特許第6964579号(P6964579)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6964579
(24)【登録日】2021年10月21日
(45)【発行日】2021年11月10日
(54)【発明の名称】光学キャビティPCR
(51)【国際特許分類】
   C12M 1/00 20060101AFI20211028BHJP
   C12Q 1/686 20180101ALI20211028BHJP
【FI】
   C12M1/00 A
   C12Q1/686 Z
【請求項の数】22
【全頁数】22
(21)【出願番号】特願2018-503770(P2018-503770)
(86)(22)【出願日】2016年7月27日
(65)【公表番号】特表2018-521665(P2018-521665A)
(43)【公表日】2018年8月9日
(86)【国際出願番号】US2016044255
(87)【国際公開番号】WO2017019768
(87)【国際公開日】20170202
【審査請求日】2019年7月16日
(31)【優先権主張番号】62/199,069
(32)【優先日】2015年7月30日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】506115514
【氏名又は名称】ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア
【氏名又は名称原語表記】The Regents of the University of California
(74)【代理人】
【識別番号】100131451
【弁理士】
【氏名又は名称】津田 理
(74)【代理人】
【識別番号】230117802
【弁護士】
【氏名又は名称】大野 浩之
(74)【代理人】
【識別番号】100167933
【弁理士】
【氏名又は名称】松野 知紘
(72)【発明者】
【氏名】リー,ルーク ピー.
(72)【発明者】
【氏名】ソン,ジュン ホ
【審査官】 小倉 梢
(56)【参考文献】
【文献】 特開2004−156925(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C12M 1/00 − 1/42
C12Q 1/00 − 1/70
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/REGISTRY/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
流体サンプルの熱サイクルのための装置であって、前記装置は、
前記流体サンプルを保持するよう構成された複数のチャンバ壁によって画定される少なくとも1つのマイクロ流体熱サイクルチャンバと、
第1の基板上に配置され、前記熱サイクルチャンバの第1のチャンバ壁を画定する第1の薄膜と、
第2の基板上に配置され、前記第1のチャンバ壁に対向する第2のチャンバ壁を形成する第2の薄膜であって、前記第1のチャンバ壁および前記第2のチャンバ壁が光学キャビティを画定する、第2の薄膜と、
前記第1の基板および前記第2の基板の間に配置され、前記光学キャビティの厚みを画定する中間キャビティ層と、
前記第1の薄膜を照明するよう構成される光源であって、発光ダイオード(LED)を含む光源と、
を備え、
前記第1の基板および前記第2の基板は、前記光源からの光を前記第1の基板および前記第2の基板を通過させるように構成された透明材料を含み、
前記第1の薄膜および前記第2の薄膜は光吸収材料を含み、第1の薄膜上に照明された光の第1の部分が前記第1の薄膜に吸収され、前記第1の薄膜上に照明された前記光の第2の部分が前記第1の薄膜を透過し、
前記第1の薄膜を透過した前記光が前記第2の薄膜を照明し、
前記第2の薄膜上に照明された前記透過光の少なくとも一部が前記第2の薄膜に吸収され、
前記第1の薄膜および前記第2の薄膜への前記吸収光は、前記第1の薄膜および前記第2の薄膜の温度を上昇させて、前記熱サイクルチャンバ内の前記流体サンプルを加熱する、光−熱交換を生成する、
装置。
【請求項2】
前記第1の薄膜および前記第2の薄膜のうちの1つまたは複数は、金属層を備える、請求項1に記載の装置。
【請求項3】
前記金属層は、金(Au)、銀(Ag)、ニッケル(Ni)、チタニウム(Ti)、クロム(Cr)、ゲルマニウム(Ge)、パラジウム(Pd)、ルテニウム(Ru)、タングステン(W)、イリジウム(Ir)、または白金(Pt)からなる群から選択される金属を備える、請求項2に記載の装置。
【請求項4】
前記第1の薄膜および前記第2の薄膜のうちの1つまたは複数は多層金属構造を備え、
前記金属構造は、金(Au)、銀(Ag)、ニッケル(Ni)、チタニウム(Ti)、クロム(Cr)、ゲルマニウム(Ge)、パラジウム(Pd)、ルテニウム(Ru)、タングステン(W)、イリジウム(Ir)、または白金(Pt)からなる前記群から選択される1つまたは複数の金属を備える、
請求項1に記載の装置。
【請求項5】
前記第1の薄膜および前記第2の薄膜のうちの1つまたは複数が、グラフェン、グラファイト、カーボンナノチューブ(CNT)、または塗料からなる群から選択される非金属光吸収材料を備える、請求項1に記載の装置。
【請求項6】
前記第1の薄膜および前記第2の薄膜のうちの1つまたは複数が、共振による光吸収を増加させるためのパターン化された表面を備える、請求項1に記載の装置。
【請求項7】
前記第1の基板および前記第2の基板、ポリマーを含む、請求項1に記載の装置。
【請求項8】
前記第1の基板および前記第2の基板のうちの1つまたは複数が、ピラーアレイ、1Dもしくは2D格子、フォトニック結晶、または半球の1つまたは複数の形態の2Dまたは3Dマイクロ構造またはナノ構造を備える、請求項1に記載の装置。
【請求項9】
前記第1の薄膜は第1の厚さを有し、前記第2の薄膜は前記第1の厚さとは異なる第2の厚さを有する、請求項1に記載の装置。
【請求項10】
前記第1の薄膜の厚さおよび前記第2の薄膜の厚さが、前記第1の薄膜および前記第2の薄膜が実質的に均一な温度上昇率を有するように、前記第1の薄膜および前記第2の薄膜への光の吸収速度を一致させるよう選択される、請求項9に記載の装置。
【請求項11】
前記熱サイクルチャンバ内の温度を感知するよう構成される少なくとも1つの温度センサをさらに備える、請求項1に記載の装置。
【請求項12】
前記第1の薄膜および前記第2の薄膜は、前記熱サイクルチャンバ内のPCR反応阻害を防止するために、パッシベーション層で覆われた表面を有する、請求項1に記載の装置。
【請求項13】
前記熱サイクルチャンバに結合される第1および第2のポートをさらに備え、
前記第1および第2のポートは、前記流体サンプルが前記熱サイクルチャンバに入ることを可能にするよう構成される、
請求項1に記載の装置。
【請求項14】
流体サンプルの超高速熱サイクルを実施するための方法であって、前記方法が、
対向する第1および第2の薄膜によって画定されるマイクロ流体熱サイクルチャンバを提供することであって、第1の薄膜が第1の基板に配置され、第2の薄膜が第2の基板に配置され、前記第1の基板および前記第2の基板は透明であり、
前記熱サイクルチャンバを前記流体サンプルで満たすことと、
前記第1の薄膜を、発光ダイオード(LED)を含む光源で照明することであって、前記光源からの光は第1の基板を通過し第1の薄膜まで達し、
前記第1の薄膜上に照明された光の第1の部分が前記第1の薄膜に吸収され、前記第1の薄膜上に照明された前記光の第2の部分が前記第1の薄膜を透過することと、
前記第1の薄膜を透過した前記光で前記第2の薄膜を照明することであって、
前記第2の薄膜を照明する前記透過光の少なくとも一部が前記第2の薄膜に吸収されることと、
前記第1の薄膜および前記第2の薄膜への前記吸収光の関数として前記第1の薄膜および前記第2の薄膜の温度を均一に上昇させることと、
前記第1の薄膜および前記第2の薄膜の前記温度上昇の結果として、前記熱サイクルチャンバ内で前記流体サンプルを加熱することと、
を備える、方法。
【請求項15】
前記第1の薄膜の照明は、前記流体サンプルの超高速マイクロ流体ポリメラーゼ連鎖反応(PCR)を行うために間欠的に適用される、請求項14に記載の方法。
【請求項16】
前記第1の薄膜および前記第2の薄膜の温度を均一に上昇させることが、
前記熱サイクルチャンバ内の前記流体サンプルの前記温度を第1の期間選択された温度に上昇させるために、第1の持続期間に前記第1および第2の膜を照明することと、
前記熱サイクルチャンバ内の前記流体サンプルの前記温度を第2の期間選択された温度に上昇させるために、第2の持続期間に前記第1および第2の膜を照明することと、
前記熱サイクルチャンバ内の前記流体サンプルの前記温度を第3の期間選択された温度に上昇させるために、第3の持続期間に前記第1および第2の膜を照明することと、
前記流体サンプルを増幅するために複数のサイクルの間、照明期間のサイクルを繰り返すこと、
を備える、請求項15に記載の方法。
【請求項17】
前記第1の薄膜は第1の厚さを有し、前記第2の薄膜は前記第1の厚さとは異なる第2の厚さを有する、請求項15に記載の方法。
【請求項18】
前記第1の薄膜の厚さおよび前記第2の薄膜の厚さは、前記第1の薄膜および前記第2の薄膜が実質的に均一な温度上昇率を有するように、前記第1の薄膜および前記第2の薄膜への光の吸収速度を一致させるよう選択される、請求項17に記載の方法。
【請求項19】
前記熱サイクルチャンバ内の温度を測定すること、
をさらに備える、請求項15に記載の方法。
【請求項20】
前記第1の薄膜および前記第2の薄膜は、前記熱サイクルチャンバ内のPCR反応阻害を防止するために、パッシベーション層で覆われた表面を有する、請求項15に記載の方法。
【請求項21】
前記熱サイクルチャンバを前記流体サンプルで満たすことが、
前記熱サイクルチャンバに結合される第1のポートを介して流体サンプルを前記サイクルチャンバに注入すること、
を備え、
前記注入された流体サンプルが、前記熱サイクルチャンバに結合された第2のポートから空気を押し出す、
請求項15に記載の方法。
【請求項22】
前記光学キャビティが、前記PCR反応中に蛍光発光を発生させるよう構成される、請求項15に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、その全体が参照により本明細書に組み込まれる、2015年7月30日に出願された米国仮特許出願第62/199,069号に対する優先権およびその利益を主張する。
【0002】
連邦政府支援の研究または開発に関する声明
該当せず
【0003】
コンピュータプログラム添付物の援用
該当せず
【0004】
著作権保護の対象物の通告
本特許文書中の資料の一部は、米国および他国の著作権法に基づく著作権保護の対象となる。著作権の所有者は、米国特許商標庁の公開ファイルまたは記録に記載されているように、特許文書または特許開示の複製に異論を唱えないが、それ以外のすべての著作権を留保する。著作権所有者は、本特許文書を秘密保持する権利を放棄しない。これには、連邦規則集第37編セクション1.14に基づく権利を含むがこれに限定されない。
【背景技術】
【0005】
1.技術分野
【0006】
本開示は、一般に、核酸増幅系、より詳細には、医学診断および生命科学のためのポリメラーゼ連鎖反応(PCR)熱サイクル系に関する。
【0007】
2.背景技術
【0008】
エボラウイルス病(EVD)、中東呼吸器症候群コロナウイルス(MERS−CoV)、鳥インフルエンザA(H7N9)ウイルスによるヒト感染などの致命的な疾病が世界的に発生するため、迅速かつ正確な診断が急務である。多くの医療診断検査のための「ゴールドスタンダード」であるポリメラーゼ連鎖反応(PCR)は、臨床検査、環境科学、法医学、農業科学の分野において重要な技術となっている。典型的には、2つまたは3つの別個の温度の間に複数のサイクルを必要とするPCRは、加熱ブロックとプラスチックPCRチューブとの間の熱伝達が遅いだけでなく、ペルチェベースの加熱ブロックの熱質量が大きいため増幅ごとに1時間以上かかる。しかしながら、治療ターンアラウンドタイム(TAT)を早くすることで、死亡率だけでなく、無意識に他の人に病気を伝える重大なリスクを低下させるため、高速/超高速PCRは、感染症、メチシリン耐性黄色ブドウ球菌(MRSA)、およびポイントオブケア(POC)レベルでの敗血症の時間感受性診断などの用途に非常に望ましい。
【0009】
空気加熱/冷却および毛細管または直接抵抗加熱を用いる商業用PCRシステムは、10分以内に30回の熱サイクルを行うことができる。しかしながら、これらのシステムは、一般に、それらの高い電力消費(最大800〜1000W)および重量(20kgを超える)のためにPOC試験には適していない。発展途上国やフィールドラボなどのリソースが限られた環境でのPOC試験では、高速/超高速PCRシステムは、小型化と集積化による低消費電力によって、感度、選択性、可搬性、堅牢性、シンプルさ、使いやすさといったことを特徴とするべきである。
【0010】
これらの要求を達成するために、高速/超高速PCRシステムのためのマイクロ流体アプローチは、サンプル体積(すなわち熱質量)を減少させることにより増幅時間を短縮し、迅速な熱伝達を可能にし、したがって、低電力消費でより高速の熱サイクルを可能にするために広範に研究されてきた。静的マイクロ流体PCR熱サイクルに最も一般的に使用される方法は、マイクロ製造された薄膜ヒータおよび抵抗温度検出器(RTD)による抵抗加熱である。消費電力は比較的少ないが、本方法は、薄膜ヒータおよびRTDをチップ上に集積するために複雑な製造プロセスが必要である。
【0011】
ペルチェ熱ブロックは、迅速な加熱および冷却速度のために静的および連続フローPCRの両方に広く使用されるが、より高い電力消費を必要とする。連続フローPCRの場合、PCR増幅は、反応サンプルが完全な離散温度ゾーンを通過する場合に起こる。この方法は、静的PCRよりも速い熱サイクルを生成することができるが、一般に、フロー制御のために外部シリンジポンプを必要とし、サイクル数を変更する機能がない。別のアプローチは、1000nmを超える波長で水による強力なIR吸収を利用するIRレーザまたはフィラメントランプを使用するPCR熱サイクルのためのPCR混合物の赤外線(IR)媒介非接触選択加熱を含む。しかしながら、PCR混合物の容量がナノリットルからマイクロリットルに増加するにつれて、PCR溶液の急速加熱および冷却の制限のために、全熱サイクル時間も約5分から約40分に増加する。
【発明の概要】
【発明が解決しようとする課題】
【0012】
したがって、本明細書の目的は、小型化と集積化による低消費電力によって、感度、選択性、可搬性、堅牢性、シンプルさ、使いやすさを特徴とするPOC試験のための高速/超高速PCRシステムである。
【課題を解決するための手段】
【0013】
本明細書の一態様は、迅速で正確で信頼性の高いPCRベースの診断のために発光ダイオード(LED)によって駆動される光学キャビティPCRシステムおよび方法である。一様な光吸収とその後のフォトサーマル光熱変換のために構成された2つの金属(例えば、Au)薄膜を備える光学キャビティは、PCR熱サイクルに使用される。シミュレーション結果は、厚さ750pmのキャビティ全体の温度差が、94℃(変性)および68℃(アニーリング/伸長)でそれぞれ2℃および0.2℃未満であることを示している。本明細書による光学キャビティPCRは、サイクル間の温度変化が1℃未満で優れた温度精度を示し、熱質量が低く、Au薄膜の低い熱質量および高い熱伝導率のために4分以内に94℃から68℃まで30回のPCR熱サイクルを達成することができる。本明細書のLED駆動光学キャビティPCR法を用いて、核酸(c−MET cDNA)増幅を、15分以内に10−8ng/μL−1(2コピー/μL)の最も低い鋳型DNA濃度で実証した。
【0014】
本技術のさらなる態様は、本明細書の以下の部分に記載され、詳細な説明は、本技術の好ましい実施形態を制限なしに完全に開示することを目的とする。
【0015】
本明細書に記載された技術は、例示のみを目的とする以下の図面を参照することにより、より完全に理解されるであろう。
【図面の簡単な説明】
【0016】
図1A】明瞭にするために、部分的に除去された上部および中間キャビティ層を有するポリメラーゼ連鎖反応(PCR)による核酸増幅のための光学キャビティの斜視図である。
図1B図1Aの光学キャビティにおける光吸収の概略側面図である。
図1C図1Aのキャビティに対するポリメラーゼ連鎖反応(PCR)による対応する核酸増幅の模式図である。
図2A】LED光源を有する図1Aの光学キャビティPCR装置の概略斜視図である。
図2B図2AのLED駆動光学キャビティPCR装置の概略側面図である。
図3図1Aの光学キャビティの層形成の拡大側面図である。
図4A】底のみおよびキャビティ(上部および底部)加熱のための厚さ750pmの光学PCRチャンバ内の計算された温度分布の画像である。
図4B】底のみおよびキャビティ(上部および底部)加熱のための厚さ750pmの光学PCRチャンバ内の計算された温度分布の画像である。
図4C】底のみおよびキャビティ(上部および底部)加熱のための厚さ750pmの光学PCRチャンバ内の計算された温度分布の画像である。
図4D】底のみおよびキャビティ(上部および底部)加熱のための厚さ750pmの光学PCRチャンバ内の計算された温度分布の画像である。
図5図4Aから図4Dの白い矢印に沿ったPCRチャンバの温度プロファイルのプロットを示す図である。
図6】本明細書の光学PCRチャンバのz軸(x軸上の0pm)に沿った温度差をPCRチャンバ高さの関数として示すグラフである。
図7】異なるチャンバ高さのLED駆動光学キャビティを使用して、94℃から68℃までの30回のPCR熱サイクルの代表的な温度プロファイルを示す図である。
図8A】チャンバ高さが変化する本明細書の光学キャビティPCR装置の30回の熱サイクルの合計反応時間を示す図である。
図8B】30回のPCRサイクル中の平均速度および異なるチャンバ高さに対するサンプル標準偏差を示す図である。
図8C】異なるチャンバ高さを有する30回の熱サイクル中の94℃(変性)および68℃(アニーリング/伸長)における測定された温度分布を示す図である。
図8D】2つの位置の間の熱サイクル中の温度プロファイルの比較を示す図である。
図9A】95℃から68℃の異なるサイクル数を有する本明細書の光学キャビティPCR装置(750pm厚のPCRチャンバを有する)と比較した、ベンチトップ熱サイクラーからの2%アガロースゲル画像を示す図である。
図9B】鋳型DNAの異なる初期濃度を有する本明細書のPCR装置からの2%アガロースゲル画像を示す図である。
図10】本明細書の光学キャビティPCR装置と比較したベンチトップ熱サイクラーの全反応時間を要約したグラフを示す図である。
【発明を実施するための形態】
【0017】
以下に詳述する実施形態は、PCR混合物または同様の物質を加熱するための光学キャビティ(光学キャビティPCR)に関する。典型的なPCR感知プロセスでは、PCR混合物は、一般に、PCR反応に影響を及ぼすために複数の加熱および冷却サイクルを経る。したがって、標的サンプル(例えば、PCR混合物)の迅速かつ均一な加熱は、POC試験に非常に有益である。以下に詳述する実施形態はPCRベースの感知に関するが、本明細書の光学キャビティは、サンプルの迅速かつ均一な加熱が望まれる任意のプロセスで使用するために組み込むことができることが理解される。
【0018】
1.光学キャビティPCR構成
【0019】
図1Aは、明瞭にするために、部分的に除去された上部およびキャビティ層を有するポリメラーゼ連鎖反応(PCR)による核酸増幅のための光学キャビティ20を備えるPCR感知装置10の一実施形態の斜視図である。図1Bは、ポリメラーゼ連鎖反応(PCR)による光吸収および対応する核酸増幅を示す、光学キャビティ20の概略側面図である。
【0020】
一実施形態では、光学キャビティ20は、以下、PCRベースの試験のためのPCR混合物を保持する特定の例のために使用される場合、「PCRチャンバ」と称する、マイクロ流体熱サイクルチャンバ24の壁を画定するように離間された2つの対向する薄膜シートまたは層(下部薄膜22aおよび上部薄膜22b)を備える。薄膜22aおよび22bは、好ましくは、光吸収材料を含むか、または薄膜の迅速かつ均一な加熱をもたらすように光を吸収するよう構成されている。下部薄膜22aと上部薄膜22bとの両方がそれぞれ下部基板層18と上部基板層14との上に堆積される。光学キャビティ20は、例えば、単一の熱サイクルチャンバ24、または多重増幅用のチャンバのアレイを備えることができる。
【0021】
好適な実施形態では、薄膜22aおよび22bの1つまたは複数がAuを備える。しかしながら、他の材料または組成物、例えば、銀(Ag)、ニッケル(Ni)、チタニウム(Ti)、クロム(Cr)、ゲルマニウム(Ge)、パラジウム(Pd)、ルテニウム(Ru)、タングステン(W)、イリジウム(Ir)、白金(Pt)、および上記の金属から構成される任意の合金、または上記の金属もしくはその組み合わせから構成される多層金属構造を使用してもよい。
【0022】
さらに、薄膜シート22aおよび22bは、グラフェン、グラファイト、カーボンナノチューブ(CNT)、または塗料などを含む非金属の光吸収材料を含むことができる。
【0023】
別の実施形態では、下部薄膜22aおよび上部薄膜22bの1つまたは複数をパターン化して、共振による光吸収を増加させることができる。パターン化された薄膜は、平坦なポリマー基板14、18上に形成することができ、ピラーアレイ、1Dもしくは2D格子、フォトニック結晶、または半球の1つまたは複数の形態で2Dまたは3Dマイクロ構造またはナノ構造を備える。
【0024】
中間キャビティ層16は、光学キャビティ20の厚さを画定するために、下部基板層18と上部基板層14との間に配置される。好適な実施形態では、下部基板層18および上部基板層14はそれぞれ、アクリルガラス、例えば、ポリメチルメタクリレート(PMMA)または光の透過を可能にする同様の物質などの透明ポリマーを含む。
【0025】
好適な実施形態によれば、下部基板層18および上部基板層14は、好ましくは、光が光学キャビティ20を通過することを可能にする透明または半透明の組成物を含む。下部基板層18および上部基板層14は、一般的にPMMAを含むものとして本明細書で詳細に説明されるが、そのような材料の選択は例示に過ぎず、任意の数のポリマーまたは半透明/透明材料を、薄膜のためのプラットフォームとして使用するために選択することができる。下部基板層18および上部基板層14はまた、ピラーアレイ、1Dもしくは2D格子、フォトニック結晶、半球、または他のパターン化されたもしくはランダムな構造(図示せず)の1つまたは複数を含むことができる2Dまたは3Dマイクロ構造またはナノ構造を備えることができる。一実施形態では、下部基板層18および上部基板層14は、ナノプラズモニック構造の共振波長で照明されるように構成されたウェルの表面上のナノプラズモニック構造またはナノプラズモニック性のフィードバックレーザーキャビティと、ナノプラズモニック構造のプラズモニック光熱加熱を引き起こす持続期間とを備える。
【0026】
図1Aから分かるように、一対のポート25a、25bは、上部基板層14および中間キャビティ層を介して光学チャンバ20に連通している。ポート25a、25bは、試料またはサンプル(例えば、PCR混合物)の分配を可能にする。一実施形態では、PCR混合物が、第1のポート25aに注入され、PCR混合物が、PCRチャンバ24を満たす。第2のポート25bは、PCR混合物が、チャンバ全体を密閉し、第2のポート25から出るまで、空気をチャンバから押し出すことを可能にする。1つまたは複数の流体弁および/または流体制御装置(両方とも図示せず)を用いて、PCRチャンバ24の充填を容易にすることができる。
【0027】
図1Bは、ポリメラーゼ連鎖反応(PCR)による核酸増幅のための光学キャビティ20における光吸収の概略図を示す。光が初期強度lで下部基板層18(例えば、PMMA)を通って照明された場合、光は下部薄膜22aを通って反射され(R)、吸収され(A)、透過される(T)。続いて、透過光(T)はチャンバ24を通過し、上部薄膜22bを通って反射され(R)、吸収され(A)、透過される(T)。薄膜22aおよび22bは、PCR熱サイクルのためのプラズモニックフォトサーマル光熱変換器として作用する。吸収光A、Aは、PCRの熱サイクルのための薄膜(例えば、Au)原子のフォトサーマル加熱に寄与する。
【0028】
図1Cは、薄膜の加熱の際に起こる変性、アニーリング/伸長、およびコピー(増幅)段階のPCRプロセスの一実施形態を示す。
【0029】
第1のステップ(1)では、本プロセスは、薄膜22a、22bに光を特定の持続期間照明することにより、薄膜22a、22bへの光の吸収量が均一化およびそれに伴う薄膜22a、22bの加熱に影響を与え、それにより、チャンバ24内の流体サンプル(例えば、PCR混合物)の温度を、第1の期間、選択された温度に上昇させて、PCR混合物内の変性に影響を及ぼす。
【0030】
第2のステップ(2)において、薄膜22aおよび22bは、特定の持続期間、入力光で再度照明され、それにより、チャンバ24内の流体サンプル(例えば、PCR混合物)の温度を、PCR混合物内のアニーリング/伸長に影響を与える第2の期間の間、選択された温度に上昇させる。
【0031】
第3のステップ(3)において、薄膜22aおよび22bは、特定の持続期間、入力光で再度照明され、それにより、チャンバ24内の流体サンプル(例えば、PCR混合物)の温度を、PCR混合物内のコピー/増幅に影響を与える第3の期間の間、選択された温度に上昇させる。
【0032】
一実施形態では、第3のステップが、約30から40サイクル繰り返される。
【0033】
このモデルに基づいて、Au膜1および2の全吸収は、式1および式2によって与えられ、
【数1】
【数2】
ここで、IはLEDからの光の初期強度であり、A(およびA)、T(およびT)、およびR(およびR)はそれぞれ薄膜22a(および22b)の吸収度、透過率、および反射率である。
【0034】
Au膜の厚さは、最大の均一温度分布および最大の全光吸収(ΣAfilm1+ΣAfilm2)の両方の薄膜(ΣAfilm1=ΣAfilm2)で均一な光吸収を有するよう最適化される。最初に、LEDの厚さおよび発光スペクトルの異なるAu薄膜の測定された吸収スペクトルから、LEDの発光波長にわたるAu薄膜22a、22bの平均透過率、反射率、および吸収度を計算する。(表2参照)。次いで、表1に示すように、上下のAu厚の組み合わせごとに吸収率(ΣAfilm1/ΣAfilm2)と全吸収量(ΣAfilm1+ΣAfilm2)を計算する。Au薄膜22aの厚さ10nmとAu薄膜22bの厚さ120nmの組み合わせは、吸収比(1.06)と光の全吸収(70%)の両方に最適であることが分かり、好ましい構成で光学キャビティ20のためのAu薄膜の厚さとして使用することができる。
【0035】
また、薄膜22a、22bの吸収を調整するために代替材料を使用することもできることも理解されよう。例えば、下部薄膜22aは、上部薄膜22bよりも(より透過特性が高い)吸収性の低い材料で構成することができる。したがって、ジオメトリおよび/または材料組成を使用して、薄膜22a、22bの吸収特性を調整することができる。
【0036】
図2Aは、照明または光源を備えた光学キャビティPCR装置10の概略斜視図を示す。図2Bは、光学キャビティPCR装置10の概略側面図を示す。光源は、入力光lを光学キャビティ20に向けるためのレンズ30を備えている、プラットフォーム32(例えば、40mmの円形クールベース)上に配置された一連のLED34(例えば、7つのLuxeon Rebelロイヤルブルー、700mA注入電流で、447.5nmのピーク波長、6230mWを有するLED)として示される。別の光源には、レーザーダイオード(LD)、タングステンランプ、蛍光灯、ハロゲンランプ、水銀ランプ、キセノンランプ、メタルハライドランプ、またはこれらの任意の組み合わせを含むことができる。光源のタイプの選択、および/または入力光Iの波長もしくは強度の選択は、薄膜22aおよび22bの共振周波数に影響を及ぼす可能性があり、したがって、薄膜22aおよび22bの厚さおよび材料の選択は、入力光Iの性質により変化する可能性があることが理解される。
【0037】
K型熱電対28を有する基準チャンバ26は、光学キャビティ20の隣に配置される。基準チャンバ26および光学キャビティ20は、光学キャビティ20および基準チャンバ26の両方が同じ光強度を受けて、フォトサーマル加熱が同じ速度で行われることを保証するために、レンズ30の焦点距離で入力光ビームIウエスト(例えば、φ=12mm)によって覆われるよう構成される。光学キャビティ20と基準チャンバ26の両方は、光吸収を最大にするためにレンズ30の焦点距離(この構成ではレンズの上面から25mm離れた位置)に配置される。一実施形態では、レンズ30は、Polymer Optics 7 Cell Cluster Concentrator Opticアレイを含む。
【0038】
基準チャンバ26は、チャンバ内の温度の基準を提供するために、図2Aの構成で使用されることが理解される。しかしながら、POC試験のための好ましい構成では、本明細書の装置は、基準チャンバ26なしで、光学キャビティ20、または複数の、もしくは多重化された光学キャビティのアレイのみを含むことができる。そのような場合、チャンバ24の温度に関するフィードバックは、温度センサ(図示せず)または他の感知手段を介して取得することができる。
【0039】
図3は、光学キャビティ層および基板層の積層の拡大図を示す。一実施形態では、薄膜22aおよび22bのそれぞれは、金属層または光吸収材料によるPCR反応阻害を防止するために、パッシベーション層23で覆われる。パッシベーション23層は、酸化物薄膜、薄いポリマー層、または薄いタンパク質層などを含むことができる。中間キャビティ層16は高さhを有し、上部PMMA層14および下部PMMA層18は高さhを有する。本明細書の装置を試験するために使用される1つの例示的な実施形態では、(全キャビティ長4mmに対して)h=1.4mm、L=6mm、L=4mm、キャビティ厚hを、100pm、200pm、400pm、および750pmから変化させた。上記の寸法は1つの潜在的な実施形態の例示であるが、他の構成も考えられることが理解される。
【0040】
以下でさらに詳細に説明する試験では、高速モード、オートゼロ、および冷接点補償(図示せず)を備えたナショナルインスツルメンツ(NI)9213 16チャネル熱電対モジュールを使用して、タイプK熱電対28から正確な温度を取得した。温度サイクルは、LabVIEWプログラムによりすべて制御された、LED34、80mm冷却ファン(図示せず)、ソースメータ(図示せず)、および熱電対28を使用して行った。
【0041】
1つの例示的な構成では、厚さ1mmのポリ(メチルメタクリレート)(PMMA)シートを、光学キャビティ20の上部基板層14および下部基板層18で使用し、ならびに中間キャビティ層16のための100、200、400、および750Mm厚のPMMAシートを、VersaLASER VL−200レーザ切断システム(Universal Laser System、Inc.、Scottsdale、AZ、USA)で切断した。上部基板層14をオーブン内に56℃で6時間インキュベートして、レーザ切断による損傷領域のアニーリングを可能にした。下部基板層18および中間キャビティ層16は、最初に、10分間のPMMAシートのUV/オゾン処理後、0.2メートルトンの圧力で140°Fで行われる熱接着を使用して互いに接合された。次いで、底部(キャビティチャンバ層と結合した)および上部層を70%エタノールで10分間2回洗浄し、脱イオン(DI)水ですすぎ、Nを用いて乾燥させた。異なる厚さ(10、20、40、80、および120nm)のAu薄膜22a、22bを、2×10−7Torrのベース圧力下で電子ビーム(E−ビーム)蒸着によって底部および上部PMMAシート上に堆積させた。Au薄膜によるPCR反応阻害を防ぐために、厚さ50nmのSiOパッシベーション層をRFスパッタリングによってAu薄膜22a、22b上に堆積させた。最後に、10分間のPMMAシートのUV/オゾン処理後に140°Fで0.2メートルトンの圧力で行われた熱接着を使用して、底部(キャビティチャンバ層と結合された)および上部層を一緒に結合して光学キャビティ20PCRチャンバ24を形成した。
【0042】
一実施形態では、光学キャビティ20は、リアルタイム光学キャビティPCRのためのPCR反応の間に蛍光発光のレージング用に構成することができる。そのような構成は、従来のリアルタイムPCRと比較して、リアルタイムキャビティPCRの感度をさらに高めることができる。
【0043】
2.実験結果
【0044】
a.光学キャビティPCRの温度均一性のシミュレーション
【0045】
COMSOLを用いた一組の熱伝達シミュレーションを実施して、PCR熱サイクル中の光学キャビティ20内の温度均一性を特徴づけた。図4Aから図4Dは、底のみおよびキャビティ(上部および下部)加熱のための厚さ750pmのPCRチャンバ内の計算された温度分布を示す。図4Aおよび図4Cは、底部のみを加熱した場合の計算された温度分布を示し、図4Bおよび図4Dは、PCRチャンバ24内での上部および底部(キャビティ)加熱の場合の計算された温度分布を示し、チャンバの中心(x軸上に0pm、z軸上に375pm)の温度が、それぞれ、変性のために94℃に達し、アニール/伸長のために68℃に達する。
【0046】
図4Aから図4Dは、本明細書の装置の光学キャビティ(上部および底部)加熱が、底部のみの加熱、特に94℃での加熱よりもより均一な温度分布を提供するという明確な説明を提供する。チャンバの高さにわたる温度勾配(白い矢印に沿った)が図5にプロットされている。本明細書によるキャビティ加熱は、それぞれ、94℃および68℃での底部のみの加熱の場合の14.4℃および0.4℃の温度差と比較して、僅か1.9℃および0.2℃の差でより良好な温度均一性を示す。
【0047】
図6を参照すると、温度均一性に対するPCRチャンバの高さの影響もまた調査した。PCRチャンバの高さが減少するにつれて、チャンバの高さにわたる温度差(ΔT=Tmax−Tmin)は、底部のみおよびキャビティ加熱構成の両方で減少し、これは、熱伝達は、より薄いPCRチャンバ内のより小さな体積に対してより効果的であり得るためである。さらに、本明細書の装置のキャビティ加熱が、変性温度およびアニーリング/伸長温度の両方で、すべてのチャンバ高さのずっと小さな温度差を示すことは注目に値する。したがって、本明細書によるキャビティ加熱を用いることにより、効率的で信頼できる核酸増幅のためにPCR混合物の均一な加熱が可能になる。
【0048】
b.LED駆動光学キャビティPCR熱サイクラー
【0049】
図7は、異なるチャンバ高さのLED駆動光学キャビティを使用して、94℃から68℃までの30回のPCR熱サイクルの代表的な温度プロファイルを示す。キャビティ高さhが減少するにつれて30PCRサイクルの合計時間は減少し、100pm厚の光学キャビティ20PCRチャンバ24での最小時間(平均235.5秒)を達成し、図8Aに示されたように0.9899の調整されたR値で良好な直線性を示す。
【0050】
熱サイクル結果を用いて、加熱および冷却速度を計算した。図8Bに示すように、30のPCRサイクルおよびサンプル標準偏差の間の平均速度を得た。100pm厚のPCRチャンバ24から、7.50±0.46℃秒−1および6.35±0.49℃秒−1の最も速い加熱および冷却速度が得られた。
【0051】
図8Cは、異なるチャンバ高さを有する30回の熱サイクル中の94℃(変性)および68℃(アニーリング/伸長)における測定された温度分布を示す。各PCRサイクルで達成される最高および最低温度は、94℃で1℃未満、68℃で0.5℃未満に変化し、市販のベンチトップ熱サイクラーと同等の温度精度を示す。特に、厚さ50nmのSiO層を介したAu薄膜とPCR混合物との間の熱量の低下および熱の高速伝達のために、キャビティPCRのオーバーシュートおよびアンダーシュートはベンチトップ熱サイクラー(94℃で約2℃、68℃で約4℃)と比較して、非常に低く(94℃で0.85℃、68℃で0.25℃)、ベンチトップ熱サイクラーは高速熱サイクル用に設計されていないため、高速サイクルが行われる。
【0052】
位置1(基準チャンバ26)および2(光学キャビティPCRチャンバ24)の両方のチャンバを同じ速度で確実に加熱するために、K型熱電対28を有する基準チャンバ26を両方の位置に配置し、熱サイクルを行った。図8Dは、位置1および2の間の熱サイクル中の温度プロファイルの比較を示しており、両方の位置が、薄いAu層のフォトサーマル加熱のためにLEDから同じ強度の光を受けることが明確に分かる。
【0053】
c.光学キャビティPCRを用いた核酸増幅
【0054】
本明細書のLED駆動光学キャビティPCRシステムおよび方法を検証するために、核酸(c−MET cDNA、肺癌バイオマーカー)の増幅が実証された。
【0055】
ヒトHGFRまたはc−MET cDNAをPCRのための鋳型として使用した。推奨濃度の従来のベンチトップPCRの場合、PCR反応は、0.08μLのKAPA2G DNAポリメラーゼ、4μLの5×KAPA2G緩衝液A、0.4μLのdNTP混合物、1μLの各順方向および逆方向c−METプライマー(ストック溶液10μM)、6.7μL BSA(最終濃度10μg μL−1BSAの場合は3%w/vストック溶液)、および2μLの鋳型cDNAからなる。水を加えて最終容量を20μLとした。高速サイクルキャビティPCRにおける増幅効率を高めるために、高濃度のポリメラーゼおよびプライマーを使用した。キャビティPCRのPCR反応は、0.4μLのKAPA2G DNAポリメラーゼ、2μLの5×KAPA2G緩衝液A、0.2μLのdNTP混合物、1μLの各順方向および逆方向c−METプライマー(ストック溶液100μM)、3.3μLのBSA(最終濃度10μg μL−1BSAの場合は3%w/vストック溶液)、および1μLの鋳型DNAからなる。再び、反応が最終容量10μLになるまで水を加えた。c−MET cDNAの濃度もまた変化し、10−8ng μL−1(2コピー/μL)に低下させた。
【0056】
熱サイクルの間に気泡が形成されないことを確実にするために、チャンバ24の他方の側の第2のポート25が流体で満たされるまで、PCR混合物をピペットおよび第1のポート25を用いて光学キャビティ20PCRチャンバ24に装填した。2つのポート25を、PCRシーリングテープでシールして、気泡の形成または流体の損失を確実に防止した。光学キャビティ20は、厚さ120nmのAu膜を上部に有する基準チャンバ26と一列に配置し、これは、均一な光吸収と、Au薄膜の最大総吸収のための最適な構成である。増幅後、10μLのPCR産物(ピペットを用いてキャビティPCRチャンバから回収)と10μLのE−Gelサンプル充填バッファ(Invitrogen)との混合物を、SYBR Safe DNAゲル染色(Invitrogen)でE−Gel 2%アガロースゲルに充填し、E−Gel iBase Power System(Invitrogen)で実行し、E−Gel Safe Imager Transilluminatorでゲル画像を撮った。50bpのDNAラダーを用いて、生成物のサイズを確認した。基準PCRシステムには、CFX96リアルタイムPCR検出システムを備えたBio−Rad C1000TM熱サイクラーを使用した。PCRは、ベンチトップについては20μL容量で行い、異なるチャンバ厚さでのキャビティPCRについては5μLおよび10μL容量で行った。c−MET cDNAに加えて、λ−DNAは、初期キャビティPCR最適化のためのPCRの鋳型としても使用した。Z−TaqTM DNAポリメラーゼを用いて104塩基対(bp)λ−DNA標的を増幅するPCR反応には、0.5μLのZ−Taq DNAポリメラーゼ、5μLの10×Z−Taq緩衝液、4μLのdNTP混合物、4.5μLの10μMのプライマー(それぞれ)、および10μLのウシ血清アルブミン(BSA)(50μg)が含まれ、PCRグレード水で50μLにした。鋳型λ−DNAの最終濃度は、0.01ng μL−1から10ng μL−1まで変化した。
【0057】
図9Aは、95℃から68℃での異なるサイクル数を有するベンチトップ熱サイクラー(CFX96リアルタイムPCR検出システムを有するBio−Rad C1000 TMnetyサイクラー)およびキャビティPCR(750μm厚PCRチャンバ24を有する)からの2%アガロースゲル画像を示す(ポイント1:ベンチトップ10−4ng μL−1および30サイクル、ポイント2:ベンチトップNTC、ポイント3:20サイクルでのキャビティ、ポイント4:30サイクルでのキャビティ、ポイント5:40サイクルでのキャビティ、ポイント5:NTCでのキャビティ)。
【0058】
ベンチトップPCRのために、3段階熱サイクルプロトコールを使用した。図9Aは、サイクル数が増加するにつれて、光学キャビティ20のバンド強度が増加するという明確な傾向を示している。
【0059】
図9Bは、鋳型DNAの異なる初期濃度を有するキャビティPCR産物からの2%アガロースゲル画像を示す(ポイント1は、10−5ng μL−1、ポイント2は、10−7ng μL−1、ポイント3は、10−7ng μL−1、ポイント4は、10−8ng μL−1、ポイント5は、NTC).濃度が変化すると、バンド強度に明確な傾向が存在する。さらに、40サイクルのキャビティPCRは、15分以内に10−8ng μL−1(2コピー/μL−1)のように低い増幅が可能であった。
【0060】
ベンチトップおよびキャビティPCRの全反応時間を図10に要約する。KAPA2G Fast PCRキットの全反応時間は、従来のPCRアッセイよりもすでに20〜70%短縮されているが、本明細書に従ってキャビティPCRを使用することにより、全反応時間の70〜80%を短縮することができる。
【0061】
高速かつ高感度な核酸増幅に加えて、光学キャビティ20は高度に反復可能かつ再現可能である。堅牢なLED駆動光学キャビティPCRの実証により、本明細書のシステムおよび方法は、迅速で、正確で、信頼できる核酸増幅を必要とするPOCプラットフォームへの実装のための理想的な候補になる。
【0062】
3.要約
【0063】
本明細書の光学キャビティPCR装置10は、高速PCR熱サイクルだけでなく、従来のベンチトップPCRシステムと比較しても信頼性のある核酸増幅において有効であった。1回の調査を実行可能にするには、30分以内に試験結果を提供することが非常に望ましい。本明細書の光学キャビティPCR装置10は、本装置が、4〜10分以内に30回のPCR熱サイクルを達成し、15分以内に10−8ng μL−1(2コピー/μL)という低い核酸濃度を増幅することができる。
【0064】
光学キャビティ20のAu薄膜の厚さを最適化することにより、光学キャビティ20の上部および底部の薄いAu層22a、22bに光吸収を均一に吸収させることができ、94℃と68℃とでそれぞれ1.9℃と0.2℃との差で優れた温度均一性が得られた。その結果、本明細書の光学キャビティPCR装置10は、優れた温度均一性および正確な温度精度のため、優れた反復性および再現性を示す。一般に、熱サイクルの駆動がより高速になるほど、熱慣性によるPCRサンプル全体にわたる温度の変動が大きくなる。しかしながら、光学キャビティPCRでは、1.3μL〜10μLの範囲の異なるサンプル容量で、温度精度に著しい差はない。これは、低い熱質量だけでなく、厚さ50nmの薄いSiOパッシベーション層を介したAu薄膜とPCR混合物との間の速い熱伝達にも起因する可能性がある。
【0065】
単一PCB上に7つのLEDを使用して、基準およびキャビティPCRチャンバを同じ速度で加熱するための広いビームウェストを使用したため、試験された装置の消費電力は比較的高かった(約20W)。しかしながら、基準チャンバ26および光学キャビティ20(または、多重化構成における個々の光学キャビティ20)のそれぞれに2つの3W LEDを使用することによって、電力消費をさらに低減することができる(約6W)。本明細書の実施形態は、蛍光検出を使用する定量的リアルタイムPCRならびに高スループットの多重増幅を可能にする複数のPCRウェルおよび複数のLEDを統合することに焦点を当てている。
【0066】
結論として、LED駆動光学キャビティPCR熱サイクラーによる新規な超高速PCRが実証された。キャビティの上部および底部の両方の厚さの異なるAu薄膜は、底部のみの加熱フォトニックPCRよりも高い光−熱変換効率および温度均一性で改善が見られる。総増幅時間を制御すると、c−MET遺伝子と市販のベンチトップ熱サイクラーとの同等の核酸増幅が実証された。c−MET遺伝子の超高速増幅により、94℃(変性)と68℃(アニーリング/伸長)の間の熱サイクルは、超高速加熱を用いて、30サイクルで4〜10分以内に達成された。さらに、本キャビティPCRプラットフォームの反復性および再現性を実証した。このシンプルで堅牢な超高速キャビティPCR熱サイクラーがPOC診断に適していることを提案する。
【0067】
本明細書の記載から、本開示は、以下を含むがこれに限定されない複数の実施形態を包含することが理解されよう。
【0068】
1.流体サンプルの熱サイクルのための装置であって、前記装置は、
前記流体サンプルを保持するよう構成された複数のチャンバ壁によって画定される少なくとも1つのマイクロ流体熱サイクルチャンバと、
第1の基板上に配置され、前記熱サイクルチャンバの第1のチャンバ壁を画定する第1の薄膜と、
第2の基板上に配置され、前記第1のチャンバ壁に対向する第2のチャンバ壁を形成する第2の金属薄膜と、
前記第1の薄膜を照明するよう構成される光源と、
を備え、
前記第1の薄膜上に照明された光の第1の部分が前記第1の薄膜に吸収され、前記第1の薄膜上に照明された前記光の第2の部分が前記第1の薄膜を透過し、
前記第1の薄膜を透過した前記光が前記第2の薄膜を照明し、
前記第2の薄膜上に照明された前記透過光の少なくとも一部が前記第2の薄膜に吸収され、
前記第1の薄膜および前記第2の薄膜への前記吸収光は、前記第1の薄膜および前記第2の薄膜の温度を上昇させて、前記熱サイクルチャンバ内の前記流体サンプルを加熱するよう構成される、
装置。
【0069】
2.前記第1の薄膜および前記第2の薄膜のうちの1つまたは複数は、金属層を備える、前述したあらゆる態様に記載の装置。
【0070】
3.前記金属層は、金(Au)、銀(Ag)、ニッケル(Ni)、チタニウム(Ti)、クロム(Cr)、ゲルマニウム(Ge)、パラジウム(Pd)、ルテニウム(Ru)、タングステン(W)、イリジウム(Ir)、または白金(Pt)からなる群から選択される金属を備える、前述したあらゆる態様に記載の装置。
【0071】
4.前記第1の薄膜および前記第2の薄膜のうちの1つまたは複数は多層金属構造を備え、
前記金属構造は、金(Au)、銀(Ag)、ニッケル(Ni)、チタニウム(Ti)、クロム(Cr)、ゲルマニウム(Ge)、パラジウム(Pd)、ルテニウム(Ru)、タングステン(W)、イリジウム(Ir)、または白金(Pt)からなる前記群から選択される1つまたは複数の金属を備える、
前述したあらゆる態様に記載の装置。
【0072】
5.前記第1の薄膜および前記第2の薄膜のうちの1つまたは複数が、グラフェン、グラファイト、カーボンナノチューブ(CNT)、または塗料からなる群から選択される非金属光吸収材料を備える、前述したあらゆる態様に記載の装置。
【0073】
6.前記第1の薄膜および前記第2の薄膜のうちの1つまたは複数が、共振による光吸収を増加させるためのパターン化された表面を備える、前述したあらゆる態様に記載の装置。
【0074】
7.前記第1の基板および前記第2の基板のうちの1つまたは複数が、少なくとも前記第1の基板を介して前記第1の薄膜へ前記照明光を透過させるよう構成される半透明材料を備える、前述したあらゆる態様に記載の装置。
【0075】
8.前記第1の基板および前記第2の基板のうちの1つまたは複数が、ピラーアレイ、1Dもしくは2D格子、フォトニック結晶、または半球の1つまたは複数の形態の2Dまたは3Dマイクロ構造またはナノ構造を備える、前述したあらゆる態様に記載の装置。
【0076】
9.前記第1の薄膜は第1の厚さを有し、前記第2の薄膜は前記第1の厚さとは異なる第2の厚さを有する、前述したあらゆる態様に記載の装置。
【0077】
10.前記第1の薄膜の厚さおよび前記第2の薄膜の厚さが、前記第1の薄膜および前記第2の薄膜が実質的に均一な温度上昇率を有するように、前記第1の薄膜および前記第2の薄膜への光の吸収速度を一致させるよう選択される、前述したあらゆる態様に記載の装置。
【0078】
11.前記熱サイクルチャンバ内の温度を感知するよう構成される少なくとも1つの温度センサをさらに備える、前述したあらゆる態様に記載の装置。
【0079】
12.前記第1の薄膜および前記第2の薄膜は、前記熱サイクルチャンバ内のPCR反応阻害を防止するために、パッシベーション層で覆われた表面を有する、前述したあらゆる態様に記載の装置。
【0080】
13.前記光源は、発光ダイオード(LED)、レーザーダイオード(LD)、タングステンランプ、蛍光灯、ハロゲンランプ、水銀ランプ、キセノンランプ、メタルハライドランプ、またはそれらの組み合わせからなる群から選択される、前述したあらゆる態様に記載の装置。
【0081】
14.前記熱サイクルチャンバに結合される第1および第2のポートをさらに備え、
前記第1および第2のポートは、前記流体サンプルが前記熱サイクルチャンバに入ることを可能にするよう構成される、
前述したあらゆる態様に記載の装置。
【0082】
15.流体サンプルの超高速熱サイクルを実施するための方法であって、前記方法が、
対向する第1および第2の薄膜によって画定されるマイクロ流体熱サイクルチャンバを提供することと、
前記熱サイクルチャンバを前記流体サンプルで満たすことと、
前記第1の薄膜を光源で照明することであって、
前記第1の薄膜上に照明された光の第1の部分が前記第1の薄膜に吸収され、前記第1の薄膜上に照明された前記光の第2の部分が前記第1の薄膜を透過することと、
前記第1の薄膜を透過した前記光で前記第2の薄膜を照明することであって、
前記第2の薄膜を照明する前記透過光の少なくとも一部が前記第2の薄膜に吸収されることと、
前記第1の薄膜および前記第2の薄膜への前記吸収光の関数として前記第1の薄膜および前記第2の薄膜の温度を均一に上昇させることと、
前記第1の薄膜および前記第2の薄膜の前記温度上昇の結果として、前記熱サイクルチャンバ内で前記流体サンプルを加熱することと、
を備える、方法。
【0083】
16.前記第1の薄膜の照明は、前記流体サンプルの超高速マイクロ流体ポリメラーゼ連鎖反応(PCR)を行うために間欠的に適用される、前述したあらゆる態様に記載の方法。
【0084】
17.前記第1の薄膜および前記第2の薄膜の温度を均一に上昇させることが、
前記熱サイクルチャンバ内の前記流体サンプルの前記温度を第1の期間選択された温度に上昇させるために、第1の持続期間に前記第1および第2の膜を照明することと、
前記熱サイクルチャンバ内の前記流体サンプルの前記温度を第2の期間選択された温度に上昇させるために、第2の持続期間に前記第1および第2の膜を照明することと、
前記熱サイクルチャンバ内の前記流体サンプルの前記温度を第3の期間選択された温度に上昇させるために、第3の持続期間に前記第1および第2の膜を照明することと、
前記流体サンプルを増幅するために複数のサイクルの間、照明期間のサイクルを繰り返すこと、
を備える、前述したあらゆる態様に記載の方法。
【0085】
18.前記第1の薄膜は第1の厚さを有し、前記第2の薄膜は前記第1の厚さとは異なる第2の厚さを有する、前述したあらゆる態様に記載の方法。
【0086】
19.前記第1の薄膜の厚さおよび前記第2の薄膜の厚さは、前記第1の薄膜および前記第2の薄膜が実質的に均一な温度上昇率を有するように、前記第1の薄膜および前記第2の薄膜への光の吸収速度を一致させるよう選択される、前述したあらゆる態様に記載の方法。
【0087】
20.前記熱サイクルチャンバ内の温度を測定すること、
をさらに備える、前述したあらゆる態様に記載の方法。
【0088】
21.前記第1の薄膜および前記第2の薄膜は、前記熱サイクルチャンバ内のPCR反応阻害を防止するために、パッシベーション層で覆われた表面を有する、前述したあらゆる態様に記載の方法。
【0089】
22.前記熱サイクルチャンバを前記流体サンプルで満たすことが、
前記熱サイクルチャンバに結合される第1のポートを介して流体サンプルを前記サイクルチャンバに注入すること、
を備え、
前記注入された流体サンプルが、前記熱サイクルチャンバに結合された第2のポートから空気を押し出す、
前述したあらゆる態様に記載の方法。
【0090】
23.前記光学キャビティが、前記PCR反応中に蛍光発光を発生させるよう構成される、前述したあらゆる態様に記載の方法。
【0091】
本明細書の記載には多くの詳細が含まれるが、これらは、本開示の範囲を限定するものとして解釈されるべきものではなく、現時点で好ましい実施形態のいくつかの例を提供したものにすぎない。したがって、本開示の範囲は、当業者に明らかになりうる他の実施形態をすべて包含することを認識されたい。
【0092】
特許請求の範囲において、要素を単数の要素として参照しているものは、特段の記載がない限り「1つおよび1つのみ」を意味しているものではなく、「1つ以上」を意味することを意図している。当業者に知られている開示された実施形態の要素と構造的、化学的および機能的に等価のものはすべて、本明細書に参照により明確に援用されたものとされ、本特許請求の範囲に包含されるものとする。さらに、本開示にない要素、構成部品または方法ステップは、その要素、構成部品または方法ステップが特許請求の範囲に明確に記載されているか否かにかかわらず、公にされるためのものであることが意図される。本願の請求項の要素は、「〜するための手段」という表現を用いて明確に要素を記載していない限り、「ミーンズ・プラス・ファンクション」として解釈されるべきではない。本願の請求項の要素は、「〜するためのステップ」という表現を用いて明確に要素を記載していない限り、「ステップ・プラス・ファンクション」として解釈されるべきではない。
【表1】
【表2】
図1A
図1B
図1C
図2A
図2B
図3
図4A
図4B
図4C
図4D
図5
図6
図7
図8A
図8B
図8C
図8D
図9A
図9B
図10