特許第6963704号(P6963704)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本碍子株式会社の特許一覧

<>
  • 特許6963704-膜電極接合体 図000004
  • 特許6963704-膜電極接合体 図000005
  • 特許6963704-膜電極接合体 図000006
  • 特許6963704-膜電極接合体 図000007
  • 特許6963704-膜電極接合体 図000008
  • 特許6963704-膜電極接合体 図000009
  • 特許6963704-膜電極接合体 図000010
  • 特許6963704-膜電極接合体 図000011
  • 特許6963704-膜電極接合体 図000012
  • 特許6963704-膜電極接合体 図000013
  • 特許6963704-膜電極接合体 図000014
  • 特許6963704-膜電極接合体 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6963704
(24)【登録日】2021年10月19日
(45)【発行日】2021年11月10日
(54)【発明の名称】膜電極接合体
(51)【国際特許分類】
   H01M 4/86 20060101AFI20211028BHJP
   H01M 4/96 20060101ALI20211028BHJP
   H01M 8/1004 20160101ALI20211028BHJP
   H01M 8/10 20160101ALN20211028BHJP
【FI】
   H01M4/86 M
   H01M4/96 M
   H01M8/1004
   !H01M8/10 101
【請求項の数】14
【全頁数】23
(21)【出願番号】特願2021-50431(P2021-50431)
(22)【出願日】2021年3月24日
(65)【公開番号】特開2021-163748(P2021-163748A)
(43)【公開日】2021年10月11日
【審査請求日】2021年3月25日
(31)【優先権主張番号】特願2020-60432(P2020-60432)
(32)【優先日】2020年3月30日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】110000202
【氏名又は名称】新樹グローバル・アイピー特許業務法人
(72)【発明者】
【氏名】菅 博史
(72)【発明者】
【氏名】中村 俊之
(72)【発明者】
【氏名】田中 裕己
(72)【発明者】
【氏名】水木 一博
(72)【発明者】
【氏名】大森 誠
【審査官】 守安 太郎
(56)【参考文献】
【文献】 特開2007−213851(JP,A)
【文献】 特開2009−032688(JP,A)
【文献】 特開2003−027269(JP,A)
【文献】 特開2012−054082(JP,A)
【文献】 特開2001−160406(JP,A)
【文献】 特開2005−339962(JP,A)
【文献】 特開平08−321315(JP,A)
【文献】 特開2004−186050(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/86
H01M 4/96
H01M 8/10
(57)【特許請求の範囲】
【請求項1】
電解質膜と、
酸素還元反応に対する触媒活性を有し、前記電解質膜上に配置される第1触媒層と、
前記第1触媒層上に配置される第1ガス拡散層と、
酸素還元反応に対する触媒活性を有する触媒を含み、前記第1ガス拡散層の内部に配置される少なくとも一つの第1吸着部と、
を備え、
前記第1ガス拡散層は、第1中央部と、前記第1中央部を囲む第1外周部と、を有し、
前記第1中央部における前記第1吸着部と前記第1触媒層との距離は、前記第1外周部における前記第1吸着部と前記第1触媒層との距離よりも大きい、
膜電極接合体。
【請求項2】
複数の前記第1吸着部を備え、
前記複数の第1吸着部は、互いに間隔をあけて配置される、
請求項1に記載の膜電極接合体。
【請求項3】
前記第1吸着部は、前記第1触媒層と間隔をあけて配置される、
請求項1又は2に記載の膜電極接合体。
【請求項4】
前記第1吸着部は、前記第1中央部の内部に配置され、前記第1外周部の内部に配置されていない、
請求項1から3のいずれかに記載の膜電極接合体。
【請求項5】
前記第1中央部における前記第1吸着部の含有率は、前記第1外周部における前記第1吸着部の含有率よりも大きい、
請求項1から3のいずれかに記載の膜電極接合体。
【請求項6】
燃料の酸化反応に対する触媒活性を有し、前記第1触媒層と反対側において前記電解質膜上に配置される第2触媒層と、
前記第2触媒層上に配置される第2ガス拡散層と、
をさらに備える、請求項1からのいずれかに記載の膜電極接合体。
【請求項7】
燃料の酸化反応に対する触媒活性を有する触媒を含み、前記第2ガス拡散層の内部に配置される少なくとも一つの第2吸着部、
をさらに備える、請求項に記載の膜電極接合体。
【請求項8】
複数の前記第2吸着部を備え、
前記複数の第2吸着部は、互いに間隔をあけて配置される、
請求項に記載の膜電極接合体。
【請求項9】
前記第2吸着部は、前記第2触媒層と間隔をあけて配置される、
請求項又はに記載の膜電極接合体。
【請求項10】
前記第2ガス拡散層は、第2中央部と、前記第2中央部を囲む第2外周部と、を有する、
請求項からのいずれかに記載の膜電極接合体。
【請求項11】
前記第2吸着部は、前記第2中央部の内部に配置され、前記第2外周部の内部に配置されていない、
請求項10に記載の膜電極接合体。
【請求項12】
前記第2中央部における前記第2吸着部の含有率は、前記第2外周部における前記第2吸着部の含有率よりも大きい、
請求項10に記載の膜電極接合体。
【請求項13】
前記第2中央部における前記第2吸着部と前記第2触媒層との距離は、前記第2外周部における前記第2吸着部と前記第2触媒層との距離よりも大きい、
請求項10から12のいずれかに記載の膜電極接合体。
【請求項14】
電解質膜と、
酸素還元反応に対する触媒活性を有し、前記電解質膜上に配置される第1触媒層と、
前記第1触媒層上に配置される第1ガス拡散層と、
酸素還元反応に対する触媒活性を有する触媒を含み、前記第1ガス拡散層の内部に配置される少なくとも一つの第1吸着部と、
燃料の酸化反応に対する触媒活性を有し、前記第1触媒層と反対側において前記電解質膜上に配置される第2触媒層と、
前記第2触媒層上に配置される第2ガス拡散層と、
燃料の酸化反応に対する触媒活性を有する触媒を含み、前記第2ガス拡散層の内部に配置される少なくとも一つの第2吸着部と、
を備え、
前記第2ガス拡散層は、第2中央部と、前記第2中央部を囲む第2外周部と、を有し、
前記第2中央部における前記第2吸着部と前記第2触媒層との距離は、前記第2外周部における前記第2吸着部と前記第2触媒層との距離よりも大きい、
膜電極接合体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、膜電極接合体に関するものである。
【背景技術】
【0002】
燃料電池は、膜電極接合体と、一対のセパレータとを有している。膜電極接合体は、電解質膜、アノード及びカソードを有している。アノードに燃料、カソードに酸化剤が供給されることによって、燃料電池は発電する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2015−133337号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
カソードに供給される酸化剤としては、一般的に空気が用いられる。このカソードに供給される空気は、アンモニア、硫化アンモニウム、又はジメチルスルフィドなどの触媒毒を含んでいる。燃料電池の使用に伴い、触媒毒によってカソード触媒の性能が低下してしまうという問題がある。この問題に対して、カソード触媒の性能が低下するまでの期間を長くする、すなわち、カソードの耐久性を向上させることが要望されている。
【0005】
本発明の課題は、カソードの耐久性を向上させることにある。
【課題を解決するための手段】
【0006】
本発明のある側面に係る膜電極接合体は、電解質膜と、第1触媒層と、第1ガス拡散層と、少なくとも一つの第1吸着部と、を備えている。第1触媒層は、電解質膜上に配置される。第1触媒層は、酸素還元反応に対する触媒活性を有する。第1ガス拡散層は、第1触媒層上に配置される。第1吸着部は、第1ガス拡散層の内部に配置される。第1吸着部は、酸素還元反応に対する触媒活性を有する触媒を含んでいる。
【0007】
この構成の膜電極接合体を用いれば、カソードの耐久性を向上させることができる。すなわち、この膜電極接合体は、第1ガス拡散層の内部に第1吸着部が配置されている。この第1吸着部は、酸素還元反応に対する触媒活性を有する触媒を含んでいる。このため、第1触媒層に空気を供給する場合において、その空気中に含まれる触媒毒は、第1ガス拡散層を流れる間に第1吸着部の触媒に吸着される。この結果、第1触媒層に到達する触媒毒の量を低減することができ、第1触媒層の触媒活性が低下するまでの期間を長くすることができる。この結果、カソードの耐久性を向上させることができる。
【0008】
好ましくは、膜電極接合体は、複数の第1吸着部を備える。複数の第1吸着部は、互いに間隔をあけて配置される。
【0009】
好ましくは、第1吸着部は、第1触媒層と間隔をあけて配置される。
【0010】
好ましくは、第1ガス拡散層は、第1中央部と、第1中央部を囲む第1外周部と、を有する。
【0011】
好ましくは、第1吸着部は、第1中央部の内部に配置され、第1外周部の内部に配置されていない。
【0012】
好ましくは、第1中央部における第1吸着部の含有率は、第1外周部における第1吸着部の含有率よりも大きい。
【0013】
好ましくは、第1中央部における第1吸着部と第1触媒層との距離は、第1外周部における第1吸着部と第1触媒層との距離よりも大きい。
【0014】
好ましくは、膜電極接合体は、第2触媒層と、第2ガス拡散層とをさらに備える。第2触媒層は、第1触媒層と反対側において電解質膜上に配置される。第2触媒層は、燃料の酸化反応に対する触媒活性を有する。第2ガス拡散層は、第2触媒層上に配置される。
【0015】
好ましくは、膜電極接合体は、少なくとも一つの第2吸着部をさらに備える。第2吸着部は、第2ガス拡散層の内部に配置される。第2吸着部は、燃料の酸化反応に対する触媒活性を有する触媒を含んでいる。
【0016】
好ましくは、膜電極接合体は、複数の第2吸着部を備えている。複数の第2吸着部は、互いに間隔をあけて配置される。
【0017】
好ましくは、第2吸着部は、第2触媒層と間隔をあけて配置される。
【0018】
好ましくは、第2ガス拡散層は、第2中央部と、第2中央部を囲む第2外周部と、を有する。
【0019】
好ましくは、第2吸着部は、第2中央部の内部に配置され、第2外周部の内部に配置されていない。
【0020】
好ましくは、第2中央部における第2吸着部の含有率は、第2外周部における第2吸着部の含有率よりも大きい。
【0021】
好ましくは、第2中央部における第2吸着部と第2触媒層との距離は、第2外周部における第2吸着部と第2触媒層との距離よりも大きい。
【発明の効果】
【0022】
本発明によれば、カソードの耐久性を向上させることができる。
【図面の簡単な説明】
【0023】
図1】燃料電池の断面図。
図2】膜電極接合体のカソード側の拡大断面図。
図3】膜電極接合体のアノード側の拡大断面図。
図4】膜電極接合体の拡大断面図。
図5】変形例に係る膜電極接合体のカソード側の拡大断面図。
図6】変形例に係る膜電極接合体のアノード側の拡大断面図。
図7】第1ガス拡散層の平面図。
図8】切断方法を説明するための第1ガス拡散層の平面図。
図9】切断方法を説明するための別の実施形態における第1ガス拡散層の平面図。
図10】撮影箇所を説明するための膜電極接合体の断面図。
図11】第2ガス拡散層の平面図。
図12】変形例に係る電解質の拡大断面図。
【発明を実施するための形態】
【0024】
以下、本実施形態に係る膜電極接合体10を図面を参照しつつ説明する。図1は、本実施形態に係る膜電極接合体10を用いた固体アルカリ形燃料電池100の構成を示す断面図である。なお、固体アルカリ形燃料電池100は、水酸化物イオンをキャリアとするアルカリ形燃料電池(AFC)の一種である。
【0025】
(固体アルカリ形燃料電池100)
図1に示すように、固体アルカリ形燃料電池100は、膜電極接合体10、第1セパレータ11、及び第2セパレータ12を備えている。実際に使用する際は、複数の固体アルカリ形燃料電池100がスタックされる。詳細には、複数の膜電極接合体10が第1及び第2セパレータ11、12を介してスタックされる。
【0026】
(膜電極接合体10)
膜電極接合体10は、カソード2、アノード3、及び電解質膜4を備える。膜電極接合体10は、下記の電気化学反応式に基づいて、比較的低温(例えば、50℃〜250℃)で発電する。ただし、下記の電気化学反応式では、燃料の一例としてメタノールが用いられている。
【0027】
・カソード2: 3/2O+3HO+6e→6OH
・アノード3: CHOH+6OH→6e+CO+5H
・全体 : CHOH+3/2O→CO+2H
【0028】
(カソード2)
カソード2は、電解質膜4の第1面41側(図1の上面側)に配置されている。カソード2は、一般的に空気極と呼ばれる陽極である。
【0029】
固体アルカリ形燃料電池100の発電中、カソード2には、第1セパレータ11の第1流路111を介して酸素(O)を含む酸化剤が供給される。酸化剤としては、空気を用いるのが好ましく、空気は加湿されていることがより好ましい。カソード2は、内部に酸化剤を拡散可能な多孔質体である。カソード2の気孔率は特に制限されない。カソード2の厚みは特に制限されないが、例えば10〜200μmとすることができる。
【0030】
図2に示すように、カソード2は、第1触媒層21と、第1ガス拡散層22と、複数の第1吸着部23と、を有している。第1触媒層21は、電解質膜4上に配置されている。詳細には、第1触媒層21は、電解質膜4の第1面41上に配置されている。第1触媒層21は、平面視において、矩形状である。第1触媒層21の厚さは、例えば、5〜50μm程度である。
【0031】
第1触媒層21は、酸素還元反応に対する触媒活性を有している。すなわち、第1触媒層21は、酸素還元反応に対する触媒活性を有する触媒を含んでいる。なお、第1触媒層21に含まれる触媒は、AFCに使用される公知のカソード触媒であればよく、特に限定されない。第1触媒層21に含まれるカソード触媒の例としては、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、鉄族元素(Fe、Co、Ni)等の第8〜10族元素(IUPAC形式での周期表において第8〜10族に属する元素)、Cu、Ag、Au等の第11族元素(IUPAC形式での周期表において第11族に属する元素)、ロジウムフタロシアニン、テトラフェニルポルフィリン、Coサレン、Niサレン(サレン=N,N’−ビス(サリチリデン)エチレンジアミン)、銀硝酸塩、及びこれらの任意の組み合わせが挙げられる。カソード2における触媒の担持量は特に限定されないが、好ましくは0.1〜10mg/cm、より好ましくは、0.1〜5mg/cmである。カソード触媒はカーボンに担持させるのが好ましい。カソード2ないしそれを構成する触媒の好ましい例としては、白金担持カーボン(Pt/C)、パラジウム担持カーボン(Pd/C)、ロジウム担持カーボン(Rh/C)、ニッケル担持カーボン(Ni/C)、銅担持カーボン(Cu/C)、及び銀担持カーボン(Ag/C)が挙げられる。
【0032】
第1ガス拡散層22は、第1触媒層21上に配置されている。第1ガス拡散層22は、平面視において、矩形状である。第1ガス拡散層22は、第1触媒層21よりも厚い。第1ガス拡散層22の厚さは、例えば、50〜150μm程度である。
【0033】
第1ガス拡散層22は、第1セパレータ11の第1流路111内を流れる酸化剤を拡散して第1触媒層21に供給する。第1ガス拡散層22は、電気伝導性を有する。第1ガス拡散層22は、集電部材としても機能する。
【0034】
第1ガス拡散層22は、カーボンペーパー、カーボンクロス、又はカーボンフェルトなどの導電性多孔質材料によって構成することができる。第1ガス拡散層22には、アセチレンブラックなどのカーボンブラック、又はグラファイトなどの導電性材料と、フッ素樹脂(PTFE、PVDF)などの撥水性材料と、を含むマイクロポーラス層が形成されていてもよい。
【0035】
第1吸着部23は、第1ガス拡散層22の内部に配置されている。各第1吸着部23は、互いに間隔をあけて配置されている。詳細には、各第1吸着部23は、第1ガス拡散層22の面方向において、互いに間隔をあけて配置される。また、第1吸着部23は、第1触媒層21と間隔をあけて配置されていることが好ましい。なお、第1吸着部23と第1触媒層21とは接触していてもよい。
【0036】
第1吸着部23は、酸素還元反応に対する触媒活性を有する触媒を含んでいる。なお、第1吸着部23の触媒の材料は、例えば、第1触媒層21の触媒として説明した材料のいずれかとすることができる。好ましくは、第1吸着部23の触媒の材料は、第1触媒層21の触媒の材料と同じである。また、第1吸着部23の触媒は、第1触媒層21の触媒と同様に、カーボンなどの担体に担持されていることが好ましい。
【0037】
上述したようなカソード2は、次のように作製する。まず、第1ガス拡散層22を準備する。次に、第1ガス拡散層22に対して濡れ性を有し、且つエタノール及びIPA成分を含む触媒ペーストを、第1ガス拡散層22に塗布する。そして、この第1ガス拡散層22に塗布した触媒ペーストを、窒素気流中で乾燥させることで、第1吸着部23を含有する第1ガス拡散層22を得ることができる。
【0038】
続いて、この第1ガス拡散層22の第1主面上に、第1ガス拡散層22に対して撥水性を有し且つ水を主溶媒とする触媒ペーストを塗布することなどによって、第1触媒層21を形成する。このようにすることによって、第1吸着部23を有するカソード2を得ることができる。
【0039】
(アノード3)
図1に示すように、アノード3は、電解質膜4の第2面42側(図1の下面側)に配置されている。アノード3は、一般的に燃料極と呼ばれる陰極である。
【0040】
固体アルカリ形燃料電池100の発電中、アノード3には、第2セパレータ12の第2流路121を介して、水素原子(H)を含む燃料が供給される。燃料としては、メタノールを用いるのが好ましい。アノード3は、内部に燃料を拡散可能な多孔質体である。アノード3の気孔率は特に制限されない。アノード3の厚みは特に制限されないが、例えば10〜500μmとすることができる。
【0041】
燃料は、アノード3において水酸化物イオン(OH)と反応可能な燃料化合物を含んでいればよく、液体燃料及び気体燃料のいずれの形態であってもよい。
【0042】
燃料化合物としては、例えば、(i)ヒドラジン(NHNH)、水加ヒドラジン(NHNH・HO)、炭酸ヒドラジン((NHNHCO)、硫酸ヒドラジン(NHNH・HSO)、モノメチルヒドラジン(CHNHNH)、ジメチルヒドラジン((CHNNH、CHNHNHCH)、及びカルボンヒドラジド((NHNHCO)等のヒドラジン類、(ii)尿素(NHCONH)、(iii)アンモニア(NH)、(iv)イミダゾール、1,3,5−トリアジン、3−アミノ−1,2,4−トリアゾール等の複素環類化合物、(v)ヒドロキシルアミン(NHOH)、硫酸ヒドロキシルアミン(NHOH・HSO)等のヒドロキシルアミン類、及びこれらの組合せが挙げられる。これらの燃料化合物のうち炭素を含まない化合物(すなわち、ヒドラジン、水加ヒドラジン、硫酸ヒドラジン、アンモニア、ヒドロキシルアミン、硫酸ヒドロキシルアミン等)は、一酸化炭素による触媒被毒の問題が無いため特に好適である。
【0043】
燃料化合物は、そのまま燃料として用いてもよいが、水及び/又はアルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノールなどの低級アルコール等)に溶解させた溶液として用いてもよい。例えば、上記燃料化合物のうち、ヒドラジン、水化ヒドラジン、モノメチルヒドラジン及びジメチルヒドラジンは液体であるので、そのまま液体燃料として使用可能である。また、炭酸ヒドラジン、硫酸ヒドラジン、カルボンヒドラジド、尿素、イミダゾール、及び3−アミノ−1,2,4−トリアゾール、及び硫酸ヒドロキシルアミンは固体であるが水に可溶である。1,3,5−トリアジン及びヒドロキシルアミンは固体であるがアルコールに可溶である。アンモニアは気体であるが水に可溶である。このように、固体の燃料化合物は、水又はアルコールに溶解させて液体燃料として使用可能である。燃料化合物を水及び/又はアルコールに溶解させて用いる場合、溶液中の燃料化合物の濃度は、例えば1〜99重量%であり、好ましくは30〜99重量%である。
【0044】
また、メタノール、エタノール等のアルコール類やエーテル類を含む炭化水素系液体燃料、メタン等の炭化水素系ガス、或いは純水素などは、そのまま燃料として用いることができる。特に、本実施形態に係る固体アルカリ形燃料電池100に用いられる燃料としては、メタノールが好適である。メタノールは、気体状態、液体状態、及び、気液混合状態のいずれであってもよい。
【0045】
図3に示すように、アノード3は、第2触媒層31と、第2ガス拡散層32と、複数の第2吸着部33とを有している。第2触媒層31は、電解質膜4上に配置されている。詳細には、第2触媒層31は、電解質膜4の第2面42上に配置されている。すなわち、第2触媒層31は、第1触媒層21と反対側において電解質膜4上に配置されている。第2触媒層31は、平面視において、矩形状である。第2触媒層31の厚さは、例えば、5〜50μm程度である。
【0046】
第2触媒層31は、燃料の酸化反応に対する触媒活性を有している。すなわち、第2触媒層31は、燃料の酸化反応に対する触媒活性を有する触媒を含んでいる。なお、第2触媒層31に含まれる触媒は、AFCに使用される公知のアノード触媒であればよく、特に限定されない。第2触媒層31に含まれるアノード触媒の例としては、Pt、Ni、Co、Fe、Ru、Sn、及びPd等の金属触媒が挙げられる。金属触媒は、カーボン等の担体に担持されるのが好ましいが、金属触媒の金属原子を中心金属とする有機金属錯体の形態としてもよく、この有機金属錯体を担体として担持されていてもよい。また、アノード触媒の表面には多孔質材料等で構成された拡散層を配置してもよい。アノード3及びそれを構成する触媒の好ましい例としては、ニッケル、コバルト、銀、白金担持カーボン(Pt/C)、パラジウム担持カーボン(Pd/C)、ロジウム担持カーボン(Rh/C)、ニッケル担持カーボン(Ni/C)、銅担持カーボン(Cu/C)、及び銀担持カーボン(Ag/C)が挙げられる。
【0047】
第2ガス拡散層32は、第2触媒層31上に配置されている。第2ガス拡散層32は、平面視において、矩形状である。第2ガス拡散層32は、第2触媒層31よりも厚い。第2ガス拡散層32の厚さは、例えば、50〜150μm程度である。
【0048】
第2ガス拡散層32は、第2セパレータ12の第2流路121内を流れる燃料を拡散して第2触媒層31に供給する。第2ガス拡散層32は、電気伝導性を有する。第2ガス拡散層32は、集電部材としても機能する。
【0049】
第2ガス拡散層32は、カーボンペーパー、カーボンクロス、又はカーボンフェルトなどの導電性多孔質材料によって構成することができる。第2ガス拡散層32には、アセチレンブラックなどのカーボンブラック、又はグラファイトなどの導電性材料と、フッ素樹脂(PTFE、PVDF)などの撥水性材料と、を含むマイクロポーラス層が形成されていてもよい。
【0050】
第2吸着部33は、第2ガス拡散層32の内部に配置されている。各第2吸着部33は、互いに間隔をあけて配置されている。詳細には、各第2吸着部33は、第2ガス拡散層32の面方向において、互いに間隔をあけて配置される。また、第2吸着部33は、第2触媒層31と間隔をあけて配置されていることが好ましい。なお、第2吸着部33と第2触媒層31とは接触していてもよい。
【0051】
第2吸着部33は、燃料の酸化反応に対する触媒活性を有する触媒を含んでいる。なお、第2吸着部33の触媒の材料は、例えば、第2触媒層31の触媒として説明した材料のいずれかとすることができる。好ましくは、第2吸着部33の触媒の材料は、第2触媒層31の触媒の材料と同じである。また、第2吸着部33の触媒は、第2触媒層31の触媒と同様に、カーボンなどの担体に担持されていることが好ましい。
【0052】
上述したようなアノード3は、上述したカソード2と同様の方法によって作製する。
【0053】
(電解質膜4)
図1に示すように、電解質膜4は、カソード2とアノード3との間に配置される。電解質膜4は、カソード2及びアノード3のそれぞれに接続される。電解質膜4は、イオン伝導性を有する。電解質膜4は、膜状であって、第1面41と第2面42とを有している。第1面41と第2面42とは、互いに逆側を向いている。電解質膜4の第1面41側にはカソード2が配置されており、第2面42側にはアノード3が配置されている。
【0054】
図4は、電解質膜4の断面を拡大して示す模式図である。電解質膜4は、支持体5と、イオン伝導体6とを有する。
【0055】
支持体5は、イオン伝導体6を支持するように構成されている。詳細には、支持体5は、三次元網目構造を有する多孔質基材によって構成されている。「三次元網目構造」とは、基材の構成物質が立体的かつ網目状に繋がった構造である。なお、支持体5を構成する多孔質基材は、三次元網目構造を有していなくてもよい。
【0056】
支持体5は、連続孔5aを形成する。連続孔5aは、立体的かつ網目状に孔が繋がることによって構成されており、支持体5の外表面に露出している。連続孔5aには、イオン伝導体6が含浸されている。
【0057】
支持体5は、金属材料、セラミックス材料、及び高分子材料から選択される少なくとも1種によって構成することができる。
【0058】
支持体5を構成する金属材料としては、ステンレス(Fe−Cr系合金、Fe−Ni−Cr系合金など)、アルミニウム、亜鉛、ニッケル、又は、チタンなどを用いることができる。このような金属材料は、セラミックス材料や高分子材料に比べて熱伝導性が高いため、支持体5の放熱効率を向上させることができるとともに、支持体5内の温度分布を低減させることができる。三次元網目構造を有する限り、支持体5の形態は特に制限されず、例えば、多孔質金属材料(例えば、発砲金属材料)によって構成されるセル状又はモノリス状の構造物であってもよいし、細線金属材料によって構成されるメッシュ状の塊であってもよい。
【0059】
また、支持体5が金属材料によって構成される場合、支持体5の表面には絶縁膜が形成されていてもよい。絶縁膜は、Cr、Al、ZrO、MgO、MgAlなどによって構成することができる。支持体5をステンレスによって構成する場合、ステンレスを酸化処理することにより、絶縁膜としてのCr膜を簡便に形成することができる。ただし、本実施形態では、後述する第1及び第2膜状部4b,4cが、絶縁膜として機能するため、支持体5の表面には、絶縁膜が形成されていなくてもよい。
【0060】
支持体5を構成するセラミックス材料としては、アルミナ、ジルコニア、チタニア、マグネシア、カルシア、コージェライト、ゼオライト、ムライト、酸化亜鉛、炭化ケイ素、及びこれらの任意の組合せが挙げられる。
【0061】
支持体5を構成する高分子材料としては、例えば、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、親水化したフッ素樹脂(四フッ素化樹脂:PTFE等、ポリフッ化ビニリデン)、セルロース、ナイロン、ポリエチレン及びこれらの任意の組合せが挙げられる。支持体5をフレキシブル性の高分子材料で構成する場合には、気孔率を高めながら厚さを薄くしやすいため、水酸化物イオン伝導性を向上させることができる。高分子材料によって構成される支持体5としては、リチウム電池用セパレータとして市販されているような微多孔膜を用いることができる。
【0062】
支持体5の厚さは特に制限されないが、例えば、200μm以下とすることができ、好ましくは100μm以下、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下であり、5μm以下が最も好ましい。支持体5の厚さの下限値は、用途に応じて適宜設定すればよいが、ある程度の堅さを確保するには1μm以上が好ましく、2μm以上がより好ましい。
【0063】
支持体5の断面における連続孔5aの平均内径は特に制限されないが、例えば、0.001〜1.5μmとすることができ、好ましくは0.001〜1.25μm、より好ましくは0.001〜1.0μm、さらに好ましくは0.001〜0.75μm、特に好ましくは0.001〜0.5μmである。これらの範囲内とすることによって、支持体5に支持体としての強度を付与しつつ、イオン伝導体6の緻密度を向上させることができる。連続孔5aの平均内径とは、支持体5の断面を電子顕微鏡で観察した場合に、観察画像上で無作為に選出した20箇所における連続孔5aの円相当径を算術平均することによって得られる。連続孔5aの円相当径とは、観察画像において、連続孔5aの断面積と同じ面積を有する円の直径である。なお、電子顕微鏡の倍率は、連続孔5aの断面サイズに応じて適宜設定すればよい。
【0064】
連続孔5aの体積率は特に制限されないが、例えば、10〜80%とすることができ、好ましくは15〜75%、より好ましくは20〜70%である。これらの範囲内とすることによって、支持体5に支持体としての強度を確保しつつ、イオン伝導体6の緻密度を向上させることができる。連続孔5aの体積率は、アルキメデス法により測定することができる。
【0065】
また、図4では図示されていないが、支持体5は、それ自体の内部に複数の細孔を有することが好ましい。複数の細孔は、支持体5の内部において、互いに繋がっていてもよい。そして、各細孔は支持体5の表面に開口する開気孔であって、各細孔にはイオン伝導体6が含浸していることがより好ましい。これによって、連続孔5a→支持体5内の細孔→連続孔5aという短距離イオン伝導パスや、連続孔5a→支持体5内の細孔→第2膜状部4c、或いは、第1膜状部4b→支持体5内の細孔→第2膜状部4cという長距離イオン伝導パスを形成することができる。その結果、複合部4a内のイオン伝導可能領域が広がるため、電解質膜4全体としてのイオン伝導性を向上させることができる。
【0066】
イオン伝導体6は、水酸化物イオン伝導性を有する。固体アルカリ形燃料電池100の発電中、イオン伝導体6は、カソード2側からアノード3側に水酸化物イオン(OH)を伝導させる。イオン伝導体6の水酸化物イオン伝導率は特に制限されないが、0.1mS/cm以上が好ましく、より好ましくは0.5mS/cm以上、さらに好ましくは1.0mS/cm以上である。イオン伝導体6の水酸化物イオン伝導率は、高いほど好ましく、その上限値は特に制限されないが、例えば10mS/cmである。
【0067】
イオン伝導体6は、水酸化物イオン伝導性を有するセラミックス材料によって構成することができる。このようなセラミックス材料としては、層状複水酸化物(LDH:Layered Double Hydroxide)が好適である。
【0068】
LDHは、M2+1−x3+(OH)n−x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An−はn価の陰イオン、nは1以上の整数、xは0.1〜0.4、mは水のモル数を意味する任意の整数である)の一般式で示される基本組成を有する。M2+の例としてはMg2+、Ca2+、Sr2+、Ni2+、Co2+、Fe2+、Mn2+、及びZn2+が挙げられ、M3+の例としては、Al3+、Fe3+、Ti3+、Y3+、Ce3+、Mo3+、及びCr3+が挙げられ、An−の例としてはCO2−及びOHが挙げられる。M2+及びM3+としては、それぞれ1種単独で又は2種以上を組み合わせて用いることもできる。
【0069】
LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。中間層は、陰イオン及びHOで構成される。水酸化物基本層は、例えば金属MがNi、Al、Tiの場合には、Ni、Al、Ti及びOH基を含む。以下、LDHの水酸化物基本層がNi、Al、Ti及びOH基を含む場合について説明する。
【0070】
LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のAlはアルミニウムイオンの形態を採りうる。LDH中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。水酸化物基本層は、Ni、Al、Ti及びOH基を主要構成要素として含むのが好ましいが、他の元素ないしイオンを含んでいてもよいし、不可避不純物を含んでいてもよい。不可避不純物は、製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。
【0071】
LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO2−を含む。
【0072】
上記のとおり、Ni、Al及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Al3+、Ti4+及びOH基で構成されるものと想定した場合、LDHは、一般式:Ni2+1−x−yAl3+Ti4+(OH)n−(x+2y)/n・mHO(式中、An−はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、0<y<1、好ましくは0.01≦y≦0.5、0<x+y<1、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+、Al3+、Ti4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。
【0073】
電解質膜4は、複合部4a、第1膜状部4b、及び第2膜状部4cを有する。複合部4aは、支持体5とイオン伝導体6とを有する。第1膜状部4b及び第2膜状部4cは、イオン伝導体6を有しているが、支持体5を有していない。
【0074】
複合部4aは、第1膜状部4bと第2膜状部4cとの間に配置される。イオン伝導体6は、支持体5内において、支持体5に支持されている。詳細には、イオン伝導体6は、支持体5の連続孔5a内に配置される。イオン伝導体6は、支持体5の連続孔5a内に含浸されており、支持体5と一体化している。このように、イオン伝導体6を支持体5で支持することによって、イオン伝導体6の強度を向上できるため、イオン伝導体6を薄くすることができる。その結果、電解質膜4の低抵抗化を図ることができる。
【0075】
本実施形態において、イオン伝導体6は、支持体5の連続孔5aの略全域に広がる。ただし、電解質膜4が第1膜状部4b及び第2膜状部4cの少なくとも一方を有さない場合、イオン伝導体6は、支持体5の一部にのみ含浸されていてもよい。
【0076】
ここで、複合部4aにおいて、電解質膜4は、その内部に形成された複数の閉気孔61を有する。このような閉気孔61が形成されるため、固体アルカリ形燃料電池100の作動中にイオン伝導体6の含水状況の変動に起因する電解質膜4の体積変化を緩和させることができる。これにより、電解質膜4とカソード2との界面、又は/及び電解質膜4とアノード3との界面に応力が発生することを抑制できる。その結果、カソード2又は/及びアノード3から電解質膜4が剥離したり、電解質膜4自体が変形したりすることを抑制できる。
【0077】
さらに、閉気孔61が複合部4aの内部に形成されることで、複合部4aに柔軟性を付与することができるため、固体アルカリ形燃料電池100内の温度分布に起因して、カソード2と電解質膜4との界面、又は/及び、アノード3と電解質膜4との界面に熱応力が発生することを抑制できる。そのため、カソード2又は/及びアノード3から電解質膜4が剥離したり、或いは、電解質膜4自体が変形したりすることを抑制できる。
【0078】
閉気孔61は、支持体5から離れている。すなわち、閉気孔61は、複合部4aの内部に閉じこめられており、連続孔5aの内表面と直接的に接触しない。これによって、閉気孔61が支持体5に直接接触する場合に比べて、電解質膜4に体積変化や変形が生じた場合に、支持体5、複合部4a及び閉気孔61の三者で作られる角部を起点として、複合部4aが支持体5から剥離することを抑制できる。
【0079】
各閉気孔61の平均円相当径は特に制限されないが、例えば、0.001〜1.0μmとすることができる。各閉気孔61の平均円相当径は、0.001μm以上が好ましく、0.002μm以上がより好ましい。これによって、複合部4aの柔軟性をより向上させることができる。また、各閉気孔61の平均円相当径は、1.0μm以下が好ましく、0.8μm以下がより好ましい。
【0080】
各閉気孔61の平均円相当径は、電解質膜4の断面を20,000〜1,500,000倍の電子顕微鏡で観察し、無作為に選出した20個の閉気孔61の円相当径を算術平均することによって得られる。閉気孔61の円相当径とは、電解質膜4の断面において、閉気孔61と同じ面積を有する円の直径である。ただし、0.001μm以下の円相当径を有する閉気孔61は、複合部4aの柔軟性向上への寄与が極めて小さいため、各閉気孔61の平均円相当径を求める際には除外するものとする。
【0081】
第1膜状部4bは、複合部4aのカソード2側に連なる。第1膜状部4bは、膜状に形成される。第1膜状部4bのイオン伝導体6は、複合部4aのイオン伝導体6と一体的に形成される。
【0082】
第2膜状部4cは、複合部4aのアノード3側に連なる。第2膜状部4cは、膜状に形成される。第2膜状部4cのイオン伝導体6は、複合部4aのイオン伝導体6と一体的に形成される。第1膜状部4b及び第2膜状部4cそれぞれは、一様な平面状に形成されていてもよいし、縞状など所望の平面形状にパターン化されていてもよい。第1膜状部4b及び第2膜状部4cそれぞれの厚さは特に制限されないが、例えば、10μm以下とすることができ、好ましくは7μm以下、より好ましくは5μm以下である。
【0083】
(電解質膜4の製造方法)
電解質膜4の作製方法は特に限定されないが、イオン伝導体6をLDHで構成する場合であって、LDHの水酸化物基本層がNi、Al、Ti及びOH基を含むとき、以下の工程(1)〜(4)で作製することができる。
【0084】
(1)支持体5を用意する。
【0085】
(2)支持体5の全体にアルミナ及びチタニアの混合ゾルを含浸させて熱処理することでアルミナ・チタニア層を形成させる。後述するように、支持体5の表面全体からLDHを成長させるには、支持体5の表面全体にアルミナ・チタニア層を形成させることが重要となるため、アルミナ及びチタニアの混合ゾルを含浸させて熱処理することを複数回実施する。これにより、支持体5の表面全体にアルミナ・チタニア層を形成することができる。
【0086】
(3)ニッケルイオン(Ni2+)及び尿素を含む原料水溶液に支持体5を浸漬させる。
【0087】
(4)原料水溶液中で支持体5を水熱処理して、LDHを支持体5上及び支持体5中に形成させることによって、イオン伝導体6を形成する。この際、水熱処理時間および溶液濃度を適宜調整することによって、気孔が閉塞する前に反応を停止することでイオン伝導体6内に閉気孔61を形成させることができる。LDHは支持体5の表面に形成されたアルミナ・チタニア層を核として成長するため、支持体5の表面全体にアルミナ・チタニア層を形成させた場合においては、支持体5の表面全体からLDHが成長することになる。その結果として、閉気孔61を支持体5から離すことができる。
【0088】
(第1及び第2セパレータ11、12)
図1に示すように、第1及び第2セパレータ11、12は、膜電極接合体10を厚さ方向(z軸方向)の両側から挟むように配置されている。第1セパレータ11は、カソード2に酸素(O)を含む酸化剤を供給するように構成されている。第1セパレータ11は、第1流路111を有している。第1流路111は、カソード2と対向している。この第1流路111には、酸素(O)を含む酸化剤が供給される。
【0089】
第2セパレータ12は、アノード3に水素原子(H)を含む燃料を供給するように構成されている。第2セパレータ12は、第2流路121を有している。第2流路121は、アノード3と対向している。この第2流路121には、水素原子(H)を含む燃料が供給される。例えば、第2流路121には、メタノールが供給される。
【0090】
複数の膜電極接合体10が第1及び第2セパレータ11,12を介してスタックされている場合は、第1セパレータ11は、第1流路111が形成される面とは反対側の面に第2流路が形成されている。また、第2セパレータ12は、第2流路121が形成される面とは反対側の面に第1流路が形成されている。
【0091】
第1セパレータ11と膜電極接合体10との間には、第1シール部材13aが配置されている。第1シール部材13aは、第1セパレータ11と膜電極接合体10との間の密着性を向上させて、酸化剤が外部へ漏出することを防止する。第2セパレータ12と膜電極接合体10との間には、第2シール部材13bが配置されている。第2シール部材13bは、第2セパレータ12と膜電極接合体10との間の密着性を向上させて、燃料が外部へ漏出することを防止する。
【0092】
第1及び第2シール部材13a、13bは、環状であり、膜電極接合体10の電解質膜4の外周部に当接している。第1及び第2シール部材13a、13bとして、例えば、Oリング、ゴムシートなどを例示することができる。第1シール部材13aは、第1セパレータ11と一体的に構成されていてもよい。第2シール部材13bは、第2セパレータ12と一体的に構成されていてもよい。
【0093】
(実施形態の変形例)
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
【0094】
変形例1
上記実施形態では、第1触媒層21からの距離に関して、各第1吸着部23は、隣り合う第1吸着部23と略同じであるが、各第1吸着部23の位置はこれに限定されない。例えば、図5に示すように、第1触媒層21からの距離D1について、各第1吸着部23は、隣り合う第1吸着部23と異なっていてもよい。なお、第1吸着部23と第1触媒層21との距離D1は、特に限定されるものではないが、例えば、5〜30μm程度とすることができる。図6に示すように、各第2吸着部33も同様に、第2触媒層31からの距離D2について、隣り合う第2吸着部33と異なっていてもよい。この第2吸着部33と第2触媒層31との距離D2も、特に限定されるものではないが、例えば、5〜30μm程度とすることができる。
【0095】
変形例2
図7に示すように、第1ガス拡散層22は、第1中央部22aと、第1外周部22bとに分けることができる。第1外周部22bは、第1中央部22aを囲むように配置されている。なお、第1外周部22bの幅W1は、第1ガス拡散層22の長辺の長さL1の5%とすることができる。
【0096】
第1吸着部23は、第1中央部22aの内部のみに配置され、第1外周部22bの内部に配置されていなくてもよい。
【0097】
また、第1中央部22aにおける第1吸着部23の含有率が、第1外周部22bにおける第1吸着部23の含有率よりも大きくなるように、カソード2は構成されていてもよい。
【0098】
第1中央部22aにおける第1吸着部23の含有率、及び第1外周部22bにおける第1吸着部23の含有率は、例えば、次のように測定することができる。
【0099】
まず、図5に示すような切断面を3つ形成する。詳細には、図8に示すように、第1ガス拡散層22の中心Cを通り、第1流路111が延びる方向に沿って切断した第1切断面C1を形成する。また、この第1切断面C1と平行となるように切断した第2切断面C2及び第3切断面C3を形成する。
【0100】
なお、第1切断面C1と第2切断面C2との距離d1は、第1切断面C1と第3切断面C3との距離d2と同じであり、これらの距離d1及びd2は、第1ガス拡散層22の第1寸法d0の25%とする。ここで、第1ガス拡散層22の第1寸法d0とは、第1ガス拡散層22の中心Cを通り、第1切断面C1と直交する方向に延びる寸法を意味する。なお、図9に示すように、平面視が矩形状でない場合、例えば、円形状のような場合であっても同様の方法で各切断面C1〜C3を形成する。
【0101】
以上により、図10に示すような切断面C1〜C3が形成される。次に、各切断面C1〜C3における第1ガス拡散層22の第1中央部22a及び一対の第1外周部22bを、第1触媒層21と第1ガス拡散層22との境界を含むようにSEMによって500倍に拡大して撮影する。
【0102】
詳細には、第1切断面C1における第1ガス拡散層22の第1中央部22aにおいて、中央部と、中央部から距離d3だけ離れた2箇所の合計3視野を撮影する。なお、距離d3は、各切断面における第1ガス拡散層22の第2寸法d4の25%とする。ここで、第1ガス拡散層22の第2寸法d4とは、各切断面における第1ガス拡散層22の長手方向の寸法を意味する。
【0103】
第2切断面C2及び第3切断面C3でも、第1切断面C1と同様に、第1ガス拡散層22の第1中央部22aにおいて3視野撮影する。このようにして撮影した第1中央部22aの各撮影視野において、第1吸着部23を構成する元素の元素マッピングを行うことで第1吸着部23の含有率を算出する。そして、各視野の第1吸着部23の含有率の平均値を、第1中央部22aにおける第1吸着部23の含有率とすることができる。
【0104】
また、第1切断面C1における第1ガス拡散層22の両端部に位置する一対の第1外周部22bにおいて、各第1外周部22bのx軸方向の中央部を撮影する。すなわち、第1切断面C1において、第1外周部22bを2視野分撮影する。第2切断面C2及び第3切断面C3でも、第1切断面C1と同様に、第1外周部22bを2視野分撮影する。
【0105】
このようにして撮影した第1外周部22bの各撮影視野において、第1吸着部23を構成する元素の元素マッピングを行うことで第1吸着部23の含有率を算出する。そして、各視野の第1吸着部23の含有率の平均値を、第1外周部22bにおける第1吸着部23の含有率とすることができる。
【0106】
変形例3
第1中央部22aにおける第1吸着部23と第1触媒層21との距離D1が、第1外周部22bにおける第1吸着部23と第1触媒層21との距離D1よりも大きくなるように、各第1吸着部23を配置することができる。なお、この距離D1は、上記第1吸着部23の含有率を測定する際に撮影した画像を用いて測定することができる。距離D1は、それぞれ測定した値の平均値とすることができる。
【0107】
変形例4
図11に示すように、第2ガス拡散層32は、第2中央部32aと、第2外周部32bとに分けることができる。第2外周部32bは、第2中央部32aを囲むように配置されている。なお、第2外周部32bの幅W2は、第2ガス拡散層32の長辺の長さL2の5%とすることができる。
【0108】
第2吸着部33は、第2中央部32aの内部のみに配置され、第2外周部32bの内部に配置されていなくてもよい。
【0109】
また、第2中央部32aにおける第2吸着部33の含有率が、第2外周部32bにおける第2吸着部33の含有率よりも大きくなるように、カソード2は構成されていてもよい。
【0110】
第2中央部32aにおける第2吸着部33の含有率、及び第2外周部32bにおける第2吸着部33の含有率は、例えば、次のように測定することができる。
【0111】
まず、図6に示すような切断面を3つ形成する。この3つの切断面は、例えば、第1中央部22aにおける第1吸着部23の含有率、及び第1外周部22bにおける第1吸着部23の含有率を測定するために作成した切断面C1〜C3と同じである。
【0112】
次に、各切断面C1〜C3における第2ガス拡散層32の第2中央部32a及び一対の第2外周部32bを、第2触媒層31と第2ガス拡散層32との境界を含むようにSEMによって500倍に拡大して撮影する。
【0113】
詳細には、図10に示すように、第1切断面C1における第2ガス拡散層32の第2中央部32aにおいて、中央部と、中央部から距離d5だけ離れた2箇所の合計3視野を撮影する。なお、距離d5は、各切断面における第2ガス拡散層32の寸法d6の25%とする。ここで、第2ガス拡散層32の寸法d6とは、各切断面における第2ガス拡散層32の長手方向の寸法を意味する。
【0114】
第2切断面C2及び第3切断面C3でも、第1切断面C1と同様に、第2ガス拡散層32の第2中央部32aにおいて3視野撮影する。このようにして撮影した第2中央部32aの各撮影視野において、第2吸着部33を構成する元素の元素マッピングを行うことで第2吸着部33の含有率を算出する。そして、各視野の第2吸着部33の含有率の平均値を、第2中央部32aにおける第2吸着部33の含有率とすることができる。
【0115】
また、第1切断面C1における第2ガス拡散層32の両端部に位置する一対の第2外周部32bにおいて、各第2外周部32bのx軸方向の中央部を撮影する。すなわち、第1切断面C1において、第2外周部32bを2視野分撮影する。第2切断面C2及び第3切断面C3でも、第1切断面C1と同様に、第2外周部32bを2視野分撮影する。
【0116】
このようにして撮影した第2外周部32bの各撮影視野において、第2吸着部33を構成する元素の元素マッピングを行うことで第2吸着部33の含有率を算出する。そして、各視野の第2吸着部33の含有率の平均値を、第2外周部32bにおける第2吸着部33の含有率とすることができる。
【0117】
変形例5
第2中央部32aにおける第2吸着部33と第2触媒層31との距離D2が、第2外周部32bにおける第2吸着部33と第2触媒層31との距離D2よりも大きくなるように、各第2吸着部33を配置することができる。なお、この距離D2は、上記第2吸着部33の含有率を測定する際に撮影した画像を用いて測定することができる。距離D2は、それぞれ測定した値の平均値とすることができる。
【0118】
変形例6
上記実施形態では、アノード3は、複数の第2吸着部33を有しているが、この構成に限定されない。例えば、アノード3は、第2吸着部33を有していなくてもよい。
【0119】
変形例7
上記実施形態では、電解質膜4の支持体5は、多孔質基材によって構成されているが、支持体5はこれに限定されない。例えば、電解質膜4の支持体5は、バインダであってもよい。例えば、図12に示すように、バインダとして構成されている支持体5は、イオン伝導体6の構成粒子間に配置されている。この支持体5は、イオン伝導体6の各構成粒子同士を結着する。例えば、支持体5は、LDH粒子同士を結着することによって、電解質膜4の形状を維持する。このようなバインダとしては、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレン−ブタジエンゴム、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、又はエチレン−アクリル酸共重合体などを挙げることができる。
【0120】
変形例8
上記実施形態では、電解質膜4は、複合部4a、第1膜状部4b、及び第2膜状部4cを有することとしたが、複合部4aのみを有していてもよい。すなわち、電解質膜4は、第1膜状部4b及び第2膜状部4cの少なくとも一方を備えていなくてよい。
【0121】
変形例9
上記実施形態では、電解質膜4は、支持体5と、イオン伝導体6とを有していたが、この構成に限定されない。例えば、電解質膜4は、イオン伝導体6のみを有していてもよい。この場合、イオン伝導体6は、フッ素系高分子樹脂とすることができる。イオン伝導体は、主鎖と、側鎖とを有する。
【0122】
主鎖は、炭素(C)及びフッ素(F)を含む。主鎖は、C−F結合を含み、かつ、C−H結合を含まない。主鎖の骨格は、ポリテトラフルオロエチレン(PTFE)によって構成することができる。主鎖の骨格とは、炭素数が最大となる高分子内の炭素鎖を意味する。
【0123】
側鎖は、主鎖に連なる。側鎖は、主鎖から枝分かれしている。側鎖は、スルホンアルカリ基(-SO基)を末端に含む。スルホンアルカリ基は、スルホン酸基(-SO基)の水素イオン(H)がアルカリ金属イオン(M)に置換された構成を有する。アルカリ金属(M)としては、Li、K、Na、及びNHからなる群から選ばれた1種以上を用いることができる。スルホンアルカリ基は、スルホン酸基の水素イオンをアルカリ金属イオンにカチオン交換することによって得られる。側鎖は、カルボキシアルカリ基(-COO基)を末端に含んでいても良い。カルボキシアルカリ基は、カルボキシル基(-COO)の水素イオン(H)がアルカリ金属イオン(M)に置換された構成を有する。イオン伝導体の製造方法については後述する。
【0124】
このようなスルホンアルカリ基が導入されることによって、イオン伝導体は、アルカリ性環境下において、高いイオン伝導性を発現する。
【0125】
なお、イオン伝導体が有する全ての側鎖のうち少なくとも一つの側鎖がスルホンアルカリ基を有していれば、イオン伝導体は、イオン伝導性を発現することができる。イオン伝導性を向上させるには、イオン伝導体が有する全ての側鎖のうち50%以上の側鎖がスルホンアルカリ基を有していることが好ましく、80%以上の側鎖がスルホンアルカリ基を有していることがより好ましく、全ての側鎖がスルホンアルカリ基を有していることが特に好ましい。
【0126】
イオン伝導体の構造は、下記一般式(1)によって表すことができる。
【0127】
一般式(1)において、Mは上述したアルカリ金属であり、Xはフッ素原子又はトリフルオロメチル基である。一般式(1)において、x及びyは整数であり、xは5以上14以下とすることができ、yは1000とすることができる。一般式(1)において、pは0以上3以下の整数であり、qは0又は1であり、nは1以上12以下の整数である。
【0128】
(イオン伝導体の製造方法)
次に、電解質膜4を構成するイオン伝導体の製造方法について説明する。
【0129】
まず、パーフルオロスルホン酸ポリマーを準備する。パーフルオロスルホン酸ポリマーは、フッ素系高分子樹脂である。具体的には、パーフルオロスルホン酸ポリマーは、C−F結合からなる疎水性のパーフルオロカーボン骨格と、スルホン酸基を持つパーフルオロ側鎖とから構成されるパーフルオロカーボン材料である。パーフルオロスルホン酸ポリマーの側鎖は、スルホン酸基を末端に含む。これにより、パーフルオロスルホン酸ポリマーは、プロトン伝導性を発現する。
【0130】
パーフルオロスルホン酸ポリマーとしては、ナフィオン(Nafion(登録商標)、デュポン社)、フレミオン(Flemion(登録商標)、旭硝子株式会社)、アシプレックス(Aciplex(登録商標)、旭化成株式会社)などの市販品を用いてもよい。
【0131】
パーフルオロスルホン酸ポリマーの構造は、下記一般式(2)によって表すことができる。
【0132】
一般式(2)において、Xはフッ素原子又はトリフルオロメチル基である。一般式(2)において、x及びyは整数であり、xは5以上14以下とすることができ、yは1000とすることができる。一般式(2)において、pは0以上3以下の整数であり、qは0又は1であり、nは1以上12以下の整数である。
【0133】
次に、所望のアルカリ金属イオンを含有するアルカリ性溶液を準備する。アルカリ性溶液が含有するアルカリ金属イオンは、Li、K、Na、及びNHからなる群から選ばれる1種以上のアルカリ金属(M)のイオンである。従って、アルカリ性溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液、炭酸カリウム、又は炭酸水素カリウムなどを用いることができる。アルカリ性溶液におけるアルカリ金属イオンの濃度は、後述するカチオン交換が十分行われる程度であればよく特に制限されないが、例えば、0.01〜1mol/Lとすることができる。
【0134】
次に、アルカリ性溶液を用いて、パーフルオロスルホン酸ポリマーにアルカリ処理を施す。このアルカリ処理では、パーフルオロスルホン酸ポリマーをアルカリ性溶液に浸漬してもよいし、パーフルオロスルホン酸ポリマーにアルカリ性溶液を含浸させてもよいし、パーフルオロスルホン酸ポリマーにアルカリ性溶液を塗布してもよい。アルカリ処理は、室温(例えば、10〜30℃)で行うことができる。
【0135】
このアルカリ処理によって、パーフルオロスルホン酸ポリマーが有する側鎖の末端に位置するスルホン酸基(-SO基)の水素イオン(H)をアルカリ金属イオン(M)にカチオン置換する。その結果、上記一般式(1)によって表されるアルカリ性溶液中にて高いイオン伝導性を示すようになる。
【0136】
変形例10
第1吸着部23は、陽イオン交換能を有していてもよい。好ましくは、第1吸着部23は、多価の陽イオンに対してイオン交換能を有する。なお、第1吸着部23は、多価の陽イオンに対してのみイオン交換能を有し、1価の陽イオンに対してはイオン交換能を有していなくてもよい。第1吸着部23は、Fe2+、Fe3+、Cr2+、及びNi2+などを吸着する。
【0137】
詳細には、第1吸着部23は、吸着材と触媒とを含んでいる。第1吸着部23に含まれる吸着材は、陽イオン交換能を有する。なお、第1吸着部23に含まれる吸着材の材料は、例えば、変形例5において説明した電解質膜4のイオン伝導体によって構成することができる。その他に、第1吸着部23に含まれる吸着材は、パラジウム、又はニッケルなどによって構成することもできる。なお、第2吸着部33も、上記第1吸着部23と同様に、陽イオン交換能を有していてもよい。
【0138】
変形例7
上記実施形態では、本発明に係る燃料電池を固体アルカリ形燃料電池に適用した実施形態を説明したが、本発明に係る燃料電池が適用される対象は固体アルカリ形燃料電池に限定されず、例えば、プロトン伝導膜を用いた固体高分子形燃料電池などの他の燃料電池にも適用することができる。
【符号の説明】
【0139】
4 電解質膜
10 膜電極接合体
21 第1触媒層
22 第1ガス拡散層
23 第1吸着部
31 第2触媒層
32 第2ガス拡散層
33 第2吸着部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12