205に進入し、APDモジュール201の長さに沿って移行する。APSモジュール201内では、水素ガス及びキャリア・ガスが、最初にモジュールの内部空間220内を移行する。中間区画230b及び230cからのガス混合物は、さらなる処理のために、APSモジュール201に入口205から再導入される。APSモジュール201の頂部の出口203付近で区画230dに収集された、より重いトリチウム水素ガスは、APSモジュール201から最終処分又はさらなる分離処理66へと通過する。
図17Bなどのいくつかの実施例では、トリチウム水素ガスが弁1202を経て放出される。いくつかの実施例では、トリチウム水素ガスのトリチウム含量をモニタし、トリチウム含量が所定のレベルを満たしたら、弁1202を経て放出するだけである。区画230aに蓄積された、より軽い水素ガス(ほとんどH
2である)は、弁1200を通過し、そこではガスが、ベント1220、及び第2の塔700の底部の入口703の少なくとも1つを通過する。
【0087】
図18は、連続した
図17のシステムを示す。2つのAPSモジュールは、
図15に示される系列と非常に類似して機能する。
【0088】
「モジュール5−CCE」
これらのシステム要素の多くは、トリチウム抽出及び分離の分野で周知であり、例えば、TRSシステムA、B、及びCのモジュール1として開示された電解槽;システムA及びDのモジュール2として開示されたLPCE正反応;システムB、D、及びEのモジュール3として開示されたLPCE逆抽出;システムC、E、及びFのモジュール4として開示されたAPS要素があり;当技術分野では電気化学抽出(ECE:electrochemical extraction)と呼ばれる、ある別の抽出プロセスが予想される。ECEは、膜内の水素の移送が改善されるように、低電力で操作することができる。この手法は、移送された水素が、より重い同位体中で豊富になるように、且つ移送されていない部分は、より軽い同位体中で豊富になるように、動作する。移送から得られた圧力上昇を適用することによって、トリチウムを水素又は重水素から除去することができる。
【0089】
実施例において、電気化学セルは、下記の特徴を含む:アノード及びカソード端板、電気コネクタ、及び電流担体を備える2面;中間にある、プロトン交換膜又はポリマー電解質膜(PEM:polymer electrolyte membrane)であって、好ましい実施例では固体ポリマー系電解質を含むもの;PEMと共に膜電極アセンブリ(MEA:membrane electrode assembly)を形成する、PEM膜の両面に取着された、触媒で被覆された多孔質導体を含む、ガス拡散層(GDL:gas diffusion layer);水素供給点、生成物出口、及び過剰な水素(抽残物)用の出口、並びにMEAの両面の、流体に適切な内部流路を備える機械式ハウジング。
【0090】
小電位(1.0ボルトよりも低い)がアノードとカソードとの間に印加され、水素が電気化学セルに供給されると、水素同位体の分離が生じ、重い同位体に富む水素の1つの流れと、重い同位体が不足している1つの水素流とが生ずる。
【0091】
如何様にも限定しようとするものではないが、本明細書に記述される、ある構成の電気化学セル及び方法を使用することによって、下記の有益な特徴の1つ又は複数を得ることができると考えられる:
a.低電気エネルギー:水電気分解セルとは異なり、重水素又はトリチウムをプロチウムから分離するのに、少量の電気エネルギーしか必要としなくてよい;
b.水素及び水のみを必要とする:記述される電気化学セルにより実施される反応による酸素生成はなく、したがって酸素感受性及び酸素安全性に関係した材料の使用が低減され又はなくなる;
c.同時高濃度化及び枯渇:記述される電気化学セルは、重水素又はトリチウムで、同時に供給流の一部を高濃度化すると共にその他の部分を枯渇させ、その結果セルは、可逆的適用例で使用することがより容易になる。
d.供給同位体濃度に対し、カソード側での低い又は完全に不足している電気触媒により、セルは、同位体枯渇モードで動作することが可能になり、セル構成のコストを著しく低減させることができる。
【0092】
本発明の電気化学セル及び方法は、ある実施例では、例えば一般的に使用される又は原子力産業で使用される、重水素の精製で使用することができ;例えば廃棄物修復のための手段として、軽水の脱トリチウム化で使用することができ;例えばトリチウムの高濃度化又は濃縮に使用することができる。
【0093】
次に本発明の電気化学セル及び方法について、本明細書では同位体移送電気化学セル(ITEC:Isotope Transfer Electrochemical Cell)と呼ばれる電気化学セルの1つの非限定的な実施例を参照しながら、さらに詳細に記述する。
【0094】
水素同位体分離で現在使用される水電気分解セルとは異なり、ITECは、用いられる水素移送反応が水分解反応よりも比較的さらに容易であるので、低いセル電圧で動作することができる。以下に、より詳細に記述するように、ITECは、ある同位体水素ガスを高圧にポンプ送出する電気化学コンプレッサとして使用することもできる。
【0095】
ITECの動作の原理は、電流の影響下、プロトン交換膜(PEM:proton exchange membrane)に水素を通すことである。したがってITEC配置構成は、PEM水電気分解セルの半分にカソードを含み、PEM燃料セルの半分にアノードを含む。水素は、まず膜の入口(アノード)側で酸化してプロトンになり、ある輸送メカニズムを経てカソード側に移送され、還元されて水素ガスを再形成する。電気化学コンプレッサでは、目的は、電流によって、アノード側よりも高い圧力でカソードで水素を生成することである。一方、ITECでは、目的は、水素同位体の1つをセルのアノード側からカソード側に、優先的に移送することである。実際に、アノードへの供給流の一部は膜を通過してカソードに至り、同位体の一種で高濃度化され(又はカソード側に触媒がない場合には枯渇し)、供給流からの残りの水素はその同位体が枯渇している。このようにPEMを経て水素を移送する電気化学プロセスは、可動部品を必要とせず、十分開発された堅牢な材料を使用し、適度な電圧、したがって電力を必要とする。したがって、水素同位体分離のこの方法には、実用的且つ経済的である潜在性がある。詳細な考察は、参照によりその全体が本明細書に組み込まれる特許出願であって、優先日が2013年3月29日の、2014年3月28日に出願された国際出願第PCT/CA2014/000293号、Low−Energy Electrochemical Separation of Isotopesに開示されている。
【0096】
「単一セル構成」
図19から
図21までは、並流又は向流のいずれかの交換(co−current or counter current exchange)を略してCCEと呼ばれるITECを示す。
図19は、並流CCEモジュールを示し、
図20は向流CCEモジュールを示し、
図21は
図20のCCEをより詳細に示す。内部構成要素を備えるCCEの簡単な方式の概略を、
図21に示す。ITECは、その他のタイプのPEM電気化学セルに非常に類似しているように見える。ITECは、その周縁に沿ったひと組のボルトによって一緒に保持される、正方形又は円形の構成要素のいくつかの層を有する。2つの分離された面:(i)水素ガスが供給され過剰な水素が離れる、アノード面;及び(ii)水素ガスが生成され、おそらくはより高い圧力にポンプ送出される、カソード面がセルにはある。例示されるセルの設計の構成要素について、以下に記述する:
【0097】
1.端板及び絶縁材:2つのフランジが、全てを一緒に保持するようにセルの外面にある。これらのフランジは、供給物入口1900、抽出物出口1910、及び抽残物出口1920用の開口を有するセルの端板として働く。例示される実施例では、アノード面のフラジ及びカソード面のフランジが、ステンレス鋼で作製される。圧力及び電気化学的環境に耐えることが可能なその他の材料を使用してもよい。端板と電気コネクタ板との間には薄いシートがあり、端板に流れる電流の絶縁を行うことができる。
【0098】
2.電気コネクタ板:中央に向かう絶縁された薄いシートの隣りには、
図19から21までに示されるように、アノード及びカソード電気コネクタ板1925及び1935がそれぞれある。例示される実施例では、それらは共に、チタン又はステンレス鋼又はアルミニウムで作製され、端板とは電気的に絶縁されている。CCEは、これら2枚の板を介して外部直流(DC)電源に接続されている。
【0099】
3.電流担体:これらは、電流をITECの電極に流すのを助ける、セル活性領域の幾何形状に従い成形されたチタン又はステンレス鋼又はアルミニウムをベースにしたメッシュである。メッシングは、動作中にアノードに到達し又はカソードから放たれる、加湿されたガス用の経路も形成する。電流単体の設計及び開発は、ガス拡散層の背後に在る水素ガス−水蒸気混合物用の適切な経路を維持しながら、電子経路に対する抵抗を低減させること共に焦点を当てている。
【0100】
4.電極アセンブリ。これは、反応に利用可能なガス拡散層(GDL)と触媒層との組合せである。このアセンブリ用の構成要素は、必要とされる同位体分離の性質に応じて、アノード面とカソード面との両方で同じにすることができ、又はどちらかの面で異ならせることができる。
a)ガス拡散層(GDL):これは、ガス及び水分に対して透過性ある材料の層を有し;導電性があり;部分的の疎水性である(Teflon(登録商標)などの撥水化合物とブレンドされ又は被覆されている)。しばしばカーボン紙又は炭素布のタイプがGDL材料として使用される。類似の性質を持つその他の材料を、電子抵抗を低減させ、セル性能を改善し、コストを削減させる必要性に応じて、使用することができる。
b)触媒:炭素担持型白金粉末の形をとる触媒(その他の類似の触媒は、性能を維持しながらコストを削減させるのに主に使用されてもよい)を、Nafion(登録商標)のようなポリマーと共に混合し、GDL上に噴霧し又は印刷し又は被覆して、電極アセンブリを形成する。
【0101】
5.プロトン交換膜又はポリマー電解質膜(PEM)1950:このセルでは、電解質が、水和した場合に(水又は水蒸気に接触する)、イオン輸送経路を創出するポリマーの形をとる。そのような膜は、利用可能な様々な乾燥厚さを有するポリマーNafion(登録商標)から作製された膜も含めて、市販されている。ある非限定的な実施例では、DuPont Nafion(登録商標)NR212、N115、N117、及びN1110で、又はスルホン化PEEKで作製された膜を、使用してもよい。乾燥したときの膜厚は様々にすることができ、ある場合には、約0.05mmから約0.25mmである。膜厚は、そのポリマーの特性に応じて、水和すると変化する。
【0102】
6.膜電極アセンブリ(MEA):これは、膜と、アノード及びカソード電極アセンブリ(GDLと触媒層との組合せ)との組合せであり、それらをある温度及び圧力である時間にわたり一緒に押圧することによって、又はそれらを
図21に示されるような層に配置構成し、ボルトからの圧力でこれら3つの層を一緒に保持するだけで、1つの一体化したアセンブリとして作製することができる。
【0103】
7.ガス及び蒸気流の入口及び出口1900、1910、及び1920:セルに進入しセルから離れるためのガス及び蒸気/液体用の3つのポート(プラスチック又はステンレス鋼の継手で作製される)がある:
a)供給物:供給物は、水蒸気又は水と同位体平衡の状態で、水素ガスを含有する。水素中の水分は、Nafion(登録商標)型の膜を濡れたままにするのに必要であり、その結果、膜のプロトン伝導性が増大する。供給物流は、
図21に示されるように、入口ポート1900を経てセルのアノード面に進入する。実際の供給物流量及び組成は、動作条件に応じて変化する。
b)抽出物:抽出物は、同位体に富む又は同位体が枯渇している水素ガス及び水蒸気/水を含有する。これは、
図21に示されるように、カソード面でセルから出て行く生成物流である。抽出物中の水素ガスは、高圧にすることができる。
c)抽残物:抽残物は、供給物の残分、典型的には水素ガス及び水蒸気又は水を含有する。抽残物は、抽出物に移送されなかった同位体の残分を含有することになる。抽残物流は、
図21に示されるように、アノード面でセルから出て行く。
【0104】
「モジュール5及びシステムF」
図22は、
図14の電解槽120をCCEモジュール2000で置き換えた後の、システムの自然な進化を例示する。
図22Aは、APS塔201が電解槽120と共にシステム内にある、
図14の実施例を示す。
図22Bは、電解槽120をCCEモジュール2000で置き換えた状態を示す。APSモジュール201の入力はCCEモジュール2000の出力と同じであるので、システムは、
図22Cに示すようにほぼ閉ループにすることができる。
【0105】
図23は、
図22Cのシステムを、より詳細に示す。APSモジュール201は、
図14に図示され記述されるように機能する。APSモジュール201から抽出されたH
2は、任意選択で、大気中に通気することができ若しくは1220で収集することができ、又はH
2源705と接合し、CCEモジュール2000に供給することができる。処理ステップ1880は、APSモジュール201の直前に付加され、その処理では、下記のプロセス:とりわけ加熱、加湿、乾燥、混合、組合せ、及び分離の1つ又は複数が行われる。CCEモジュールは、
図19から
図21までに図示され記述されるように機能する。
【0106】
図24は、
図23のシステムを連続させた状態を示す。
【0107】
「プロセスの変形例」
本発明について、代替の実施例の特定の実例を用いて、さらに詳細に記述する。下記の実例は、単なる例示の目的で提供され、本発明を如何様にも限定しようとするものではない。当業者なら、本質的に同じ結果をもたらすよう変更し又は修正することができる様々な重要ではないパラメータが、容易に理解されよう。重水、DTOは、HTOの代わりになってもよく、プロセスは、同じ反応式に従って進行することにも留意されたい。
【0108】
「HT除去」
図12の実施例において、HTガスがHTOよりも必要とされる場合、HTガスを1110で取り出すことができる。取り出されたHTガスの1モル当たり、水(H
2O)1モルをドレインから取り出さなければならず、追加の1モルのH
2ガスを、第2の塔700の底部の入口703に加えなければならない。
【0109】
さらに、体積低減操作のためのHTガスの濃度が望まれない場合、プロセスは、HTサイクルの除去ステップを経て平衡状態で維持することができる。ドレインで逸らされ且つシステムから除去された水(H
2O)1モル当たり、HTガス1モルは、依然として、水(H
2O)1モルで触媒され又はHTガスとしてシステムから除去することができる。取り出されたHTガスは、単に圧縮し外部処理施設に移送することができ、又は元素状水素を吸収するよう設計されたプロセスに提供することができる。
【0110】
「触媒」
様々な供給源からの様々な触媒を、最も効率的な脱トリチウム化パラメータを確立するために、様々な圧力、温度、ガス流量、及びモル比で使用することができる。好ましい実施例は、Teflon担持PGM触媒を開示し、選択された金属は、PGMのクラスの金属とすることができることが理解されるべきであり、プロセス・スループットに特に合わせて設計製作された少なくとも1種のその他の金属と混合され又は合金化されてもよい。好ましい実施例で開示されたような疎水性コーティングは、ポリテトラフルオロエチレン(PTFE)のものであり;上記論じられたその他のコーティングを使用することができ、PTFEは、その他のコーティングに勝る、改善された寿命サイクル特性を有し、しかしより低い変換率で動作することが周知である。いくつかの実施例では、寿命サイクルに対する効率の望ましい妥協点と考えられる。
【0111】
「加湿器、除湿器、加熱器、及びポンプの付加」
抽出プロセスの規模を拡大縮小する試みにおいて:
a.1つ又は複数の加湿器及び/又は除湿器を、蒸気が創出され凝縮されることが望まれるか否かに応じて、触媒の前に又は後に付加することができる。
b.加湿器及び/又は除湿器を、水素ガス流など、必要に応じてプロセス内に設置することができる。
c.1つ又は複数の加湿器又は除湿器を、蒸気が創出され凝縮されることが望まれるか否かに応じて、塔の1つ又は複数の外側で、一方の又は両方の端部に付加してもよい。
d.ポンプ、流れ検出器、及び弁を、システム内の点で付加することができ、それによってシステムを経る循環プロファイルが確立され維持され、その結果、循環する画分の管理された質量収支が得られる。
e.様々な液体及びガス流分配器を、塔の内側で使用して、最も効率的な流れ分布を確立することができる。
【0112】
「代替構成」
2つのモジュールの接続及び位置決めと、様々な流量、モル比、及び供給物濃度に関連するモジュール・サイズとを含むがこれらに限定することのない、様々な構成を実施することができる。
【0113】
上記仕様及び実例は、例示的な実施例の構造及び使用の完全な記述を提供する。ある実施例について、ある程度の特殊性と共に又は1つ若しくは複数の個々の実施例を参照しながらこれまで述べてきたが、当業者なら、本発明の範囲から逸脱することなく、開示された実施例の数多くの代替例を行うことができる。したがって、本発明の実施例の、例示された実施例は、開示された特定の形態に限定されるものではない。むしろ、これらの実施例は、特許請求の範囲内に包含される全ての修正例及び代替例を含み、示されるもの以外の実施例は、示される実施例の特徴のいくつか又は全てを含んでいてもよい。例えば、構成要素は、単一構造として組み合わせてもよく、且つ/又は代わりに接続を用いてもよい。さらに、適切な場合には、上述の実例のいずれかの態様を、記述されたその他の実例のいずれかの態様と組み合わせて、同等の又は異なる性質を有し且つ同じ又は異なる問題に対処する、その他の実例を形成してもよい。同様に、上述の利益及び利点は、一実施例に関連していてもよく又はいくつかの実施例に関連していてもよいことが理解されよう。
【0114】
いくつかの実施例において、1つ又は複数のモニタ又はその他のセンサを、システムの出口の1つ又は複数に位置付けてもよい。いくつかの実施例では、1つ又は複数のモニタ又はその他のセンサを使用して、生成物中のトリチウム含量などの放射性同位体の含量をモニタし、それによって生成物が、環境上及び操作上のレベル又は所定の放出基準などの1つ又は複数の所定のレベルを満たすか否かを決定してもよい。いくつかの実施例では、水及び水素などのシステムの生成物の1種又は複数は、低純度であり、例えばあるパーセンテージの1種又は複数の放射性同位体、例えばトリチウムを含有し、このパーセンテージは、典型的には全トリチウム保有量の0.1%から10%の範囲である。
【0115】
低純度生成物の放出は、特定の現場及び/又は生成物のタイプに許容可能と見なされる環境上及び/又は操作上のレベルに基づいてもよい。いくつかの実施例では、トリチウム水(例えば、あるパーセンテージのHTOを含有するH
2O)及び/又はH
2ガス(あるパーセンテージのHTを含有する)は、所定の放出基準に達すると環境に放出される。動作限界は、放出限界より高くても低くてもよい。
【0116】
いくつかの実施例において、主にトリチウム(例えば、T
2)などの放射性同位体を含有する生成物は、低純度であってもよい。いくつかの実施例では、抽出されたトリチウムは、キャリア・ガス、重水素、及び水素ガスの少なくとも1種を含む。システムから除去されたトリチウム・ガスは、処理され、安定化され、生成され、及び貯蔵される、その少なくとも1つであってもよい。
【0117】
便宜上、操作は、様々な相互接続された機能ブロック又は個別のソフトウェア・モジュールとして記述する。しかしこれは必ずしも必要ではなく、これらの機能ブロック又はモジュールが均等に集合して、境界が不明瞭な単一の論理デバイス、プログラム、又は操作になる場合があり得る。いずれにしても、機能ブロック及びソフトウェア・モジュール又は記述される特徴は、それ自体で又はハードウェア若しくはソフトウェアのいずれかにおけるその他の操作と組み合わせて実施することができる。
【0118】
本発明の原理をその好ましい実施例で記述し例示してきたが、本発明は、そのような原理から逸脱することなく、配置構成及び詳細が修正されてもよいことが明らかであるべきである。請求項は、全ての修正例及び変形例が、特許請求の範囲に記載された本発明の精神及び範囲内に包含されるように作製される。
【0119】
排他的な性質又は特権が主張される本発明の実施例を、特許請求の範囲で定義する。