(58)【調査した分野】(Int.Cl.,DB名)
前記条件に、前記流体放出部及び前記粗輪郭形状の相対位置と、前記流体放出部から放出される流体の角度と、流体の放出流量又は放出圧力と、のうちの少なくとも1つが含まれることを特徴とする、請求項1から3の何れか1項に記載の工作機械。
【発明を実施するための形態】
【0009】
以下、図面を参照しながら、本開示を実施するための実施形態を説明する。なお、以下に説明する実施形態は、本開示の技術思想を具体化するためのものであって、特定的な記載がない限り、本開示を以下のものに限定しない。
各図面中、同一の機能を有する部材には、同一符号を付している場合がある。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示す場合があるが、異なる実施形態で示した構成の部分的な置換または組み合わせは可能である。後述の実施形態では前述の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態ごとには逐次言及しないものとする。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。
なお、図面には、X軸、Y軸、Z軸を示している。また、
図1、
図2及び
図11に示す斜視図では、説明のため、中央から上側の領域を下側から見上げた状態で示し、中央から下側の領域を上から見降ろした状態で示してある。
【0010】
(第1の実施形態に係る工作機械)
はじめに、
図1を参照しながら、本開示の第1の実施形態に係る工作機械の説明を行う。
図1は、本開示の第1の実施形態に係る工作機械を模式的に示す斜視図である。本実施形態に係る工作機械2は、工作機械本体部4と、工作機械本体部4によりワークの加工が行われる加工室Mを覆うカバー30とを備える。カバー30は、側方を覆う複数の側面部材30Aと、上方を覆う上面部材30Bとから構成されている、工作機械本体部4は、ワークの加工を行う装置を意味し、転削加工や旋削加工を行う任意の加工装置、マシニングセンタ、ターニングセンタ、研削機械等を用いることができる。本実施形態に係る工作機械本体部4は、一例として、横型の転削加工装置の場合を示し、図面には、加工テーブル4A及び主軸4Bが示されている。加工テーブル4Aの側方には切りくずCを搬出する切りくず回収部(コンベア)40が配置されている。
【0011】
更に、工作機械2は、流体を放出する流体放出部10を備える。以下の説明では、流体放出部10から放出されて切りくずCを移動させる流体として、切削液を用いる場合を示す。ただし、これに限られるものではなく、切りくずCを移動させる流体として、例えば、空気、窒素ガス、アルゴンガスといった気体を用いる場合もあり得る。
更に、ここでは、流体放出部10が2つの放出口10A及び10Bを有する場合を示す。放出口10A及び10Bは、切削液を放出する首振り可能なノズル10A1、10B1、ノズル10A1,10B1が取り付けられた本体10A2、10B2、及びノズル10A1、10B1を動かすアクチュエータを備える。放出口10A及び10Bの設置位置は固定されているが、放出ノズル10A1、10B1が首振り可能になっており、切削液の放出角度を変更できるようになっている。放出口1A、10Bは、カバー30に取り付けることもできるし、カバー30とは個別の構造部材に取り付けることもできる。
【0012】
流体放出部10には、放出口10A、10Bに加えて、切削液を一時的に蓄えるタンク、切削液を吐出するポンプ、並びにタンク、ポンプ及び放出口10A、10Bを繋ぐ配管、バルブ等を備える。更に、流体放出部10は、後述する制御部から受信した信号に基づいて、アクチュエータ、ポンプ駆動部等を動かすための駆動回路を備える。
【0013】
工作機械2は、加工テーブル4A上をはじめとする加工室M内に存在する切りくずCを検出する検出部20を備える。検出部20としては、撮影部やレーザセンサを例示できる。撮影部としては、CCDやCMOSをはじめとする既知の任意の画像素子を有する画像取得装置を用いることができる。レーザセンサについても、レーザ光源及び受光部を備えた既知の任意のタイプのレーザセンサを用いることができる。
【0014】
後述するように、検出部20からの検出データに基づいて、制御部が流体放出部10により切削液を放出する条件を定め、その条件に基づいて、流体放出部10が切削液を放出する。
図1に示す例では、流体放出部10から放出された切削液を、加工テーブル4A上に存在する切りくずCに当てて、切りくずCを加工テーブル4Aから切りくず回収部40へ落として除去することができる。図面では1つの検出部20が示されているが、流体放出部10及び切りくずCの相対位置を定めるには、2以上の検出部を備えるのが好ましい。
【0015】
図1に示す例では、流体放出部10の2つの放出口10A及び10Bのうち、検出部20からの検出データに基づいて、制御部により少なくとも1つの放出口10A(10B)が選択され、選択されたた放出口10A(10B)が切削液を放出して、切りくずCを除去することができる。
図1に示す例では、実線の矢印で示すような、放出口10Aから切削液を放出する方が、破線の矢印で示すような、放出口10Bから切削液を放出するよりも、切りくずCを切りくず回収部40側へ移動させ易いと考えられる。
なお、本実施形態では、流体放出部10が2つの放出口10A及び10Bを有する場合を示したが、これに限られるものではなく、3つ以上の任意の数の放出口を有することもできる。
【0016】
(第2の実施形態に係る工作機械)
次に、
図2を参照しながら、本開示の第2の実施形態に係る工作機械の説明を行う。
図2は、本開示の第2の実施形態に係る工作機械を模式的に示す斜視図である。第2の実施形態に係る工作機械2では、流体放出部10が、複数の放出口ではなく、回転、移動自在な1つの放出口10Cを備えている点で上記の第1の実施形態と異なる。
【0017】
ここで、放出口10Cは、切削液を放出する首振り可能なノズル10C1、ノズル10C1が取り付けられた本体10C2、ノズル10C1を動かすアクチュエータ、及び本体10C2を移動させる駆動モータを備える。この構成により、放出口10Cはレール10D上を移動可能であり、放出ノズル10C1が首振り可能になっている。これにより、所望の位置から所望の角度で切削液を放出できるようになっている。放出口10C及びレール10Dは、加工室Mの上部に取り付けられている。放出口10C及びレール10Dをカバー30の上面部材30Bに取り付けることもできるし、カバー30とは個別の構造部材に取り付けることもできる。
流体放出部10には、放出口10C及びレール10Dに加えて、切削液を一時的に蓄えるタンク、切削液を吐出するポンプ、並びにタンク、ポンプ及び放出口10Cを繋ぐ配管、バルブ、ホース等を備える。更に、流体放出部10は、後述する制御部から受信した信号に基づいて、アクチュエータ、駆動モータ、ポンプ駆動部等を動かすための駆動回路を備える。
【0018】
図2に示す例では、検出部20からの検出データに基づいて、制御部により、放出口10Cの最適な位置及びノズルの放出角度が定められて、放出口10Cが切削液を放出して、切りくずCを除去する場合を示す。
図2に示す例では、実線で示す位置で放出口10Cから切削液を放出した方が、破線の位置で切削液を放出するよりも、切りくずCを切りくず回収部40側へ移動させ易いと考えられる。
【0019】
第1の実施形態及び第2の実施形態の何れの場合においても、流体放出部10の放出口10A、10Bまたは10Cが、加工室Mの上部に取り付けられているので、切りくずをより効果的に移動させて除去することができる。
【0020】
(制御部)
次に、
図3を参照しながら、切りくずを除去するための制御部の説明を行う。
図3は、切りくずを除去するための制御部の一例を示すブロック図である。
図3に示す矢印は、信号の進む方向を示す。
切りくずを除去するための制御部100は、工作機械の制御装置の一部として存在する場合も、工作機械の制御装置とは個別の制御装置として存在する場合もあり得る。何れの場合にも、主軸、テーブル等の動き、ワークの状態、加工の状態を含む工作機械の制御の情報を受信可能に構成されている。
【0021】
制御部100は、検出部20からの信号する検出信号に基づいて、加工室M内に堆積した1以上の切りくずCの粗輪郭形状R及びその位置を定める切りくず画定部200を備える。また、制御部100は、切りくず画定部200から受信する粗輪郭形状Rに基づいて、粗輪郭形状Rの長軸方向を定める長軸方向画定部300を備える。更に、切りくず画定部200から受信する粗輪郭形状Rの形状及び位置、並びに軸方向画定部300から受信する粗輪郭形状Rの長軸方向に基づいて、流体放出部10により切削液を放出する条件を定める放出条件設定部400を備える。
また、制御部100は、放出条件設定部400から受信する切削液を放出する条件に基づいて、流体放出部10に信号を送って、切削液の放出のための制御を行う流体放出制御部500を備える。更に、後述するような学習部600を備える場合もあり得る。
【0022】
切削液の放出のための条件には、流体放出部10及び粗輪郭形状Rの相対位置、流体放出部10から放出される切削液の角度θ、及び切削液の放出流量又は放出圧力のうちの少なくとも1つが含まれる。
【0023】
上記の第1の実施形態に係る流体放出部10の場合には、流体放出部10及び粗輪郭形状Rの相対位置は、2つの放出口10A及び10Bから少なくとも1つの放出口を選択することによって決定される。つまり、第1の実施形態では、放出条件設定部400が、複数の放出口の中から最適な放出口を選択して、切削液の放出のため最適な条件を定める。第1の実施形態では複数の放出口が固定して設置されているので、比較的シンプルな構造で、切削液を放出して効果的に切りくずCを除去することができる。
【0024】
上記の第2の実施形態に係る流体放出部10の場合には、流体放出部10及び粗輪郭形状Rの相対位置は、移動自在な放出口10Cの位置を定めることによって決定される。つまり、第2の実施形態では、放出条件設定部400が、切りくずCの除去に最適な切削液の放出位置、を定め、切削液の放出のため最適な条件を定める。第2の実施形態では、放出口10Cの最適な放出位置を定められるので、切削液を放出してより効果的に切りくずCを除去することができる。
【0025】
(粗輪郭形状の画定)
次に、
図4A、
図4B、
図5A及び
図5Bを参照しながら、切りくず画定部200により、切りくずCの粗輪郭形状を定める方法について説明する。
図4Aは、検出部が検出した切りくずの形状の1つの例を示す図である。
図4Bは、
図4Aに示す形状に基づいて生成した粗輪郭形状の例を示す図である。
図5Aは、検出部が検出した切りくずの形状のその他の例を示す図である。
図5Bは、
図5Aに示す形状に基づいて生成した粗輪郭形状の例を示す図である。
【0026】
切りくず画定部200では、例えば、検出部20が検出した切りくずCの外形形状から抽出された点を滑らかな曲線で繋いで、粗輪郭形状を定めることができる。また、外形形状から抽出された点の位置が急激に変化する部分については、周囲の外形に合わせた位置を調整する制御を行うことができる。
このような制御により、
図4Aに示す検出部20が検出した切りくずCの形状では、細い鉄片部分p1、p2、p3が外側に延びた複雑な形状を有しているが、
図4Bに示す粗輪郭形状Rでは、それらが修正された連続的な塊の形状になっている。
【0027】
図5Aに示す検出部20が検出した切りくずCの形状では、3つの切りくずC1、C2、C3が互いに絡み合った状態になっている。切りくず画定部200は、
図5Bに示すように、1つの切りくずとして扱えるように、連続的な塊の粗輪郭形状Rを定めている。
このような粗輪郭形状Rの定め方により、放出条件設定部400が、切りくずCの除去に最適な切削液の放出のための条件を定めることができる。
【0028】
図3のブロック図では、検出部20が切りくず画定部200とは個別に記載されているが、検出部20が切りくず画定部200に含まれているとみなすこともできる。
検出部20が撮影部の場合、切りくず画定部200は、撮影部によって取得される画像に基づいて、既知の様々な画像処理手段を用いて粗輪郭形状Rを定めることができる。検出部20がレーザセンサの場合であっても、同様に切りくずCの形状を得ることが可能であり、この形状に基づいて、切りくず画定部200は輪郭形状Rを定めることができる。
【0029】
(切削液の放出のための条件)
次に、
図6を参照しながら、切削液の放出のための条件を更に詳しく説明する。
図6は、 流体放出部及び粗輪郭形状の相対位置、及び流体放出部から放出される切削液の角度の一例を模式的に示す図である。以下では、制御処理に関する説明なので、切りくず画定部200により定められた粗輪郭形状Rを用いた説明を行うが、実際に切りくずCを除去する物理的な説明も含まれるため、粗輪郭形状R(切りくずC)という記載を用いる場合がある。
上記のように、切削液の放出のための条件には、流体放出部10及び粗輪郭形状Rの相対位置、流体放出部10から放出される切削液の角度θ、及び切削液の放出流量又は放出圧力のうちの少なくとも1つが含まれる。
【0030】
流体放出部10及び粗輪郭形状Rの相対位置については、予め記憶された流体放出部10の3次元座標[X0、Y0、Z0]と、検出部20の検出データから算出された粗輪郭形状Rの3次元座標[X1、Y1、Z1]とに基づいて、切りくず画定部200により求めることができる。切りくず画定部200は、流体放出部10の位置をはじめとして、工作機械2の各構成部材の3次元座標を把握している。
【0031】
検出部20として1つの撮像部を備えている場合、検出部20と粗輪郭形状Rとの位置によっては、粗輪郭形状Rの3次元座標[X1、Y1、Z1]を定めにくい場合がある。特に、2次元の画像では表せない奥行き方向の距離を定めるのが困難な場合がある。このとき、粗輪郭形状Rの近傍にある既知の部材の3次元座標を用いたり、粗輪郭形状R及び既知の部材の大きさの違いによる奥行き方向の距離計算により、粗輪郭形状Rの3次元座標[X1、Y1、Z1]を定めることができる。
【0032】
なお、流体放出部10及び粗輪郭形状Rの間の距離としては、流体放出部10及び粗輪郭形状Rの切削液が当たる外表面の間の距離Lを用いることができるし、流体放出部10及び粗輪郭形状Rの重心位置の間の距離L’を用いることもできる。
【0033】
上記のように、粗輪郭形状R及び位置が定まると、放出条件設定部400は、粗輪郭形状R及び位置に基づいて、流体放出部10により切削液を放出する条件を定めることができる。これにより、加工室M内の切りくずCを効率的に除去できる工作機械2を実現できる。
なお、切削液の代わりに、気体を用いて切りくずCを移動させる場合でも、気体の特性に応じた適切な放出する条件を定めることにより、同様に加工室M内の切りくずCを効率的に除去することができる。
【0034】
流体放出部10及び粗輪郭形状Rの相対位置、並びに粗輪郭形状Rの形状が定まれば、第1の実施形態ではあれば、流体放出部10の2つの放出口10A及び10Bのうち、より適切な放出口を選択することができる。粗輪郭形状Rの大きさや位置によっては、放出口10A及び10Bの両方を選択することもあり得る。放出口が選択されると。流体放出部10から放出される切削液の角度θ、切削液の放出流量又は放出圧力を定めることができる。
第2の実施形態ではあれば、流体放出部10の放出口10Cの最適な相対位置を定め、流体放出部10から放出される切削液の角度θ、切削液の放出流量又は放出圧力を定めることができる。
【0035】
放出圧力によってノズル10A1、10B1、10C1から放出される切削液の流量は定まるので、切削液の放出流量又は放出圧力を定めることにより、切削液の到達距離、粗輪郭形状R(切りくずC)に当たったときに与える力の大きさ等が定まる。流体放出部10及び粗輪郭形状Rの間の距離、及び粗輪郭形状Rの大きさ(重さ)に応じて、粗輪郭形状Rを移動するために有効な切削液の放出流量又は放出圧力を定めることができる。
粗輪郭形状R(切りくずC)を移動し易くするために、パルス状に切削液を放出することも考えられる。また、粗輪郭形状Rを移動させたい方向とは異なる他の方向の方が動かし易い場合には、まず他の方向に切削液を放出して粗輪郭形状Rを移動させて、摩擦の状態を静摩擦から値の小さい動摩擦に変え、その後、移動させたい方向に切削液を当てて、粗輪郭形状R(切りくずC)を所望の方向に移動させることも考えられる。
【0036】
以上のように、本実施形態では、切削液の放出のための条件に、流体放出部10及び粗輪郭形状Rの相対位置、流体放出部10から放出される切削液の角度θ、及び切削液の放出流量又は放出圧力のうちの少なくとも1つが含まれるので、効率よく、粗輪郭形状R(切りくずC)を移動させて、除去することができる。
【0037】
(切りくずを効率的に除去するための制御処理)
以下、切りくずを効率的に除去するための制御処理について説明する
<長軸方向に対する角度>
はじめに、
図7を参照しながら、流体放出部10が粗輪郭形状Rの長軸方向LAに対して角度θを有する方向へ切削液を放出する場合について説明する、
図7は、粗輪郭形状(切りくず)の長軸方向及び切削液の放出方向がなす角度を模式的に示す図である。
【0038】
長軸方向画定部300は、粗輪郭形状Rに基づいて、その長軸方向LAを定める。長軸方向LAを定める方法としては、粗輪郭形状R上に直線を引き、その直線及び粗輪郭形状Rの外縁が交わる2点間の距離を算出する。全周にわたって2点間の距離を求め、原則として、2点間の距離が最大になる方向を長軸方向LAと定める。粗輪郭形状Rは、既に局所的に変動した領域は修正されているので、的確な長軸方向LAと定めることができる。
【0039】
粗輪郭形状Rの長軸方向LAから切削液を粗輪郭形状R(切りくずC)に放出した場合には、粗輪郭形状R(切りくずC)が移動しにくいのは明らかである。よって、長軸方向LAに平行ではなく、長軸方向LAに対して所定の角度αを有する方向へ切削液を放出することにより、粗輪郭形状R(切りくずC)を移動させ易くなる。粗輪郭形状R(切りくずC)が長軸方向LAに延びた細長い形状を有する場合には、長軸方向LAに対して略直交する方向から切削液を放出するのが好ましい。粗輪郭形状R(切りくずC)や後述するようなその他の要件を含めて最適な方向を定めるのが好ましい。
【0040】
以上のように、長軸方向画定部300が粗輪郭形状Rの長軸方向LAを定め、流体放出部10が長軸方向LAに対して角度αを有する方向へ切削液を放出するように、切削液の放出のための条件を定めることにより、効率的に粗輪郭形状R(切りくずC)を移動させて、除去することができる。
【0041】
<切りくず回収部とは反対側から切削液を放出>
次に、
図8を参照しながら、粗輪郭形状R(切りくずC)に対して、切りくず回収部40とは反対側から切削液を放出する場合を説明する。
図8は、粗輪郭形状(切りくず)に対して、切りくず回収部とは反対側から切削液を放出するところを模式的に示す図である。
切りくずCを切りくず回収部40へ移動させて、切りくず回収部40により切りくずCを処理するのが最も効率的な切りくずCの除去方法である。そのためには、流体放出部10が、粗輪郭形状R(切りくずC)に対して、切りくず回収部40とは反対側から切削液を放出することが効果的である。
【0042】
以上のように、工作機械2が、切りくずCを廃棄するための切りくず回収部40を備える場合において、流体放出部10が、粗輪郭形状R(切りくずC)に対して、切りくず回収部40とは反対側から切削液を放出するように、切削液の放出のための条件を定めることにより、効果的に、粗輪郭形状R(切りくずC)を除去することができる。
【0043】
<切削液の当て方>
次に、
図9を参照しながら、切削液を他の部材に当てて、跳ね返った液体を粗輪郭形状R(切りくずC)に当てる場合を説明する。
図9は、切削液が、加工テーブルに当たって跳ね返った後、ワークの影になった粗輪郭形状(切りくず)に当たるところを模式的に示す図である。
図9では、粗輪郭形状R(切りくずC)がワークWの影に隠れて、流体放出部10から、直接、切削液を粗輪郭形状R(切りくずC)に当てられない場合を示す。このような場合でも、切削液を加工テーブル4Aのような他の部材に当てることにより、跳ね返った液体を粗輪郭形状R(切りくずC)に当てることができる。
例えば、切りくず回収部40とは反対側から、切削液を粗輪郭形状R(切りくずC)に当てることが難しい場合に、一度、切削液を加工テーブルやワークWのような他の物体に当てて、跳ね返った切削液を切りくずに当てることも有効な方法である。これにより、効率的に粗輪郭形状R(切りくずC)を除去できる。
【0044】
以上のように、流体放出部10から放出された切削液が、他の物体に当たって跳ね返った後、粗輪郭形状R(切りくずC)に当たるように、切削液を放出する条件を定めることにより、様々な状況においても、確実に切削液を切りくずCに当て、切りくずCを移動させて、除去することができる。このように、放出条件設定部400が、ワークWの配置を考慮して、切削液の放出のための条件を定めることにより、確実に粗輪郭形状R(切りくずC)を移動させて、除去することができる。
【0045】
<粗輪郭形状の投影面>
次に、
図10を参照しながら、切削液の進行方向から見た粗輪郭形状R(切りくずC)の投影面が略最大になる方向に、流体放出部10が切削液を放出する場合を説明する。
図10は、切削液の進行方向から見た粗輪郭形状(切りくず)の投影面を模式的に示す図である。
図10では、切削液の進行方向から見た粗輪郭形状R(切りくずC)の投影面が最も大きくなるAmaxと、投影面が最も小さくなるAminが示されている。この場合、粗輪郭形状R(切りくずC)の投影面が大きくなる方向に切削液を放出して粗輪郭形状R(切りくずC)に当てた方が、より大きな力を粗輪郭形状R(切りくずC)に加えることができるので、粗輪郭形状R(切りくずC)を移動させ易くなる。
【0046】
以上のように、切削液の進行方向から見た粗輪郭形状Rの投影面が略最大になる方向に、流体放出部10が切削液を放出することにより、大きな力を粗輪郭形状R(切りくずC)に加えて、確実に粗輪郭形状R(切りくずC)を移動させて、除去することができる。
【0047】
<回転自在及び/又は移動自在なテーブル>
次に、
図11を参照しながら、工作機械2が、回転自在及び/又は移動自在なテーブルを有する場合について説明する。
図11は、第1の実施形態に係る工作機械の変形例であって、自動回転可能なテーブルを有する工作機械を模式的に示す斜視図である。
この変形例では、上記の第1の実施形態に比べて、工作機械2が、加工テーブル4Aの代わりに、回転及び移動自在なテーブル50を備えている点で異なる。テーブル50は、レール52上をZ軸方向に移動可能な台車部50Aと、台車部50Aに対して回転可能な状態で取り付けられたテーブル部50Bから構成される。加工のため、テーブル部50B上にはワークWが載置される。
図11では、切削加工により、テーブル部50B上にワークW及び切りくずCが存在する場合を示す。
【0048】
このような場合には、流体放出部10及びワークWの相対位置は、テーブル50の回転の度合い及び/又は移動位置を定めることによって決定されることになる。このとき、テーブル部50を回転/移動させることにより、ワークWとの干渉を避けて、流体放出部10から、直接、切削液を切りくずCに当てることもできる。また、一度、流体放出部10から、直接、切削液を切りくずCに当てて少し移動させた後、テーブル部50を回転、移動させ、その後、削液放出部10から切削液を切りくずCに当てて、切りくずCを所望の方向へ移動させることも考えられる。
また、一方の放出口10A(10B)から切削液を当てて、切りくずCを移動させた後、テーブル50を回転/移動させた後、他方の放出口10B(10A)から切削液を当てて、効率的に切りくずCを除去することもできる。
【0049】
以上のように、工作機械2が、ワークWが配置される回転自在及び/又は移動自在なテーブル50を含む場合において、流体放出部10及びワークWの相対位置が、テーブル50の回転の度合い及び/又は移動位置を定めることによって決定されるので、様々な状況においても、確実に切削液を切りくずCに当てて、切りくずCを移動させて、除去することができる。
【0050】
(その他の実施形態)
上記の制御部100において、機械学習を用いて、切りくずCを除去する制御処理の精度を高めていくこともできる。
つまり、制御部100が、
図3に示すような、学習部600を備える場合もあり得る。学習部600は、一定の条件で流体放出部10により切削液を放出する工程を実施する度に、切削液の放出前における切りくずCの初期位置と、当該切削液の放出前における当該粗輪郭形状Rと、この条件とを含む入力データ、及び当該切削液の放出後における当該切りくずCの位置を学習データとして機械学習を行い、入力データの適正条件を学習して学習モデルを生成する。この場合には、放出条件設定部400は、この学習モデルを利用して、新たに入力された切りくずCの初期位置及び粗輪郭形状Rについて、適正条件を満たす条件を定めることができる。
【0051】
このように、機械学習を用いることにより、切りくずCを移動させて除去する制御処理の精度を高めることができる。
【0052】
本開示の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本開示の範囲および思想を逸脱することなく実現し得るものである。