(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0006】
前述したように、操作端の操作量の変化率を制限することは、ガスタービンの損傷を抑えるために必要な技術である。一方、発電業界では、ガスタービンの出力や回転数が短時間で目標値になることが望まれている。特に、電力系統に、天候等により発電量が左右される太陽光発電設備や風力発電設備が接続されている場合には、これらの設備での発電量の急変に対応するため、ガスタービンの出力や回転数が短時間で目標値になることが望まれている。
【0007】
そこで、本発明は、回転機械の損傷を抑えつつも、回転機械の回転数又は出力を短時間で目標値にすることができる技術を提供することを目的とする。
【課題を解決するための手段】
【0008】
前記目的を達成するための発明に係る一態様の回転機械の制御装置は、
回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御装置において、前記回転機械の回転数又は出力であるパラメータを変える操作端と、前記ロータと前記ケーシングとの間のクリアランス量を計測するクリアランス計測器と、前記クリアランス量に応じて、前記パラメータの変化率が変わるよう、前記パラメータの変化率を定めるパラメータ変化率設定部と、前記パラメータの前記変化率に応じて、前記操作端の操作量を定め、前記操作量を前記操作端に出力する操作量出力部と、を備える。
前記パラメータ変化率設定部は、第一のクリアランス量のときの前記パラメータの変化率に比べて、前記第一のクリアランス量よりも大きな第二のクリアランス量のときとの前記パラメータの変化率が大きくなるよう、前記パラメータの変化率を定める。
【0009】
回転機械は、その回転数又は出力(output)であるパラメータが増減すると、ロータとケーシングとの間のクリアランス量が一時的に小さくなる場合がある。このクリアランス量が小さくなると、ロータとケーシングとが接触して、ロータ又はケーシングの一部が損傷する可能性が高まる。
【0010】
本態様では、クリアランス量に応じて、パラメータの変化率が変わるよう、この変化率を定める。そして、本態様では、この変化率に応じて操作端の操作量を定め、この操作量を操作端に出力する。よって、本態様では、クリアランス量に応じて、パラメータの変化率が変わる。
【0012】
前記目的を達成するための発明に係る他の態様の回転機械の制御装置は、
回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御装置において、前記回転機械の回転数又は出力であるパラメータを変える操作端と、前記ロータと前記ケーシングとの間のクリアランス量を計測するクリアランス計測器と、前記クリアランス量に応じて、前記パラメータの変化率が変わるよう、前記パラメータの変化率を定めるパラメータ変化率設定部と、前記パラメータの前記変化率に応じて、前記操作端の操作量を定め、前記操作量を前記操作端に出力する操作量出力部と、を備える。前記パラメータ変化率設定部は、前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める基本変化率演算部と、前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める変更値演算部と、前記変更値を用いて前記基本変化率を変更する変化率変更部と、を有
する。
【0013】
前記変更値演算部を有する前記回転機械の制御装置において、前記変更値演算部は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める第一演算部を有してもよい。この場合、前記変化率変更部は、前記第一変更値を用いて前記基本変化率を変更するとよい。
【0014】
前記第一演算部を有する前記回転機械の制御装置において、前記変更値演算部は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める第二演算部を有してもよい。この場合、前記変化率変更部は、前記第一変更値と前記第二変更値とを用いて前記基本変更率を変更するとよい。
【0015】
前記第一変更演算部を有する、いずれかの前記回転機械の制御装置において、前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係であってもよい。
【0016】
前記目的を達成するための発明に係る一態様の回転機械設備は、
以上のいずれかの制御装置と、前記回転機械と、を備える。
【0017】
ここで、前記回転機械設備において、前記回転機械は、空気を圧縮して圧縮空気を生成する圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動するタービンとを、備えるガスタービンである。前記圧縮機は、回転する圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有する。前記タービンは、回転するタービンロータと、前記タービンロータを覆うタービンケーシングと、を有する。前記圧縮機ロータと前記タービンロータとは、機械的に接続されて、ガスタービンロータを成す。前記操作端は、前記燃焼器に供給される燃料の流量を調節する燃料調節弁である。前記クリアランス計測器は、前記タービンロータと前記タービンケーシングとの間のガスタービンクリアランス量を計測する。この場合、前記パラメータ変化率設定部は、前記ガスタービンクリアランス量に応じて、前記パラメータの増加時と減少時とのうち、少なくとも増加時における前記パラメータの変化率が変わるよう、前記パラメータの変化率を定める。
【0018】
ガスタービンクリアランス量は、パラメータの増加時に一時的に小さくなり、パラメータの減少時には一時的に大きくなる。本態様では、パラメータの増加時にガスタービンクリアランス量に応じてパラメータの変化率が変わるよう、この変化率を定める。そして、本態様では、この変化率に応じて燃料調節弁の操作量を求め、この操作量を燃料調節弁に出力する。このため、本態様では、ガスタービンのパラメータ増加時であっても、ガスタービンクリアランス量が極端に小さくなることを抑えつつも、パラメータを短時間で目標値にすることができる。
【0019】
前記回転機械がガスタービンである回転機械設備において、前記圧縮機は、前記圧縮機ケーシングに設けられ、前記圧縮機ケーシング内に流入する空気の流量を調節する吸気流量調節器を有する。この場合、前記制御装置は、前記ガスタービンクリアランス量に応じて、前記吸気流量調節器の操作量を定める吸気操作量設定部と、前記吸気流量調節器の前記操作量を前記吸気流量調節器に出力する吸気操作量出力部と、を有するとよい。
【0020】
燃料流量を変えずに、圧縮機ケーシング内に流入する空気の流量である吸気流量を増加させると、燃焼ガス流路を流れる燃焼ガスの温度が低下し、ガスタービンクリアランス量が変化する。本態様では、ガスタービンクリアランス量に応じて、吸気流量が変わるので、ガスタービンクリアランス量が極端に小さくなることを防ぐことができる。
【0021】
前記回転機械がガスタービンである、以上のいずれかの前記回転機械設備において、前記ガスタービンは、前記圧縮機で圧縮された空気を抽気して、前記タービンロータの動翼に、抽気した空気を導く抽気ラインと、前記抽気ラインを流れる空気を冷却する冷却器と、前記冷却器による前記空気の冷却量を調節する冷却調節器と、を備える。この場合、前記制御装置は、前記ガスタービンクリアランス量に応じて、前記冷却調節器の操作量を定める冷却操作量設定部と、前記冷却調節器の前記操作量を前記冷却調節器に出力する冷却操作量出力部と、を有するとよい。
【0022】
冷却器による前記空気の冷却量を変えると、この空気による動翼の冷却量が変わり、ガスタービンクリアランス量が変化する。本態様では、ガスタービンクリアランス量に応じて、空気の冷却量が変わるので、ガスタービンクリアランス量が極端に小さくなることを防ぐことができる。
【0023】
ここで、前記一態様の前記回転機械設備において、前記回転機械は、蒸気で駆動する蒸気タービンである。前記蒸気タービンは、回転する蒸気タービンロータと、前記蒸気タービンロータを覆う蒸気タービンケーシングと、を有する。前記操作端は、前記蒸気タービンに供給される蒸気の流量を調節する蒸気調節弁である。前記クリアランス計測器は、前記蒸気タービンロータと前記蒸気タービンケーシングとの間の蒸気タービンクリアランス量を計測する。この場合、前記パラメータ変化率設定部は、前記蒸気タービンクリアランス量に応じて、前記パラメータの増加時と減少時とのうち、少なくとも減少時における前記パラメータの変化率が変わるよう、前記パラメータの変化率を定めるとよい。
【0024】
蒸気タービンクリアランス量は、パラメータの減少時に一時的に小さくなり、パラメータの増加時には一時的に大きくなる。本態様では、パラメータの減少時に蒸気タービンクリアランス量に応じてパラメータの変化率が変わるよう、この変化率を定める。そして、本態様では、この変化率に応じて蒸気調節弁の操作量を求め、この操作量を蒸気調節弁に出力する。このため、本態様では、蒸気タービンのパラメータ減少時であっても、蒸気タービンクリアランス量が極端に小さくなることを抑えつつも、パラメータを短時間で目標値にすることができる。
【0025】
また、前記一態様の前記回転機械設備において、前記回転機械としての第一回転機械と第二回転機械とを備える。前記第一回転機械は、ガスタービンである。前記第二回転機械は、蒸気タービンである。当該回転機械設備は、前記ガスタービンから排気された排気ガスで蒸気を発生させて、前記蒸気を蒸気タービンに送る排熱回収ボイラーを備える。前記ガスタービンは、空気を圧縮して圧縮空気を生成する圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスで駆動するタービンと、を有する。前記圧縮機は、回転する圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、を有する。前記タービンは、回転するタービンロータと、前記タービンロータを覆うタービンケーシングと、を有する。前記圧縮機ロータと前記タービンロータとは、機械的に接続されて、ガスタービンロータを成す。前記ガスタービンの前記操作端は、前記燃焼器に供給される燃料の流量を調節する燃料調節弁である。前記ガスタービンの前記クリアランス計測器は、前記タービンロータと前記タービンケーシングとの間のガスタービンクリアランス量を計測するガスタービンクリアランス計測器である。前記蒸気タービンは、回転する蒸気タービンロータと、前記蒸気タービンロータを覆う蒸気タービンケーシングと、を有する。前記蒸気タービンの前記操作端は、前記排熱回収ボイラーから前記蒸気タービンに供給される蒸気の流量を調節する蒸気調節弁である。前記蒸気タービンの前記クリアランス計測器は、前記蒸気タービンロータと前記蒸気タービンケーシングとの間の蒸気タービンクリアランス量を計測する蒸気タービンクリアランス計測器である。この場合、前記ガスタービンの前記パラメータ変化率設定部は、前記ガスタービンに関する前記パラメータであるガスタービンパラメータの増加時に、前記ガスタービンクリアランス量に応じて前記ガスタービンパラメータの変化率が変わるよう、前記ガスタービンパラメータの変化率を定め、前記ガスタービンパラメータの減少時に、前記蒸気タービンクリアランス量に応じて前記ガスタービンパラメータの変化率が変わるよう、前記ガスタービンパラメータの変化率を定めるとよい。また、前記ガスタービンの前記操作量出力部は、前記ガスタービンの前記パラメータ変化率設定部が定めた前記ガスタービンパラメータの変化率に応じて、前記燃料調節弁の操作量を定め、前記燃料調節弁の前記操作量を前記燃料調節弁に出力するとよい。さらに、前記蒸気タービンの前記パラメータ変化率設定部は、前記蒸気タービンに関する前記パラメータである蒸気タービンパラメータの増加時に、前記ガスタービンクリアランス量に応じて前記蒸気タービンパラメータの変化率が変わるよう、前記蒸気タービンパラメータの変化率を定め、前記蒸気タービンパラメータの減少時に、前記蒸気タービンクリアランス量に応じて前記蒸気タービンパラメータの変化率が変わるよう、前記蒸気タービンパラメータの変化率を定めるとよい。また、前記蒸気タービンの前記操作量出力部は、前記蒸気タービンの前記パラメータ変化率設定部が定めた前記蒸気タービンパラメータの変化率に応じて、前記蒸気調節弁の操作量を定め、前記蒸気調節弁の前記操作量を前記蒸気調節弁に出力するとよい。
【0026】
本態様の回転機械設備は、いわゆるコンバインドサイクルプラントである。このコンバインドサイクルプラントでは、ガスタービンのパラメータが増加すると、これに連動して、蒸気タービンのパラメータが増加する。また、ガスタービンでは、パラメータが増加する場合にガスタービンクリアランス量が一時的に小さくなり、パラメータが減少する場合にガスタービンクリアランス量が一時的に大きくなる。また、蒸気タービンでは、パラメータが増加する場合に蒸気タービンクリアランス量が一時的に大きくなり、パラメータが減少する場合に蒸気タービンクリアランス量が一時的に小さくなる。
【0027】
そこで、本態様では、ガスタービンのパラメータ及び蒸気タービンのパラメータが増加する場合、一時的に小さくなるガスタービンクリアランス量に基づいて、ガスタービン及び蒸気タービンの操作端の操作量を定める。また、本態様では、ガスタービンのパラメータ及び蒸気タービンのパラメータが減少する場合、一時的に小さくなる蒸気タービンクリアランス量に基づいて、ガスタービン及び蒸気タービンの操作端の操作量を定める。よって、本態様では、ガスタービンのパラメータ及び蒸気タービンのパラメータが増減しても、ガスタービン及び蒸気ターンのクリアランス量が極端に小さくなることを抑えつつも、パラメータを短時間で目標値にすることができる。
【0028】
前記目的を達成するための発明に係る一態様の回転機械の制御方法は、
回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御方法において、前記ロータと前記ケーシングとの間のクリアランス量を受け付ける工程と、前記クリアランス量に応じて、前記回転機械の回転数又は出力であるパラメータの変化率が変わるよう、前記パラメータの変化率を定める工程と、前記パラメータの前記変化率に応じて、前記パラメータを変える操作端の操作量を定め、前記操作量を前記操作端に出力する工程と、を実行する。
前記パラメータの前記変化率を定める前記工程では、第一のクリアランス量のときの前記パラメータの変化率に比べて、前記第一のクリアランス量よりも大きな第二のクリアランス量のときとの前記パラメータの変化率が大きくなるよう、前記パラメータの変化率を定める。
【0030】
前記目的を達成するための発明に係る他の態様の回転機械の制御方法は、
回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御方法において、前記ロータと前記ケーシングとの間のクリアランス量を受け付ける工程と、前記クリアランス量に応じて、前記回転機械の回転数又は出力であるパラメータの変化率が変わるよう、前記パラメータの変化率を定める工程と、前記パラメータの前記変化率に応じて、前記パラメータを変える操作端の操作量を定め、前記操作量を前記操作端に出力する工程と、を実行する。前記パラメータの前記変化率を定める前記工程は、前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める工程と、前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める工程と、
前記変更値を用いて、前記基本変化率を変更する工程と、を含
む。
【0031】
前記変更値を求める前記工程を実行する前記回転機械の制御方法において、前記変更値を求める前記工程は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める工程を含んでもよい。この場合、前記変更工程では、前記第一変更値を用いて前記基本変化率を変更するとよい。
【0032】
前記第一変更値を求める前記工程を実行する前記回転機械の制御方法において、前記変更値を求める前記工程は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める工程を含んでもよい。この場合、前記基本変化率を変更する前記工程では、前記第一変更値を用いて前記基本変化率を変更するとよい。
【0033】
前記第一変更値を求める前記工程を実行する、いずれかの前記回転機械の制御方法において、前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係であってもよい。
【0034】
前記目的を達成するための発明に係る一態様の回転機械の制御プログラムは、
回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御プログラムにおいて、コンピュータの入力装置により、前記ロータと前記ケーシングとの間のクリアランス量を受け付ける工程と、前記クリアランス量に応じて、前記回転機械の回転数又は出力であるパラメータの変化率が変わるよう、前記パラメータの変化率を定める工程と、前記パラメータの前記変化率に応じて、前記パラメータを変える操作端の操作量を定め、前記操作量を前記操作端に出力する工程と、を前記コンピュータに実行させる。
前記パラメータの前記変化率を定める前記工程は、前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める工程と、前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める工程と、前記変更値を用いて、前記基本変化率を変更する変更した変化量を求める工程と、を含む。
【0036】
前記目的を達成するための発明に係る他の態様の回転機械の制御プログラムは、
回転するロータと、前記ロータの外周側を覆うケーシングとを備える回転機械の制御プログラムにおいて、コンピュータの入力装置により、前記ロータと前記ケーシングとの間のクリアランス量を受け付ける工程と、前記クリアランス量に応じて、前記回転機械の回転数又は出力であるパラメータの変化率が変わるよう、前記パラメータの変化率を定める工程と、前記パラメータの前記変化率に応じて、前記パラメータを変える操作端の操作量を定め、前記操作量を前記操作端に出力する工程と、を前記コンピュータに実行させる。前記パラメータの前記変化率を定める前記工程は、前記パラメータの目標値と前記パラメータの検出値との偏差に応じて、前記パラメータの基本変化率を求める工程と、前記クリアランス量に応じて、前記基本変化率を変更する変更値を求める工程と、前記変更値を用いて、前記基本変化率を変更する変更した変化量を求める工程と、を含
む。
【0037】
前記変更値を求める前記工程を実行させる前記転機械の制御プログラムにおいて、前記変更値を求める前記工程は、前記クリアランス量と前記基本変化率を変更する第一変更値との関係を用いて、前記クリアランス量に対応する前記第一変更値を求める工程を含んでもよい。この場合、前記基本変化率を変更する前記工程では、前記第一変更値を用いて前記基本変化率を変更するとよい。
【0038】
前記第一変更値を求める前記工程を実行させる前記回転機械の制御プログラムにおいて、前記変更値を求める前記工程は、前記クリアランス量と予め定められている許容最小クリアランス量との偏差に応じて、前記基本変化率を変更する第二変更値を求める工程を含んでもよい。この場合、前記基本変化率を変更する前記工程では、前記第一変更値と前記第二変更値と用いて前記基本変化率を変更するとよい。
【0039】
前記第一変更値を求める前記工程を実行させる、以上のいずれかの前記回転機械の制御プログラムにおいて、前記関係は、前記クリアランス量が大きくなるに連れて前記第一変更値が大きくなる関係であってもよい。
【発明の効果】
【0040】
本発明の一態様によれば、回転機械の損傷を抑えつつも、回転機械の回転数又は出力を短時間で目標値にすることができる。
【発明を実施するための形態】
【0042】
以下、本発明に係る各種実施形態について、図面を参照して詳細に説明する。
【0043】
「第一実施形態」
以下、本発明に係る回転機械設備の第一実施形態について、
図1〜
図11を参照して説明する。
【0044】
本実施形態の回転機械設備は、
図1に示すように、ガスタービン発電プラントである。このガスタービン発電プラントは、ガスタービン1と、ガスタービン1の駆動で発電する発電機9と、ガスタービン1の構成部品の一部を冷却する冷却装置60と、制御装置100と、を備える。
【0045】
ガスタービン1は、空気を圧縮する圧縮機10と、圧縮機10で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器30と、燃焼ガスにより駆動するタービン40と、を備える。
【0046】
圧縮機10は、
図1及び
図2に示すように、軸線Arを中心として回転する圧縮機ロータ11と、圧縮機ロータ11を覆う圧縮機ケーシング18と、複数の静翼列14と、圧縮機ケーシング18内に流入する空気の流量を調節するIGV(inlet guide vane)21と、を有する。
【0047】
なお、以下では、軸線Arが延びる方向を軸線方向Da、この軸線方向Daの一方側を軸線上流側Dau、他方側を軸線下流側Dadとする。軸線上流側Dauは、圧縮機10内の空気の流れの上流側であると共に、タービン40内の燃焼ガスの流れの上流側でもある。軸線下流側Dadは、圧縮機10内の空気の流れの下流側であると共に、タービン40内の燃焼ガスの流れの下流側でもある。また、この軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。この径方向Drで、軸線Arに近づく側を径方向内側Driとし、軸線Arから遠ざかる側を径方向外側Droとする。
【0048】
圧縮機ロータ11は、その軸線Arを中心として軸線方向Daに延びるロータ軸12と、このロータ軸12に取り付けられている複数の動翼列13と、を有する。複数の動翼列13は、軸線方向Daに並んでいる。各動翼列13は、いずれも、周方向Dcに並んでいる複数の動翼で構成されている。複数の動翼列13の各軸線下流側Dadには、静翼列14が配置されている。各静翼列14は、圧縮機ケーシング18の内側に設けられている。各静翼列14は、いずれも、周方向Dcに並んでいる複数の静翼で構成されている。ロータ軸12の径方向外側Droと圧縮機ケーシング18の径方向内側Driとの間であって、軸線方向Daで静翼列14及び動翼列13が配置されている領域の環状の空間は、空気が流れつつ圧縮される空気圧縮流路19を成す。すなわち、この圧縮機10は、軸流多段圧縮機である。
【0049】
圧縮機ケーシング18は、圧縮機本体ケーシング18aと、中間ケーシング18bとを有する。圧縮機本体ケーシング18aは、軸線方向Daで静翼列14及び動翼列13が配置されている領域で、この領域の外周側を覆う。中間ケーシング18bは、圧縮機本体ケーシング18aの軸線下流側Dadに接続されている。この中間ケーシング18b内には、圧縮機本体ケーシング18aから吐出された圧縮空気が流入する。
【0050】
IGV(吸気流量調節器)21は、圧縮機本体ケーシング18aに設けられている。IGV21は、複数の可動翼22と、複数の可動翼22の角度を変える駆動器23と、を有する。複数の可動翼22は、複数の動翼列13のうちで最も軸線上流側Dauの動翼列13よりも軸線上流側Dauに配置されている。
【0051】
タービン40は、軸線Arを中心として回転するタービンロータ41と、タービンロータ41を覆うタービンケーシング48と、複数の静翼列53と、を有する。タービンロータ41は、その軸線Arを中心として軸線方向Daに延びるロータ軸42と、このロータ軸42に取り付けられている複数の動翼列43と、を有する。複数の動翼列43は、軸線方向Daに並んでいる。各動翼列43は、いずれも、周方向Dcに並んでいる複数の動翼44で構成されている。複数の動翼列43の各軸線上流側Dauには、静翼列53が配置されている。各静翼列53は、タービンケーシング48の内側に設けられている。各静翼列53は、いずれも、周方向Dcに並んでいる複数の静翼54で構成されている。ロータ軸42の外周側とタービンケーシング48の内周側との間であって、軸線方向Daで静翼列53及び動翼列43が配置されている領域の環状の空間は、燃焼器30からの燃焼ガスが流れる燃焼ガス流路49を成す。なお、以下では、複数の動翼列43のうち、最も軸線上流側の動翼列を第一動翼列とし、以下、軸線下流側に向って、第二動翼列、第三動翼列、…とする。
【0052】
燃焼器30は、
図2に示すように、中間ケーシング18bに設けられている。この燃焼器30は、高温高圧の燃焼ガスGをタービン40の燃焼ガス流路49内に送る燃焼筒(又は尾筒)31と、この燃焼筒31内に圧縮機10からの圧縮空気と共に燃料Fを噴射する燃料噴射器32と、を有する。燃料噴射器32には、燃料Fが流れる燃料ライン35が接続されている。この燃料ライン35には、燃料調節弁(操作端)36が設けられている。
【0053】
圧縮機ロータ11とタービンロータ41とは、
図1に示すように、同一軸線Ar上に位置して互いに接続されてガスタービンロータ2を成す。このガスタービンロータ2には、発電機9のロータが接続されている。また、圧縮機ケーシング18とタービンケーシング48とは、互いに接続されてガスタービンケーシング5を成す。なお、本実施形態の圧縮機ケーシング18中の中間ケーシング18bを燃焼器車室と言い、本実施形態の圧縮機ケーシング18中の燃焼器車室(中間ケーシング18b)を含まない部分を単に圧縮機ケーシングという場合もある。しかしながら、本願では、この燃焼器車室(中間ケーシング18b)を含めて圧縮機ケーシング18とする。
【0054】
本実施形態では、軸線Arを中心として回転するガスタービンロータ2と、このガスタービンロータ2を覆うガスタービンケーシング5とを備えるガスタービン1が軸流式回転機械を成す。
【0055】
冷却装置60は、
図1及び
図2に示すように、抽気ライン61と、冷却器62と、冷却調節器64と、を有する。抽気ライン61は、第一端と第二端とを有する。この抽気ライン61の第一端は、中間ケーシング18bに接続され、第二端は、タービンロータ41のロータ軸42を介して、第一動翼列を構成する複数の動翼である第一列動翼44aに接続されている。抽気ライン61は、圧縮機本体ケーシング18aから吐出されて中間ケーシング18b内に流入した圧縮空気を複数の第一列動翼44aに導く。冷却器62は、抽気ライン61内を流れる圧縮空気と冷却媒体とを熱交換させて、圧縮空気を冷却する熱交換器である。冷却器62には、冷却媒体が流れる媒体ライン63が接続されている。冷却調節器64は、この媒体ライン63に設けられている。冷却調節器64は、媒体ライン63を流れる冷却媒体の流量を調節することで、圧縮空気の冷却量を調節する流量調節弁である。
【0056】
図2及び
図3に示すように、抽気ライン61は、タービンロータ41のロータ軸42中で第一動翼列が固定されている第一段軸部42aに接続されている。この第一段軸部42aには、抽気ライン61と連通する冷却通路42cが形成されている。また、第一動翼列を構成する複数の第一列動翼44aには、第一段軸部42aの冷却通路42cと連通する冷却通路44cが形成されている。第一列動翼44aの冷却通路44cは、第一列動翼44aの表面中で燃焼ガスGと接する部分で開口している。このため、圧縮機10からの圧縮空気は、抽気ライン61を流れる過程で冷却器により冷却された後、第一段軸部42aに形成されている冷却通路42c、第一列動翼44aに形成されている冷却通路44cを介して、燃焼ガス流路49中に放出される。
【0057】
ガスタービン1の構成部品にうちで、動翼44、静翼54、タービンケーシング48で内周面を形成する部品、燃焼筒31は、いずれも、高温の燃焼ガスGに接する高温部品である。本実施形態では、冷却器62で冷却された圧縮空気である冷却空気Amで、これらの高温部品のうち、第一列動翼44aを冷却する。
【0058】
なお、本実施形態の冷却器62は、熱交換器であるが、例えば、圧縮空気が通るラインにファン等で風を送って、圧縮空気を冷却するタイプでもよい。この場合、冷却調節器は、例えば、ファンの回転数RPMを変えるインバータ付きモータになる。
【0059】
制御装置100は、
図1に示すように、前述の燃料調節弁36と、クリアランス計測器101と、回転数計102と、出力計103と、制御装置本体110と、を有する。クリアランス計測器101は、タービンケーシング48とタービンロータ41との間のクリアランス量CLを計測する。回転数計102は、ガスタービンロータ2の回転数RPMを検知する。出力計103は、ガスタービン1の出力PW、言い換えると、発電機の発電量を検知する。回転数計102及び出力計103は、いずれもパラメータ計の一例である。
【0060】
図3に示すように、軸線Arを中心として回転するタービンロータ41の動翼44と、このタービンロータ41を覆うタービンケーシング48との間には、クリアランスがある。本実施形態のクリアランス計測器101は、第一列動翼44aとタービンケーシング48との間のクリアランス量CLを計測する。このクリアランス計測器101は、タービンケーシング48に固定されている。このクリアランス計測器101は、例えば、第一列動翼44aとタービンケーシング48との間の静電容量を検知し、検知した静電容量値をクリアランス量に変換する静電容量式の計測器である。また、このクリアランス計測器101は、例えば、タービンケーシング48の温度を検知し、検知した温度をクリアランス量に変換する計測器であってもよい。なお、クリアランス計測器101で、第二列動翼44とタービンケーシング48との間のクリアランスの量を計測してもよい。さらに、第一列動翼44aとタービンケーシング48との間のクリアランスの量、及び、第二列動翼44とタービンケーシング48との間のクリアランスの量を計測してもよい。
【0061】
本実施形態の制御装置100は、
図4に示すように、複数のクリアランス計測器101を備える。複数のクリアランス計測器101のうち、一のクリアランス計測器101は、タービンケーシング48の上部に設けられている。また、他の一のクリアランス計測器101は、タービンケーシング48の下部に設けられている。さらに他の一のクリアランス計測器101は、タービンケーシング48の上下方向のほぼ中央部で且つ軸線Arに対する右側部に設けられている。さらに他の一のクリアランス計測器101は、タービンケーシング48の上下方向のほぼ中央部で且つ軸線Arに対する左側部に設けられている。
【0062】
制御装置本体110は、機能的には、
図5に示すように、クリアランス信号処理部111と、出力変化率設定部120と、回転数変化率設定部140と、燃料操作量出力部160と、冷却操作量設定部170と、冷却操作量出力部179と、吸気操作量設定部180と、吸気操作量出力部189と、を有する。
【0063】
クリアランス信号処理部111は、複数のクリアランス計測器101からの信号を受け付け、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する。
【0064】
出力変化率設定部120は、基本出力変化率演算部121と、変更値演算部124と、変更部130と、を有する。基本出力変化率演算部121は、負荷指令や起動指令に応じて定まる目標出力PWtと出力計103で検知された出力PWとの偏差に基づいて、基本出力変化率ΔPWbを求める。変更値演算部124は、クリアランス信号処理部111から出力されたクリアランス量CL等に応じて、基本出力変化率ΔPWbを変更するための変更値を求める。変更部130は、変更値を用いて基本出力変化率ΔPWbを変更する。なお、出力PWの変化率とは、単位時間当たりの出力PWの変化量である。
【0065】
回転数変化率設定部140は、基本回転数変化率演算部141と、変更値演算部144と、変更部150と、を有する。基本回転数変化率演算部141は、負荷指令や起動指令に応じて定まる目標回転数RPMtと回転数計102で検知された回転数RPMとの偏差に基づいて、基本回転数変化率ΔRPMbを求める。変更値演算部144は、クリアランス信号処理部111から出力されたクリアランス量CL等に応じて、基本回転数変化率ΔRPMbを変更するための変更値を求める。変更部150は、変更値を用いて基本回転数変化率ΔRPMbを変更する。なお、回転数RPMの変化率とは、単位時間当たりの回転数RPMの変化量である。
【0066】
燃料操作量出力部160は、出力変化率換算部162と、回転数変化率換算部164と、選択部169と、を有する。出力変化率換算部162は、出力変化率設定部120が設定した出力変化率ΔPWを操作端である燃料調節弁36の操作量に換算する。回転数変化率換算部164は、回転数変化率設定部140が設定した回転数変化率ΔRPMを操作端である燃料調節弁36の操作量に換算する。選択部169は、出力変化率換算部162が求めた操作量と、回転数変化率換算部164が求めた操作量とのうち、一方の操作量のみを燃料調節弁36に出力する。
【0067】
冷却操作量設定部170は、冷却操作量発生部171と、変更部172と、を有する。冷却操作量発生部171は、例えば、冷却調節器64の操作量である冷却操作量を発生する。ここでは、冷却操作量発生部171は、燃料操作量出力部160が出力する燃料調節弁36の操作量、言い換えると燃料流量の増加に伴って大きくなる冷却操作量を発生する。変更部172は、クリアランス信号処理部111から出力されたクリアランス量CLに応じて冷却操作量を変更する。冷却操作量出力部179は、変更された冷却操作量を冷却調節器64に出力する。
【0068】
吸気操作量設定部180は、IGV開度発生部181と、変更部182と、を有する。IGV開度発生部181は、例えば、IGV21の開度であるIGV開度を発生する。ここでは、IGV開度発生部181は、燃料操作量出力部160が出力する燃料調節弁36の操作量、言い換えると燃料流量の増加に伴って大きくなるIGV開度を発生する。変更部182は、クリアランス信号処理部111から出力されたクリアランス量CLに応じてIGV開度を変更する。吸気操作量出力部189は、変更されたIGV開度をIGV21の駆動器23に出力する。
【0069】
基本出力変化率演算部121は、
図6に示すように、目標出力演算部122と、ΔPI演算部123と、を有する。目標出力演算部122は、負荷指令や起動指令に応じて目標出力PWtを求める。ΔPI演算部123は、出力計103で検知された出力PWと目標出力PWtとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である基本出力変化率ΔPWbを求める。
【0070】
出力変化率設定部120の変更値演算部124は、上限出力変化率演算部125と、第一変更値演算部(第一演算部)126と、第二変更値演算部(第二演算部)127と、を有する。上限出力変化率演算部125は、実際の出力PWと出力変化率ΔPWの上限値である上限出力変化率ΔPWLとの関係を示すマップ125mを有している。上限出力変化率演算部125は、このマップ125mを用いて、出力計103で検知された出力PWに対応する上限出力変化率ΔPWLを求める。出力変化率設定部120の第一変更値演算部126は、クリアランス量CLと基本出力変化率ΔPWbを変更する第一変更値ΔPWc1との関係を示すマップ126mを有している。第一変更値演算部126は、このマップ126mを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔPWc1を求める。このマップ126mが示す関係は、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔPWc1が大きくなる関係である。よって、この第一変更値演算部126が求める第一変更値ΔPWc1は、クリアランス量CLの増加に伴って大きくなる。さらに、このマップ126mでは、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔPWc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔPWc1が負の値を示す。なお、許容最小クリアランス量CLminとは、クリアランス量に関する許容最小値である。出力変化率設定部120の第二変更値演算部127は、許容最小値記憶部128と、ΔPI演算部129と、を有する。許容最小値記憶部128には、許容最小クリアランス量CLminが記憶されている。ΔPI演算部129は、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔPWc2を求める。よって、この第二変更値演算部127が求める第二変更値ΔPWc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
【0071】
出力変化率設定部120の変更部130は、第一加算器131と、第二加算器132と、最小値選択器133と、を有する。第一加算器131は、第一変更値演算部126が求めた第一変更値ΔPWc1と第二変更値演算部127が求めた第二変更値ΔPWc2とを加算する。第二加算器132は、上限出力変化率演算部125が求めた上限出力変化率ΔPWLと第一加算器131からの出力を加算する。すなわち、第二加算器132は、第一変更値ΔPWc1と第二変更値ΔPWc2と上限出力変化率ΔPWLとを加算した値を出力する。最小値選択器133は、基本出力変化率演算部121が求めた基本出力変化率ΔPWbと第二加算器132からの出力の値とのうち、小さい方の値を選択し、これを出力変化率ΔPWとして出力する。最小値選択器133から出力された出力変化率ΔPWは、前述した燃料操作量出力部160の出力変化率換算部162に入力する。
【0072】
基本回転数変化率演算部141は、
図7に示すように、目標回転数演算部142と、ΔPI演算部143と、を有する。目標回転数演算部142は、負荷指令や起動指令に応じて目標回転数RPMtを求める。ΔPI演算部143は、回転数計102で検知された回転数RPMと目標回転数RPMtとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である基本回転数変化率ΔRPMbを求める。
【0073】
回転数変化率設定部140の変更値演算部144は、上限回転数変化率演算部145と、第一変更値演算部146と、第二変更値演算部147と、を有する。上限回転数変化率演算部145は、実際の回転数RPMと回転数変化率ΔRPMの上限値である上限回転数変化率ΔRPMLとの関係を示す145mを有している。上限回転数変化率演算部145は、このマップ145mを用いて、回転数計102で検知された回転数RPMに対応する上限回転数変化率ΔRPMLを求める。回転数変化率設定部140の第一変更値演算部146は、クリアランス量CLと基本回転数変化率ΔRPMbを変更する第一変更値ΔRPMc1との関係を示すマップ146mを有している。第一変更値演算部146は、このマップ146mを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔRPMc1を求める。このマップ146mが示す関係は、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔRPMc1が大きくなる関係である。よって、この第一変更値演算部146が求める第一変更値ΔRPMc1は、クリアランス量CLの増加に伴って大きくなる。さらに、このマップ146mでは、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔRPMc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔRPMc1が負の値を示す。回転数変化率設定部140の第二変更値演算部147は、許容最小値記憶部148と、ΔPI演算部149と、を有する。許容最小値記憶部148には、許容最小クリアランス量CLminが記憶されている。ΔPI演算部149は、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔRPMc2を求める。よって、この第二変更値演算部147が求める第二変更値ΔRPMc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
【0074】
回転数変化率設定部140の変更部150は、第一加算器151と、第二加算器152と、最小値選択器153と、を有する。第一加算器151は、第一変更値演算部146が求めた第一変更値ΔRPMc1と第二変更値演算部147が求めた第二変更値ΔRPMc2とを加算する。第二加算器152は、上限回転数変化率演算部145が求めた上限回転数変化率ΔRPMLと第一加算器151からの出力を加算する。すなわち、第二加算器152は、第一変更値ΔRPMc1と第二変更値ΔRPMc2と上限回転数変化率ΔRPMLとを加算した値を出力する。最小値選択器153は、基本回転数変化率演算部141が求めた基本回転数変化率ΔRPMbと第二加算器152からの出力の値とのうち、小さい方の値を選択し、これを回転数変化率ΔRPMとして出力する。最小値選択器153から出力された回転数変化率ΔRPMは、前述した燃料操作量出力部160の回転数変化率換算部164に入力する。
【0075】
制御装置本体110は、
図8に示すように、コンピュータである。このため、この制御装置本体110は、各種演算を行うCPU191と、CPU191のワークエリア等になるメモリ192と、ハードディスクドライブ装置等の補助記憶装置193と、キーボードやマウス等の手入力装置195aと、表示装置195bと、手入力装置195a及び表示装置195bの入出力インタフェース195と、ガスタービン1に設けられている各種センサからの信号が入力する設備Iインタフェース196と、ガスタービン1の各種操作端に操作量を出力する設備Oインタフェース197と、ネットワークNを介して外部と通信するための通信インタフェース198と、ディスク型記憶媒体Dに対してデータの記憶処理や再生処理を行う記憶・再生装置194と、を備えている。
【0076】
補助記憶装置193には、ガスタービン固有値データ193a、制御プログラム193b、OS(Operating System)プログラム193cが予め格納されている。ガスタービン固有値データ193aとしては、先に説明した各種マップ125m,126m,145m,146mや許容最小クリアランス量CLmin等がある。制御プログラム193bは、回転機械であるガスタービン1を制御するためのプログラムである。補助記憶装置193に格納される各種データやプログラムは、例えば、記憶・再生装置194を介して、ディスク型記憶媒体Dから補助記憶装置193に取り込まれる。なお、各種データやプログラムは、通信インタフェース198を介して外部の装置から補助記憶装置193に取り込まれてもよい。また、各種データやプログラムは、手入力装置195aから入出力インタフェース195を介して補助記憶装置193に取り込まれてもよい。
【0077】
CPU191は、補助記憶装置193に格納されている制御プログラム193bをメモリ192上に展開し、この制御プログラム193bを実行することで、制御装置本体110の各機能構成を実現する。
【0078】
次に、本実施形態のガスタービン発電プラントの動作について説明する。
【0079】
まず、ガスタービン1の基本的な動作について説明する。ガスタービン1の圧縮機10は、空気Aを圧縮して圧縮空気を生成する。この圧縮空気は、燃焼器30に供給される。また、燃焼器30には、燃料Fも供給される。燃焼器30の燃料噴射器32は、燃料F及び圧縮空気を燃焼筒31内に噴出する。燃焼筒31内では、この圧縮空気中で燃料Fが燃焼し、高温高圧の燃焼ガスGが生成される。この燃焼ガスGは、燃焼筒31からタービン40内の燃焼ガス流路49に送られ、タービンロータ41を回転させる。このタービンロータ41の回転で、このタービンロータ41に接続されている発電機9は発電する。
【0080】
次に、制御装置100の動作について説明する。
【0081】
まず、起動工程での制御装置100の動作について説明する。この起動工程は、ガスタービン1に燃料Fが供給されていない状態からガスタービン1の回転数RPMが定格回転数(例えば、3600rpm)になり、発電機9が電力系統に接続されるまでの工程である。
【0082】
起動工程では、発電機9を原動機として機能させて、ガスタービンロータ2を回転させる。なお、起動装置を別途備えている場合には、この起動装置でガスタービンロータ2を回転させる。
【0083】
起動工程では、
図9のフローチャートに示す工程が繰り返し実行される。まず、回転数計102がガスタービン1の回転数RPMを検知する(S11:パラメータ検知工程)。さらに、複数のクリアランス計測器101がクリアランス量CLを計測する(S12:クリアランス計測工程)。制御装置本体110の回転数変化率設定部140は、回転数計102から回転数RPMを受け付ける(S21:パラメータ受付工程)。また、制御装置本体110のクリアランス信号処理部111は、複数のクリアランス計測器101からの信号を受け付け、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する(S22:クリアランス受付工程)。
【0084】
次に、回転数変化率設定部140がガスタービン1の回転数変化率ΔRPMを定める(S30:パラメータ変化率設定工程)。このパラメータ変化率設定工程(S30)では、基本変化率演算工程(S31)、上限変化率演算工程(S32)、第一変更値演算工程(S33)、第二変更値演算工程(S34)、変更工程(S35)が実行される。
【0085】
基本変化率演算工程(S31)では、まず、目標回転数演算部142が起動指令に応じて目標回転数RPMtを求める。基本回転数変化率演算部141のΔPI演算部143は、回転数計102で検知された回転数RPMと目標回転数RPMtとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である基本回転数変化率ΔRPMbを求める。
【0086】
上限変化率演算工程(S32)では、上限回転数変化率演算部145が、
図7を参照して説明したマップ145mを用いて、回転数計102で検知された回転数RPMに対応する上限回転数変化率ΔRPMLを求める。
【0087】
第一変更値演算工程(S33)では、回転数変化率設定部140の第一変更値演算部146が
図7を参照して説明した146mを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔRPMc1を求める。この第一変更値ΔRPMc1は、前述したように、クリアランス量CLの増加に伴って大きくなる。
【0088】
第二変更値演算工程(S34)は、回転数変化率設定部140の第二変更値演算部147が実行する。第二変更値演算部147のΔPI演算部149は、許容最小値記憶部148に記憶されている許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔRPMc2を求める。この第二変更値ΔRPMc2は、前述したように、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
【0089】
変更工程(S35)では、回転数変化率設定部140の変更部150が基本回転数変化率ΔRPMbを変更する。変更部150の第一加算器151は、第一変更値ΔRPMc1と第二変更値ΔRPMc2とを加算する。変更部150の第二加算器152は、上限回転数変化率演算部145が求めた上限回転数変化率ΔRPMLと第一加算器151からの出力とを加算する。変更部150の最小値選択器153は、基本回転数変化率ΔRPMbと第二加算器152からの出力の値とのうち、小さい方の値を選択し、これを回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。
【0090】
以上で、パラメータ変化率設定工程(S30)が終了する。
【0091】
次に、燃料操作量出力部160が燃料調節弁36に操作量を出力する(S36:操作量出力工程)。燃料操作量出力部160の回転数変化率換算部164は、回転数変化率設定部140が設定した回転数変化率ΔRPMを燃料調節弁36の操作量に換算する。この操作量は、選択部169を介して、燃料調節弁36に出力される。この結果、燃焼器30には、パラメータ変化率設定工程(S30)で設定された回転数変化率ΔRPMが得られる燃料流量の燃料Fが供給される。
【0092】
前述したように、以上の工程が繰り返し実行される結果、ガスタービンロータ2の回転数RPMが次第に高まる。そして、ガスタービン1の回転数RPMが定格回転数(例えば、3600rpm)になり、発電機9が電力系統に接続されると、起動工程が終了する。
【0093】
起動工程が終了すると、負荷運転工程が実行される。この負荷運転工程でも、起動工程と同様の工程が繰り返し実行される。
【0094】
この負荷運転工程では、
図9のフローチャートに示す工程が繰り返し実行される。まず、出力計103がガスタービン1の出力PWを検知する(S11a:パラメータ検知工程)。さらに、複数のクリアランス計測器101がクリアランス量CLを計測する(S12a:クリアランス計測工程)。制御装置本体110の出力変化率設定部120は、出力計103からの出力PWを受け付ける(S21a:パラメータ受付工程)。また、制御装置本体110のクリアランス信号処理部111は、複数のクリアランス計測器101からの信号を受け付け、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する(S22a:クリアランス受付工程)。
【0095】
次に、出力変化率設定部120がガスタービン1の出力変化率ΔPWを定める(S30a:パラメータ変化率設定工程)。このパラメータ変化率設定工程(S30a)では、基本変化率演算工程(S31a)、上限変化率演算工程(S32a)、第一変更値演算工程(S33a)、第二変更値演算工程(S34a)、変更工程(S35a)が実行される。
【0096】
基本変化率演算工程(S31a)では、まず、目標出力演算部122が負荷指令に応じて目標出力PWtを求める。基本出力変化率演算部121のΔPI演算部123は、出力計103で検知された出力PWと目標出力PWtとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である基本出力変化率ΔPWbを求める。
【0097】
上限変化率演算工程(S32a)では、上限出力変化率演算部125が、
図6を参照して説明したマップ125mを用いて、出力計103で検知された出力PWに対応する上限出力変化率ΔPWLを求める。
【0098】
第一変更値演算工程(S33a)では、出力変化率設定部120の第一変更値演算部126が
図6を参照して説明したマップ126mを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔPWc1を求める。この第一変更値ΔPWc1は、前述したように、クリアランス量CLの増加に伴って大きくなる。
【0099】
第二変更値演算工程(S34a)は、出力変化率設定部120の第二変更値演算部127が実行する。第二変更値演算部127のΔPI演算部129は、許容最小値記憶部128に記憶されている許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔPWc2を求める。この第二変更値ΔPWc2は、前述したように、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
【0100】
変更工程(S35a)では、出力変化率設定部120の変更部130が基本出力変化率ΔPWbを変更する。変更部130の第一加算器131は、第一変更値ΔPWc1と第二変更値ΔPWc2とを加算する。変更部130の第二加算器132は、上限出力変化率演算部125が求めた上限出力変化率ΔPWLと第一加算器131からの出力とを加算する。変更部130の最小値選択器133は、基本出力変化率ΔPWbと第二加算器132からの出力の値とのうち、小さい方の値を選択し、これを出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。
【0101】
以上で、パラメータ変化率設定工程(S30a)が終了する。
【0102】
次に、燃料操作量出力部160が燃料調節弁36に操作量を出力する(S36a:操作量出力工程)。燃料操作量出力部160の出力変化率換算部162は、出力変化率設定部120が設定した出力変化率ΔPWを燃料調節弁36の操作量に換算する。この操作量は、選択部169を介して、燃料調節弁36に出力される。この結果、燃焼器30には、パラメータ変化率設定工程(S30a)で設定された出力変化率ΔPWが得られる燃料流量の燃料Fが供給される。
【0103】
制御装置本体110が新たな負荷指令を受け付けると、出力計103で検知された出力PWが新たな負荷指令が示す要求出力になるまで、以上の処理が繰り返し実行される。要求出力「0」を示す負荷指令を制御装置本体110が受けると、出力PWが次第に低下し、所定の出力PWになった時点で、発電機9が電力系統から電気的に切断される。その後、燃焼器30に供給される燃料流量が「0」になる。
【0104】
前述したように、負荷運転工程では、以上の工程が繰り返し実行される結果、現状の出力PWより大きな要求出力を示す負荷指令を受けた場合には、出力PWが要求出力になるまで次第に高まる。また、現状の出力PWより小さな要求出力を示す負荷指令を受けた場合には、出力PWが要求出力になるまで次第に低下する。
【0105】
次に、
図10を参照して、以上で説明したクリアランス量CLに基づくパラメータ変化率制御を行っていない変化率未制御時の回転数RPM、出力PW、及びクリアランス量CLの変化について説明する。
【0106】
制御装置100が時刻t0に起動指令を受けると、この時刻t0から回転数RPMが次第に増加する。
【0107】
この起動工程の当初、ガスタービン1の実際の回転数RPMと目標回転数RPMtとの偏差が極めて大きいため、基本回転数変化率演算部141が求める基本回転数変化率ΔRPMbは極めて大きな値になる。よって、起動工程の当初、基本回転数変化率ΔRPMbと第二加算器152からの出力の値とのうち、第二加算器152からの出力の値の方が小さくなる。このため、変更部150の最小値選択器153は、第二加算器152からの出力の値を選択し、この出力の値を回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。
【0108】
また、この起動工程の終盤、ガスタービン1の実際の回転数RPMと目標回転数RPMtとの偏差が小さくなるため、基本回転数変化率演算部141が求める基本回転数変化率ΔRPMbは、起動工程の当初の値よりも小さな値になる。よって、起動工程の終盤、基本回転数変化率ΔRPMbと第二加算器152からの出力の値との差は、起動工程の当初よりも小さくなる。このため、変更部150の最小値選択器153は、第二加算器152からの出力の値を選択し、この出力の値を回転数変化率ΔRPMとして出力する場合もあれば、基本回転数変化率ΔRPMbを選択し、この基本回転数変化率ΔRPMbを回転数変化率ΔRPMとして出力する場合もある。
【0109】
ここで、以下の説明を簡単にするため、起動工程では、基本回転数変化率ΔRPMbよりも第二加算器152からの出力の値の方が小さいとする。この場合、変更部150の最小値選択器153は、第二加算器152からの出力の値を選択し、この出力の値を回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。
【0110】
変化率未制御時、回転数変化率設定部140の変更部150は、回転数変化率ΔRPMに関する第一変更値ΔRPMc1及び第二変更値ΔRPMc2を上限回転数変化率ΔRPMLに加算しない。このため、変更部150の最小値選択器153は、第二加算器152からの出力として、上限回転数変化率ΔRPMLを選択し、この上限回転数変化率ΔRPMLを回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。上限回転数変化率ΔRPMLは、ほぼ一定である。このため、回転数RPMは、起動指令を受けた時点(t0)から、定格回転数になるまで、リニアに増加する。
【0111】
時刻t2に、回転数RPMが定格回転数になると、この時刻t2以降、回転数RPMはこの定格回転数に保持される。時刻t2後の時刻t3では、発電機9が電気的に電力系統に接続される。この結果、時刻t3から発電機出力PWが発生する。出力PWは、その後、負荷指令が示す要求出力に応じて、増減する。
【0112】
負荷運転工程では、負荷指令を受けた当初、ガスタービン1の実際の出力PWと負荷指令が示す要求出力との偏差が大きいため、基本出力変化率演算部121が求める基本出力変化率ΔPWbは大きな値になる。よって、負荷指令を受けた当初、基本出力変化率ΔPWbと第二加算器132からの出力の値とのうち、第二加算器132からの出力の値の方が小さくなる。このため、変更部130の最小値選択器133は、第二加算器132からの出力の値を選択し、この出力の値を出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。
【0113】
また、負荷指令を受けてから所定時間経過すると、ガスタービン1の実際の出力PWと負荷指令が示す要求出力との偏差が小さくなるため、基本出力変化率演算部121が求める基本出力変化率ΔPWbは、負荷指令を受けた当初の値よりも小さな値になる。よって、負荷指令を受けてから所定時間経過すると、基本出力変化率ΔPWと第二加算器132からの出力の値との差は、負荷指令を受けた当初よりも小さくなる。このため、変更部130の最小値選択器133は、第二加算器132からの出力の値を選択し、この出力の値を出力変化率ΔPWとして出力する場合もあれば、基本出力変化率ΔPWbを選択し、この基本出力変化率ΔPWbを出力変化率ΔPWとして出力する場合もある。
【0114】
ここで、以下の説明を簡単にするため、負荷運転工程では、基本出力変化率ΔPWbよりも第二加算器132からの出力の値の方が小さいとする。この場合、変更部130の最小値選択器133は、第二加算器132からの出力の値を選択し、この出力の値を出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。
【0115】
変化率未制御時、出力変化率設定部120の変更部130は、出力変化率ΔPWに関する第一変更値ΔPWc1及び第二変更値ΔPWc2を上限出力変化率ΔPWLに加算しない。このため、変更部130の最小値選択器133は、第二加算器132からの出力として、上限出力変化率ΔPWLを選択し、この上限出力変化率ΔPWLを出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。上限出力変化率ΔPWLは、ほぼ一定である。このため、出力PWは、負荷指令令を受けた時点から、この負荷指令が示す要求出力になるまで、リニアに増加又は減少する。
【0116】
ガスタービンロータ2が回転し始めると(t0)、動翼44に遠心力が作用して、動翼44は径方向外側Droに延びる。このため、ガスタービン1が回転し始めると(t0)、クリアランス量CLが小さくなる。
【0117】
タービンケーシング48は、動翼44よりも熱容量が大きい。このため、タービンケーシング48の単位時間当たりの熱伸び量は、動翼44の単位時間当たりの熱伸び量より小さい。よって、ガスタービン1への燃料供給が開始され、タービン40の燃焼ガス流路49に高温の燃焼ガスが流れて、タービンケーシング48及び動翼44が燃焼ガスにより同様に加熱されても、クリアランス量CLが小さくなる。クリアランス量CLがある程度小さくなると、逆にクリアランス量CLが次第に大きくなる。この過程で、クリアランス量CLが最低になる。この最低のクリアランス量CLのポイントは、ピンチポイントと呼ばれる。
【0118】
出力PWが増加し始める時点(t3)から、ガスタービン1への燃料供給量が増加し、燃焼ガス流路49を流れる燃焼ガスの温度が上昇する上に、この燃焼ガスの流量も増加する。このため、出力PWが増加し始めると(t3)、再び、クリアランス量CLが小さくなる。出力PWが要求出力になった(t5)以降、出力PWがこのまま維持されると、タービンケーシング48と動翼44との熱伸び差が小さくなるため、クリアランス量CLが次第に増加する。この過程で、クリアランス量CLが最低になる。この最低のクリアランス量CLのポイントも、ピンチポイントと呼ばれる。仮に、所定時間以上、出力一定が継続すると、クリアランス量CLが一定の値に維持される。
【0119】
ガスタービン1へ燃料供給量が減少すると、タービンケーシング48よりも動翼44の方が短時間で縮むため、クリアランス量CLは一時的に大きくなる。すなわち、負荷指令が示す要求出力が現時点の出力PWより小さい場合、クリアランス量CLは一時的に大きくなる。
【0120】
次に、
図11を参照して、以上で説明したクリアランス量CLに基づく変化率制御時の回転数RPM、及びクリアランス量CLの変化について説明する。なお、以下の説明でも、説明を簡単にするため、基本回転数変化率ΔRPMbよりも回転数変化率設定部140の第二加算器152からの出力の値の方が小さいとする。この場合、変更部150の最小値選択器153は、第二加算器152からの出力の値を選択し、この出力の値を回転数変化率ΔRPMとして、燃料操作量出力部160の回転数変化率換算部164へ出力する。
【0121】
タービンロータ41の回転数RPMは、時刻t0から徐々に増加して、定格回転数になると、この定格回転数が維持される。時刻t0のときのクリアランス量CLは、ピンチポイントでのクリアランス量CL及び許容最小クリアランス量CLminより遥に大きい。
【0122】
回転数変化率ΔRPMに関する第一変更値ΔRPMc1及び第二変更値ΔRPMc2は、クリアランス量CLが大きくなるに連れて大きくなる。しかも、クリアランス量CLが許容最小クリアランス量CLminより大きい場合、これら第一変更値ΔRPMc1及び第二変更値ΔRPMc2は、正の値である。よって、時刻t0のときの第二加算器152からの出力の値は、上限回転数変化率ΔRPMLに正の値の第一変更値ΔRPMc1及び第二変更値ΔRPMc2を加えた値になる。第二加算器152からの出力は、前述したように、回転数変化率設定部140が定めた回転数変化率ΔRPMになる。このため、時刻t0のとき、回転数変化率設定部140が定める回転数変化率ΔRPMは、上限回転数変化率ΔRPMLより大きな値である。
【0123】
起動工程では、クリアランス量CLが時間経過に伴い次第に小さくなる。このため、回転数変化率ΔRPMに関する第一変更値ΔRPMc1及び第二変更値ΔRPMc2も、起動工程では、時間経過に伴い次第に小さくなる。しかしながら、クリアランス量CLが許容最小クリアランス量CLminより大きい場合には、第一変更値ΔRPMc1及び第二変更値ΔRPMc2は正の値であるため、時刻t0以降であっても、クリアランス量CLが許容最小クリアランス量CLminより大きい場合には、起動工程中、回転数変化率設定部140が定める回転数変化率ΔRPMは、上限回転数変化率ΔRPMLより大きな値である。
【0124】
変化率未制御時、回転数変化率設定部140が定める回転数変化率ΔRPMは、前述したように、上限回転数変化率ΔRPMLである。このため、変化率制御時、時刻t0からクリアランス量CLが許容最小クリアランス量CLminに近い小さな値になるまで、回転数変化率ΔRPMは変化率未制御時より大きい。
【0125】
よって、本実施形態では、変化率未制御時に回転数RPMが定格回転数になる時刻t2よりも前の時刻t1に回転数RPMが定格回転数になる。すなわち、本実施形態では、ガスタービン1の起動開始(t0)からこのガスタービン1の回転数RPMが定格回転数になるまでの時間を短くすることができる。
【0126】
このように、本実施形態では、ガスタービン1の起動開始(t0)からこのガスタービン1の回転数RPMが定格回転数になるまでの時間を短くなるので、起動工程で、クリアランス量CLがピンチポイントになるまでの時間も、変化率未制御時の同時間よりも短くなる。
【0127】
回転数変化率ΔRPMに関する第一変更値ΔRPMc1は、クリアランス量CLが許容最小クリアランス量CLminに近い場合、及びクリアランス量CLが許容最小クリアランス量CLminより小さい場合には、負の値になる。また、回転数変化率ΔRPMに関する第二変更値ΔRPMc2は、クリアランス量CLが許容最小クリアランス量CLminより小さい場合には、負の値になる。このため、クリアランス量CLが許容最小クリアランス量CLminに近い場合、及びクリアランス量CLが許容最小クリアランス量CLminより小さい場合には、回転数変化率設定部140が定める回転数変化率ΔRPMは、上限回転数変化率ΔRPMLより小さな値である。
【0128】
よって、本実施形態では、クリアランス量CLがピンチポイントに近くなると、回転数変化率ΔRPMが、変化率未制御時の回転数変化率ΔRPMよりも小さくなる。このため、本実施形態では、ピンチポイントにおけるクリアランス量CLが、変化率未制御時に比べて、小さくなることを抑制できる。
【0129】
次に、
図12を参照して、以上で説明したクリアランス量CLに基づく変化率制御時の出力PW、及びクリアランス量CLの変化について説明する。なお、以下の説明でも、説明を簡単にするため、基本出力変化率ΔPWbよりも出力変化率設定部120の第二加算器132からの出力の値の方が小さいとする。この場合、変更部130の最小値選択器133は、第二加算器132からの出力の値を選択し、この出力の値を出力変化率ΔPWとして、燃料操作量出力部160の出力変化率換算部162へ出力する。
【0130】
ガスタービン1の出力PWは、前述したように、時刻t3から徐々に増加して、要求出力になると、この出力PWが維持される。時刻t3のときのクリアランス量CLは、ピンチポイントでのクリアランス量CLより大きい。
【0131】
出力変化率ΔPWに関する第一変更値ΔPWc1及び第二変更値ΔPWc2は、クリアランス量CLが大きくなるに連れて大きくなる。しかも、クリアランス量CLが許容最小クリアランス量CLminより大きい場合、これら第一変更値ΔPWc1及び第二変更値ΔPWc2は、正の値である。よって、時刻t3のときの第二加算器132からの出力の値は、上限出力変化率ΔPWLに正の値の第一変更値ΔPWc1及び第二変更値ΔPWc2を加えた値になる。第二加算器132からの出力は、前述したように、出力変化率設定部120が定めた出力変化率ΔPWになる。このため、時刻t3のとき、出力変化率設定部120が定める出力変化率ΔPWは、上限出力変化率ΔPWLより大きな値である。
【0132】
出力PWを増加させる場合、クリアランス量CLは時間経過に伴い次第に小さくなる。このため、出力変化率ΔPWに関する第一変更値ΔPWc1及び第二変更値ΔPWc2も、出力PWを増加させる過程で、時間経過に伴い次第に小さくなる。しかしながら、クリアランス量CLが許容最小クリアランス量CLminより大きい場合には、第一変更値ΔPWc1及び第二変更値ΔPWc2は正の値であるため、出力PWを増加させる過程であっても、クリアランス量CLが許容最小クリアランス量CLminより大きい場合には、出力変化率設定部120が定める出力変化率ΔPWは、上限出力変化率ΔPWLより大きな値である。
【0133】
変化率未制御時、出力変化率設定部120が定める出力変化率ΔPWは、前述したように、上限出力変化率ΔPWLである。このため、変化率制御時、時刻t3から出力PWが要求出力になる時刻t5よりも前の時刻t4に、出力PWが要求出力になる。すなわち、本実施形態では、時刻t3からガスタービン1の出力PWが要求出力になるまでの時間を短くすることができる。
【0134】
このように、本実施形態では、時刻t3からガスタービン1の出力PWが要求出力になるまでの時間を短くなるので、出力PWを増加させる過程で、クリアランス量CLがピンチポイントになるまでの時間も、変化率未制御時の同時間よりも短くなる。
【0135】
出力変化率ΔPWに関する第一変更値ΔPWc1は、クリアランス量CLが許容最小クリアランス量CLminに近い場合、及びクリアランス量CLが許容最小クリアランス量CLminより小さい場合には、負の値になる。また、出力変化率ΔPWに関する第二変更値ΔPWc2は、クリアランス量CLが許容最小クリアランス量CLminより小さい場合には、負の値になる。このため、クリアランス量CLが許容最小クリアランス量CLminに近い場合、及びクリアランス量CLが許容最小クリアランス量CLminより小さい場合には、出力変化率設定部120が定める出力変化率ΔPWは、上限回転数変化率ΔRPMLより小さな値である。
【0136】
よって、本実施形態では、出力PWの増加過程で、クリアランス量CLがピンチポイントに近くなると、出力変化率ΔPWが、変化率未制御時の出力変化率ΔPWよりも小さくなる。このため、本実施形態では、出力PWの増加過程で、ピンチポイントにおけるクリアランス量CLが、変化率未制御時に比べて、小さくなることを抑制できる。
【0137】
前述したように、出力増加時、一時的にクリアランス量CLが小さくなる。一方、出力減少時には、逆に、一時的にクリアランス量CLが大きくなる。このため、本実施形態では、要求出力が現状の出力PWよりも小さい負荷指令を受けた場合でも、つまり出力減少を示す負荷指令を受けた場合でも、変化率制御時では、変化率未制御時に比べて、短時間で出力PWが要求出力になる。
【0138】
吸気操作量設定部180の変更部182は、クリアランス計測器101で計測されたクリアランス量CLに応じて、このIGV開度(吸気量調節器の操作量)を変更する。吸気操作量出力部189は、変更されたIGV開度をIGV21の駆動器23に出力する。この結果、IGV開度は、変更されたIGV開度になる。燃料流量を変えずに、吸気流量を増加させると、燃焼ガス流路49を流れる燃焼ガスの温度が低下し、クリアランス量CLが変化する。以上のように、本実施形態では、クリアランス量CLに応じてIGV開度が変わるので、クリアランス量CLが極端に小さくなることを防ぐことができる。
【0139】
中間ケーシング18bから抽気された圧縮空気は、冷却器62で冷却されて冷却空気Amになる。この冷却空気Amは、抽気ライン61等を介して、第一列動翼44aに導かれる。そして、この冷却空気Amは、第一列動翼44a内に形成されている冷却通路44cを経て、燃焼ガス流路49中に放出される。この冷却空気Amは、第一列動翼44a内に形成されている冷却通路44cを通る過程で、第一列動翼44aと熱交換して、この第一列動翼44aを冷却する。また、冷却空気Amが第一列動翼44aから放出されると、この冷却空気Amの一部が第一列動翼44aに対するフィルム冷却のための空気として機能する。よって、本実施形態では、第一列動翼44aが燃焼ガスの熱により熱損傷することを防ぐことができる。
【0140】
ところで、動翼44が冷却されると、動翼44の熱伸び量が小さくなり、クリアランス量CLが増加する。本実施形態では、冷却操作量設定部170の変更部172が、クリアランス計測器101で計測されたクリアランス量CLに応じて、冷却調節器64で冷却器62を流れる冷却媒体の流量を変更する。この結果、冷却空気Amの温度が変化して、冷却空気Amによる第一列動翼44aの冷却量が変化する。よって、本実施形態では、クリアランス量CLに応じて第一列動翼44aの冷却量が変わるので、クリアランス量CLが極端に小さくなることを防ぐことができる。
【0141】
以上のように、本実施形態では、クリアランス量CLに応じて回転数変化率ΔRPMが変わるので、回転数RPMが定格回転数になるまでの、起動時間を短くすることができる。さらに、本実施形態では、クリアランス量CLに応じて出力変化率ΔPWが変わるので、出力PWが要求出力になるまでの時間を短くすることができる。このように、本実施形態では、回転数RPMが定格回転数になるまでの時間や、出力PWが要求出力になるまでの時間を短くすることができる上に、クリアランス量CLに応じて回転数変化率ΔRPMや出力変化率ΔPWが変わるので、クリアランス量CLが極端に小さくなることを抑えることができる。また、本実施形態では、クリアランス量CLに応じて、IGV21の開度や圧縮空気の冷却量を変更するので、この観点からも、クリアランス量CLが極端に小さくなることを抑えることができる。
【0142】
よって、本実施形態では、ガスタービン1の損傷を抑えつつも、ガスタービン1の出力PWや回転数RPMを短時間で目標値にすることができる。
【0143】
なお、ガスタービン1では、以上で説明したように、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に小さくなり、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に大きくなる。このため、回転数RPMや出力PWが増加する場合のみ、クリアランス量CLに基づく回転数RPMや出力PWの変化率の制御を行い、回転数RPMや出力PWが減少する場合、回転数RPMや出力PWの変化率を固定値にしてもよい。
【0144】
「第二実施形態」
以下、本発明に係る回転機械設備の第二実施形態について、
図13及び
図14を参照して説明する。
【0145】
本実施形態の回転機械設備は、
図13に示すように、蒸気タービン発電プラントである。この蒸気タービン発電プラントは、蒸気タービン70と、蒸気タービン70の駆動で発電する発電機9aと、制御装置100aと、を備える。
【0146】
蒸気タービン70は、軸線Arを中心として回転する蒸気タービンロータ71と、蒸気タービンロータ71を覆う蒸気タービンケーシング78と、複数の静翼列75と、を有する。蒸気タービンロータ71は、その軸線Arを中心として軸線方向Daに延びるロータ軸72と、このロータ軸72に取り付けられている複数の動翼列73と、を有する。複数の動翼列73は、軸線方向Daに並んでいる。各動翼列73は、いずれも、周方向Dcに並んでいる複数の動翼74で構成されている。複数の動翼列73の各軸線上流側Dauには、静翼列75が配置されている。各静翼列75は、蒸気タービンケーシング78の内側に設けられている。各静翼列75は、いずれも、周方向Dcに並んでいる複数の静翼76で構成されている。ロータ軸72の外周側と蒸気タービンケーシング78の内周側との間であって、軸線方向Daで静翼列75及び動翼列73が配置されている領域の環状の空間は、蒸気が流れる蒸気主流路79を成す。なお、以下では、複数の動翼列73のうち、最も軸線上流側Dauの動翼列73を第一動翼列とし、以下、軸線下流側Dadに向って、第二動翼列、第三動翼列、…とする。
【0147】
本実施形態では、蒸気タービンロータ71と蒸気タービンケーシング78とを有する蒸気タービン70が軸流式回転機械を成す。蒸気タービンロータ71には、発電機9aのロータが接続されている。
【0148】
蒸気タービンケーシング78には、自身の軸線上流側Dauの部分に蒸気入口78iが形成され、自身の軸線下流側Dadの部分に蒸気出口78oが形成されている。蒸気入口78iには、主蒸気ライン91が接続されている。この主蒸気ライン91には、蒸気タービンケーシング78内に流入する蒸気の流量を調節する蒸気調節弁92が設けられている。
【0149】
制御装置100aは、前述の蒸気調節弁92と、クリアランス計測器101と、回転数計102と、出力計103と、制御装置本体110aと、を有する。クリアランス計測器101は、蒸気タービンケーシング78と蒸気タービンロータ71との間のクリアランス量CLを計測する。回転数計102は、蒸気タービンロータ71の回転数RPMを検知する。出力計103は、蒸気タービン70の出力PW、言い換えると、発電機9aの発電量を検知する。回転数計102及び出力計103は、いずれもパラメータ計の一例である。
【0150】
軸線Arを中心として回転する蒸気タービンロータ71の動翼74と、この蒸気タービンロータ71を覆う蒸気タービンケーシング78との間には、クリアランスがある。本実施形態のクリアランス計測器101は、第一列動翼74aと蒸気タービンケーシング78との間のクリアランス量CLを計測する。本実施形態の制御装置100aは、第一実施形態の制御装置100aと同様に、複数のクリアランス計測器101を備える。なお、クリアランス計測器101で、第二列動翼74と蒸気タービンケーシング78との間のクリアランスの量を計測してもよい。さらに、第一列動翼74aと蒸気タービンケーシング78との間のクリアランスの量、及び、第二列動翼74と蒸気タービンケーシング78との間のクリアランスの量を計測してもよい。
【0151】
制御装置本体110aは、
図14に示すように、クリアランス信号処理部111と、出力変化率設定部120aと、回転数変化率設定部140aと、蒸気操作量出力部160aと、を有する。この制御装置本体110aも、第一実施形態の制御装置本体110と同様に、コンピュータである。制御装置本体110aの各機能構成は、コンピュータに格納された制御プログラムをこのコンピュータのCPUが実行することで実現する。
【0152】
クリアランス信号処理部111は、複数のクリアランス計測器101からの信号を処理して、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する。
【0153】
出力変化率設定部120aは、第一実施形態の出力変化率設定部120と同様に、基本出力変化率演算部121aと、変更値演算部124aと、変更部130aと、を有する。
【0154】
基本出力変化率演算部121aは、第一実施形態の基本出力変化率演算部121の構成と基本的に同じで、負荷指令や起動指令に応じて定まる目標出力PWtと出力計103で検知された出力PWとの偏差に基づいて、基本出力変化率ΔPWbを求める。
【0155】
変更値演算部124aは、第一実施形態の変更値演算部124の構成と基本的に同じである。このため、この変更値演算部124aも、図示されていないが、第一実施形態の変更値演算部124と同様に、上限出力変化率演算部と、第一変更値演算部と、第二変更値演算部と、を有する。上限出力変化率演算部は、実際の出力PWと出力変化率ΔPWの上限値である上限出力変化率ΔPWLとの関係を示すマップを用いて、出力計103で検知された出力PWに対応する上限出力変化率ΔPWLを求める。変更値演算部124aの第一変更値演算部は、クリアランス量CLと基本出力変化率ΔPWbを変更する第一変更値ΔPWc1との関係を示すマップを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔPWc1を求める。このマップが示す関係も、第一実施形態の第一変更値演算部126が有するマップ126mと同様、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔPWc1が大きくなる関係である。さらに、このマップでも、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔPWc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔPWc1が負の値を示す。変更値演算部124aの第二変更値演算部は、図示されていないが、第一実施形態の第二変更値演算部127と同様に、許容最小値記憶部と、ΔPI演算部と、を有する。許容最小値記憶部には、許容最小クリアランス量CLminが記憶されている。ΔPI演算部は、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔPWc2を求める。よって、この第二変更値演算部が求める第二変更値ΔPWc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
【0156】
変更部130aは、第一実施形態の変更部130,150,172,182の構成と基本的に同じである。このため、この変更部130aも、図示されていないが、第一実施形態の変更部130と同様に、第一加算器と、第二加算器と、最小値選択器と、を有する。第一加算器は、第一実施形態の第一加算器131と同様に動作する。第二加算器は、第一実施形態の第二加算器132と同様に動作する。最小値選択器は、第一実施形態の最小値選択器133と同様に動作する。
【0157】
蒸気操作量出力部160aは、出力変化率換算部162aと、回転数変化率換算部164aと、選択部169aと、を有する。出力変化率換算部162aは、出力変化率設定部120aが設定した出力変化率ΔPWを操作端である蒸気調節弁92の操作量に換算する。回転数変化率換算部164aは、回転数変化率設定部140aが設定した回転数変化率ΔRPMを操作端である蒸気調節弁92の操作量に換算する。選択部169aは、出力変化率換算部162aが求めた操作量と、回転数変化率換算部164aが求めた操作量とのうち、一方の操作量のみを蒸気調節弁92に出力する。
【0158】
回転数変化率設定部140aは、第一実施形態の回転数変化率設定部140と同様に、基本回転数変化率演算部141aと、変更値演算部144aと、変更部150aと、を有する。
【0159】
基本回転数変化率演算部141aは、第一実施形態の基本回転数変化率演算部141の構成と基本的に同じで、起動指令に応じて定まる目標回転数RPMtと回転数計102で検知された回転数RPMとの偏差に基づいて、基本回転数変化率ΔRPMbを求める。
【0160】
変更値演算部144aは、第一実施形態の変更値演算部144の構成と基本的に同じである。このため、この変更値演算部144aも、図示されていないが、第一実施形態の変更値演算部144と同様に、上限回転数変化率演算部と、第一変更値演算部と、第二変更値演算部と、を有する。上限回転数変化率演算部は、実際の回転数RPMと回転数変化率ΔRPMの上限値である上限回転数変化率ΔRPMLとの関係を示すマップを用いて、回転数計102で検知された回転数RPMに対応する上限回転数変化率ΔRPMLを求める。変更値演算部144aの第一変更値演算部は、クリアランス量CLと基本回転数変化率ΔRPMbを変更する第一変更値ΔRPMc1との関係を示すマップを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔRPMc1を求める。このマップが示す関係も、第一実施形態の第一変更値演算部146が有するマップ146mと同様、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔRPMc1が大きくなる関係である。さらに、このマップでも、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔRPMc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔRPMc1が負の値を示す。変更値演算部144aの第二変更値演算部は、図示されていないが、第一実施形態の第二変更値演算部147と同様に、許容最小値記憶部と、ΔPI演算部と、を有する。許容最小値記憶部には、許容最小クリアランス量CLminが記憶されている。ΔPI演算部は、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔRPMc2を求める。よって、この第二変更値演算部が求める第二変更値ΔRPMc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
【0161】
変更部150aは、第一実施形態の変更部150の構成と基本的に同じである。このたため、この変更部150aも、図示されていないが、第一実施形態の変更部150と同様に、第一加算器と、第二加算器と、最小値選択器と、を有する。第一加算器は、第一実施形態の第一加算器151と同様に動作する。第二加算器は、第一実施形態の第二加算器152と同様に動作する。最小値選択器は、第一実施形態の最小値選択器153と同様に動作する。
【0162】
第一実施形態で説明したガスタービン1では、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に小さくなり、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に大きくなる。一方、蒸気タービン70では、蒸気タービンケーシング78の熱容量と動翼74の熱容量との関係等で、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に大きくなり、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に小さくなる。すなわち、回転数RPMや出力PWの増減に対するクリアランス量CLの変化傾向は、ガスタービン1と蒸気タービン70とでは逆になる。
【0163】
しかしながら、本実施形態でも、第一実施形態と同様に、クリアランス量CLが小さいときには、回転数変化率ΔRPM及び出力変化率ΔPWが小さくなり、クリアランス量CLが大きいときには、回転数変化率ΔRPM及び出力変化率ΔPWが大きくなる。このため、本実施形態でも、第一実施形態と同様に、回転数RPMが定格回転数になるまでの、起動時間を短くすることができる。さらに、本実施形態でも、出力PWが要求出力になるまでの時間を短くすることができる。しかも、クリアランス量CLが極端に小さくなることを抑えることができる。
【0164】
なお、蒸気タービン70では、以上で説明したように、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に小さくなり、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に大きくなる。このため、回転数RPMや出力PWが減少する場合のみ、クリアランス量CLに基づく回転数RPMや出力PWの変化率の制御を行い、回転数RPMや出力PWが増加する場合、回転数RPMや出力PWの変化率を固定値にしてもよい。
【0165】
「第三実施形態」
以下、本発明に係る回転機械設備の第三実施形態について、
図15及び
図16を参照して説明する。
【0166】
本実施形態の回転機械設備は、
図15に示すように、ガス圧縮プラントである。このガス圧縮は、圧縮機80と、圧縮機80を駆動させる原動機9bと、制御装置100bと、を備える。
【0167】
圧縮機80は、軸線Arを中心として回転する圧縮機ロータ81と、圧縮機ロータ81を覆う圧縮機ケーシング88と、複数の静翼列85と、を有する。圧縮機ロータ81は、その軸線Arを中心として軸線方向Daに延びるロータ軸82と、このロータ軸82に取り付けられている複数の動翼列83と、を有する。複数の動翼列83は、軸線方向Daに並んでいる。各動翼列83は、いずれも、周方向Dcに並んでいる複数の動翼84で構成されている。複数の動翼列83の各軸線下流側Dadには、静翼列85が配置されている。各静翼列85は、圧縮機ケーシング88の内側に設けられている。各静翼列85は、いずれも、周方向Dcに並んでいる複数の静翼86で構成されている。ロータ軸82の外周側と圧縮機ケーシング88の内周側との間であって、軸線方向Daで静翼列85及び動翼列83が配置されている領域の環状の空間は、ガスが流れつつ圧縮されるガス圧縮流路89を成す。すなわち、この圧縮機80は、軸流多段圧縮機である。なお、以下では、複数の動翼列83のうち、最も軸線上流側Dauの動翼列83を第一動翼列とし、以下、軸線下流側Dadに向って、第二動翼列、第三動翼列、…とし、最も軸線下流側Dadの動翼列83を最終動翼列とする。
【0168】
本実施形態では、圧縮機ロータ81と圧縮機ケーシング88とを有する圧縮機80が回転機械を成す。圧縮機ロータ81には、この圧縮機ロータ81を回転させる原動機9bのロータが接続されている。原動機9bには、この原動機9bに供給する電力の供給状態を変えて原動機9bのロータの回転数RPMを変える電源回路94が接続されている。
【0169】
圧縮機ケーシング88には、自身の軸線上流側Dauの部分にガス入口88iが形成され、自身の軸線下流側Dadの部分にガス出口88oが形成されている。ガス出口88oには、圧縮ガスライン93が接続されている。この圧縮ガスライン93には、圧縮機80から吐出されたガスの流量Qを検知する流量計104が設けられている。
【0170】
制御装置100bは、前述の電源回路94と、クリアランス計測器101と、回転数計102と、流量計104と、制御装置本体110bと、を有する。クリアランス計測器101は、圧縮機ケーシング88と圧縮機ロータ81との間のクリアランス量CLを計測する。回転数計102は、圧縮機ロータ81の回転数RPMを検知する。流量計104は、圧縮機80の出力としての吐出流量を検知する。回転数計102及び流量計104は、いずれもパラメータ計の一例である。
【0171】
軸線Arを中心として回転する圧縮機ロータ81の動翼84と、この圧縮機ロータ81を覆う圧縮機ケーシング88との間には、クリアランスがある。本実施形態のクリアランス計測器101は、最終列動翼84aと圧縮機ケーシング88との間のクリアランス量CLを計測する。本実施形態の制御装置100bは、第一及び第二実施形態の制御装置100,100aと同様に、複数のクリアランス計測器101を備える。なお、クリアランス計測器101で、最終列より一つ軸線上流側Aruの列の動翼84と圧縮機ケーシング88との間のクリアランス量CLを計測してもよい。さらに、最終列動翼84aと圧縮機ケーシング88との間のクリアランス量CL、及び、最終列より一つ軸線上流側Aruの列の動翼84と圧縮機ケーシング88との間のクリアランス量CLを計測してもよい。
【0172】
制御装置本体110bは、
図16に示すように、クリアランス信号処理部111と、流量変化率設定部120bと、流量操作量出力部160bと、を有する。この制御装置本体110bも、第一実施形態の制御装置本体110と同様に、コンピュータである。制御装置本体110bの各機能構成は、コンピュータに格納された制御プログラムをこのコンピュータのCPUが実行することで実現する。
【0173】
クリアランス信号処理部111は、複数のクリアランス計測器101からの信号を処理して、複数のクリアランス計測器101が計測したクリアランス量CLのうち、最小のクリアランス量CLを出力する。
【0174】
流量変化率設定部120bは、基本流量変化率演算部121bと、変更値演算部124bと、変更部130と、を有する。
【0175】
基本流量変化率演算部121bは、ΔPI演算部123bを有する。このΔPI演算部123bは、外部からのガス流量指令が示す要求ガス流量と流量計で検知された吐出流量Qとの偏差に応じた比例及び積分制御量(PI制御量)である基本流量変化率ΔQbを求める。
【0176】
変更値演算部124bは、第一実施形態の変更値演算部124の構成と基本的に同じである。このため、この変更値演算部124bも、第一実施形態の変更値演算部124と同様に、上限流量変化率演算部125bと、第一変更値演算部126bと、第二変更値演算部127bと、を有する。上限流量変化率演算部125bは、実際の吐出流量Qと流量変化率の上限値である上限流量変化率ΔQLとの関係を示すマップ125mbを有する。上限流量変化率演算部125bは、このマップ125mbを用いて、流量計104で検知された吐出流量Qに対応する上限流量変化率ΔQLを求める。第一変更値演算部126bは、クリアランス量CLと基本流量変化率ΔQbを変更する第一変更値ΔQc1との関係を示すマップ126mbを有する。第一変更値演算部126bは、このマップ126mbを用いて、クリアランス信号処理部111から出力されたクリアランス量CLに対応する第一変更値ΔQc1を求める。このマップ126mbが示す関係は、第一実施形態の第一変更値演算部126が有するマップ126mと同様、基本的に、クリアランス量CLの増加に伴って、第一変更値ΔQc1が大きくなる関係である。さらに、このマップ126mbでも、許容最小クリアランス量CLminよりもクリアランス量CLが大きい場合、第一変更値ΔQc1が正の値を示し、クリアランス量CLが許容最小クリアランス量CLmin以下の場合、第一変更値ΔQc1が負の値を示す。第二変更値演算部127bは、許容最小値記憶部128bと、ΔPI演算部129bと、を有する。許容最小値記憶部128bには、許容最小クリアランス量CLminが記憶されている。ΔPI演算部129bは、許容最小クリアランス量CLminとクリアランス信号処理部111から出力されたクリアランス量CLとの偏差を求め、この偏差に応じた比例及び積分制御量(PI制御量)である第二変更値ΔQc2を求める。よって、この第二変更値演算部127,147が求める第二変更値ΔQc2は、許容最小クリアランス量CLminとクリアランス量CLとの偏差が大きくなるに連れて大きくなる。
【0177】
変更部130は、第一実施形態の変更部130の構成と基本的に同じである。このため、この変更部130は、第一実施形態の変更部130と同様に、第一加算器131と、第二加算器132と、最小値選択器133と、を有する。第一加算器131は、第一実施形態の第一加算器131と同様に動作する。第二加算器132は、第一実施形態の第二加算器132と同様に動作する。最小値選択器133は、第一実施形態の最小値選択器133と同様に動作する。
【0178】
流量操作量出力部160bは、流量変化率設定部120bが設定した流量変化率ΔQを操作端である電源回路94の操作量に換算する。そして、この流量操作量出力部160bは、この操作量を電源回路94に出力する。この結果、原動機ロータの回転数RPMが変化する。そして、原動機ロータの回転数RPMの変化に共になって、圧縮機ロータ81の回転数RPMが変化して、吐出流量Qはガス流量指令が示す要求ガス流量になる。
【0179】
第一実施形態で説明したガスタービン1では、回転数RPMや出力PWが増加する場合にクリアランス量CLが一時的に小さくなり、回転数RPMや出力PWが減少する場合にクリアランス量CLが一時的に大きくなる。一方、圧縮機80では、一般的に、圧縮機ケーシング88の熱容量と動翼84の熱容量との関係等で、蒸気タービン70と同様、吐出流量Qや回転数RPMが増加する場合にクリアランス量CLが一時的に大きくなり、吐出流量Qや回転数RPMが減少する場合にクリアランス量CLが一時的に小さくなる。すなわち、吐出流量Qや回転数RPMの増減に対するクリアランスの変化傾向は、ガスタービン1と圧縮機80とでは逆になり、蒸気タービン70と圧縮機80とは同じになる。
【0180】
しかしながら、本実施形態では、第一実施形態と同様に、クリアランス量CLが小さいときには、流量変化率ΔQが小さくなり、クリアランス量CLが大きいときには、流量変化率ΔQが大きくなる。このため、本実施形態では、実際の吐出流量Qが要求流量になるまでの、時間を短くすることができると共に、クリアランス量CLが極端に小さくなることを抑えることができる。
【0181】
なお、以上では、圧縮機80のパラメータとして、圧縮機80の出力(output)としての吐出流量Qを扱っているが、この替りに、圧縮機80の出力(output)としての吐出圧を扱ってもよい。この場合、外部からのガス圧指令が示す要求ガス圧と、圧力計で検知された吐出圧との偏差に応じた比例及及び積分制御量(PI制御量)である基本圧力変化率を求める。そして、上限圧力変化率、クリアランス量CLに基づく第一変更値及び第二変更値を用いて、基本圧力変化率を変更する。また、圧縮機80のパラメータとして、圧縮機80の回転数RPMを扱ってもよい。この場合、外部からの回転数指令が示す要求回転数と、回転数計102で検知された回転数RPMとの偏差に応じた比例及及び積分制御量(PI制御量)である基本回転数変化率を求める。そして、上限回転数変化率、クリアランス量に基づく第一変更値及び第二変更値を用いて、基本回転数変化率を変更する。
【0182】
圧縮機80では、以上で説明したように、吐出流量Qや回転数RPMが減少する場合にクリアランス量CLが一時的に小さくなり、吐出流量Qや回転数RPMが増加する場合にクリアランス量CLが一時的に大きくなる。このため、吐出流量Qや回転数RPMが減少する場合のみ、クリアランス量CLに基づく吐出流量Qや回転数RPMの変化率の制御を行い、吐出流量Qや回転数RPMが増加する場合、吐出流量Qや回転数RPMの変化率を固定値にしてもよい。
【0183】
また、第一、第二及び第三実施形態で説明したように、回転するロータと、このロータの外周側を覆うケーシングを備える回転機械であれば、他の回転機械であっても、以上と同様に、クリアランスに基づき、回転数や出力(output)としての吐出流量等の変化率を変える制御を行ってもよい。
【0184】
「第四実施形態」
以下、本発明に係る回転機械設備の第四実施形態について、
図17及び
図18を参照して説明する。
【0185】
本実施形態の回転機械設備は、
図17に示すように、コンバインドサイクルプラントである。このコンバインドサイクルプラントは、ガスタービン1と、蒸気タービン70と、発電機9cと、排熱回収ボイラー95と、主蒸気ライン91cと、復水器96と、給水ライン97と、給水ポンプ98と、制御装置100cと、を備える。
【0186】
ガスタービン1は、第一実施形態のガスタービン1と同様構成のガスタービン1である。よって、このガスタービン1は、空気Aを圧縮する圧縮機10と、圧縮機10で圧縮された空気中で燃料Fを燃焼させて燃焼ガスを生成する燃焼器30と、燃焼ガスにより駆動するタービン40と、を備える。燃焼器30には、燃料Fが流れる燃料ライン35が接続されている。この燃料ライン35には、燃料調節弁36が設けられている。タービンケーシング48には、タービンケーシング48と第一列動翼44aとの間のクリアランス量CLgを計測するガスタービンクリアランス計測器101aが設けられている。
【0187】
蒸気タービン70は、第二実施形態の蒸気タービン70と同様構成の蒸気タービンである。蒸気タービンケーシング78には、蒸気タービンケーシング78と第一列動翼74aとの間のクリアランス量CLsを計測する蒸気タービンクリアランス計測器101bが設けられている。
【0188】
発電機9cは、ガスタービン1及び蒸気タービン70の駆動で発電する。ガスタービンロータ2、蒸気タービンロータ71、及び発電機9cのロータは、互いに接続されて、同一の軸線Arを中心として一体回転する。よって、本実施形態のコンバインドサイクルプラントは、一軸型のコンバインドサイクルプラントである。
【0189】
排熱回収ボイラー95は、ガスタービン1から排気された排気ガスの熱を利用して、水を蒸気にする。主蒸気ライン91cは、排熱回収ボイラー95で発生した蒸気を蒸気タービン70に導く。この主蒸気ライン91cには、蒸気タービン70に流入する蒸気の流量を調節する蒸気調節弁92が設けられている。復水器96は、蒸気タービン70から排気された蒸気を冷却して、この蒸気を水に戻す。給水ライン97は、復水器96内の水を排熱回収ボイラー95に導く。給水ポンプ98は、給水ライン97中の水を復水器96に送る。
【0190】
制御装置100cは、前述の燃料調節弁36と、前述の蒸気調節弁92と、前述のガスタービンクリアランス計測器101aと、前述の蒸気タービンクリアランス計測器101bと、回転数計102と、出力計103と、制御装置本体110cと、を有する。回転数計102は、ガスタービンロータ2、蒸気タービンロータ71、発電機9cのロータのうち、いずれかの回転数RPMを検知する。出力計103は、発電機9cの発電量を検知する。なお、本実施形態では、回転数計102で検知される回転数RPMは、ガスタービン1に関するパラメータでもあり、蒸気タービン70に関するパラメータでもある。また、出力計103で検出される出力PWも、ガスタービン1に関するパラメータでもあり、蒸気タービン70に関するパラメータでもある。
【0191】
制御装置本体110cは、
図17に示すように、第一クリアランス信号処理部111aと、第二クリアランス信号処理部111bと、クリアランス選択出力部112と、ガスタービン出力変化率設定部120と、ガスタービン回転数変化率設定部140と、燃料操作量出力部160と、蒸気タービン出力変化率設定部120aと、蒸気タービン回転数変化率設定部140aと、蒸気操作量出力部160aと、を有する。この制御装置本体110cも、第一実施形態の制御装置本体110と同様に、コンピュータである。制御装置本体110cの各機能構成は、コンピュータに格納された制御プログラムをこのコンピュータのCPUが実行することで実現する。
【0192】
第一クリアランス信号処理部111aは、複数のガスタービンクリアランス計測器101aからの信号を処理して、複数のガスタービンクリアランス計測器101aが計測したクリアランス量CLgのうち、最小のクリアランス量CLgを出力する。なお、以下では、第一クリアランス信号処理部111aが出力するクリアランス量CLgをガスタービンクリアランス量CLgとする。第二クリアランス信号処理部111bは、複数の蒸気タービンクリアランス計測器101bからの信号を処理して、複数の蒸気タービンクリアランス計測器101bが計測したクリアランス量CLsのうち、最小のクリアランス量CLsを出力する。なお、以下では、第一クリアランス信号処理部111aが出力するクリアランス量CLsを蒸気タービンクリアランス量CLsとする。
【0193】
クリアランス選択出力部112は、出力PWが増加しているときに第一クリアランス信号処理部111aから出力されたガスタービンクリアランス量CLgを出力し、出力PWが減少しているときに第二クリアランス信号処理部111bから出力された蒸気タービンクリアランス量CLsを出力する。
【0194】
ガスタービン出力変化率設定部120は、第一実施形態の出力変化率設定部120と同一である。よって、本実施形態のガスタービン出力変化率設定部120も、第一実施形態の出力変化率設定部120と同様に、基本出力変化率演算部121と、変更値演算部124と、変更部130と、を有する。ガスタービン回転数変化率設定部140は、第一実施形態の回転数変化率設定部140と同一である。よって、本実施形態のガスタービン回転数変化率設定部140も、第一実施形態の回転数変化率設定部140と同様に、基本回転数変化率演算部141と、変更値演算部144と、変更部150と、を有する。燃料操作量出力部160は、第一実施形態の燃料操作量出力部160と同一である。よって、本実施形態の燃料操作量出力部160も、第一実施形態の燃料操作量出力部160と同様に、出力変化率換算部162と、回転数変化率換算部164と、選択部169と、を有する。
【0195】
蒸気タービン出力変化率設定部120aは、第二実施形態の出力変化率設定部120aと同一である。よって、本実施形態の蒸気タービン出力変化率設定部120aも、第二実施形態の出力変化率設定部120aと同様に、基本出力変化率演算部121aと、変更値演算部124aと、変更部130aと、を有する。蒸気タービン回転数変化率設定部140aは、第二実施形態の回転数変化率設定部140aと同一である。よって、本実施形態の蒸気タービン回転数変化率設定部140aも、第二実施形態の回転数変化率設定部140aと同様に、基本回転数変化率演算部141aと、変更値演算部144aと、変更部150aと、を有する。蒸気操作量出力部160aは、第二実施形態の蒸気操作量出力部160aと同一である。よって、本実施形態の蒸気操作量出力部160aも、第二実施形態の蒸気操作量出力部160aと同様に、出力変化率換算部162と、回転数変化率換算部164と、選択部169と、を有する。
【0196】
コンバインドサイクルプラントでは、ガスタービン1の回転数RPM及び出力PWが増加すると、これに連動して、蒸気タービン70の回転数RPM及び出力PWが増加する。また、前述したように、ガスタービン1では、回転数RPMや出力PWが増加する場合にガスタービンクリアランス量CLgが一時的に小さくなり、回転数RPMや出力PWが減少する場合にガスタービンクリアランス量CLgが一時的に大きくなる。また、前述したように、蒸気タービン70では、回転数RPMや出力PWが増加する場合に蒸気クリアランス量CLsが一時的に大きくなり、回転数RPMや出力PWが減少する場合に蒸気クリアランス量CLsが一時的に小さくなる。
【0197】
そこで、本実施形態では、発電機9cの回転数RPM及び出力PW(コンバインドサイクルプラント全体での出力PW)が増加する場合、一時的に小さくなるガスタービンクリアランス量CLgに基づいて、ガスタービン1の出力変化率ΔPW及び回転数変化率ΔRPMを定めると共に、蒸気タービン70の出力変化率ΔPW及び回転数変化率ΔRPMを定める。また、本実施形態では、発電機9cの回転数RPM及び出力PWが減少する場合、一時的に小さくなる蒸気タービンクリアランス量CLsに基づいて、ガスタービン1の出力変化率ΔPW及び回転数変化率ΔRPMを定めると共に、蒸気タービン70の出力変化率ΔPW及び回転数変化率ΔRPMを定める。
【0198】
よって、本実施形態では、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsとのうち、回転数RPMや出力PWの増加で小さくなる方の蒸気タービンクリアランス量CLsが大きいときには、ガスタービン1と蒸気タービン70双方の回転数変化率ΔRPM及び出力変化率ΔPWが大きくなる。一方、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsとのうち、回転数RPMや出力PWの減少で大きくなる方のガスタービンクリアランス量CLgが大きいときには、ガスタービン1と蒸気タービン70双方の回転数変化率ΔRPM及び出力変化率ΔPWが大きくなる。また、本実施形態では、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsとのうち、回転数RPMや出力PWの増加で小さくなる方のガスタービンクリアランス量CLgが小さいときには、ガスタービン1と蒸気タービン70双方の回転数変化率ΔRPM及び出力変化率ΔPWが小さくなる。一方、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsとのうち、回転数RPMや出力PWの減少で大きくなる方の蒸気タービンクリアランス量CLsが小さいときには、ガスタービン1と蒸気タービン70双方の回転数変化率ΔRPM及び出力変化率ΔPWが小さくなる。
【0199】
このため、本実施形態でも、第一実施形態と同様に、回転数RPMが定格回転数になるまでの、起動時間を短くすることができる。さらに、本実施形態でも、出力PWが要求出力になるまでの時間を短くすることができる。しかも、本実施形態では、ガスタービンクリアランス量CLgと蒸気タービンクリアランス量CLsの双方が極端に小さくなることを抑えることができる。
【0200】
コンバインドサイクルプラントには、本実施形態のような一軸型のコンバインドサイクルプラントの他に、多軸型のコンバインドサイクルプラントがある。この多軸型のコンバインドサイクルプラントは、ガスタービンロータ2と蒸気タービンロータ71とが機械的に接続されておらず、ガスタービンロータ2と蒸気タービンロータ71とには、それぞれ、個別の発電機のロータが接続されている。このような多軸型のコンバインドサイクルプラントでも、以上で説明した一軸型のコンバインドサイクルプラントと同様に、ガスタービン1の回転数RPM及び出力PWが増加すると、これに連動して、蒸気タービン70の回転数RPM及び出力PWが増加する。よって、このような多軸型のコンバインドサイクルプラントにおいても、本実施形態と同様の制御を行ってもよい。