【文献】
PAPULA, S. et al.,Delayed Cracking of Metastable Austenitic Stainless Steels after Deep Drawing,ISIJ International,日本,2015年08月28日,Vol.55, No.10,pp.2182-2188
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
本明細書で鋼合金は好ましくは、
図1A及び1Bに示されるようなメカニズムを通して構造的形成の特有の経路を受ける。初期構造形成は、合金を融解させ、冷却し固化して、モーダル構造(構造#1、
図1A)を有する合金を形成することによって開始する。より厚い鋳放し構造(例えば、2.0mm以上の厚さ)は、比較的遅い冷却速度(例えば、250K/s以下の冷却速度)及び比較的大きいマトリクス粒径をもたらす。従って、厚さは好ましくは、2.0mmから500mmの範囲であり得る。
【0013】
モーダル構造は好ましくは、2μmから10,000μmの粒径及び/又はデンドライト長を有するオーステナイトマトリクス(ガンマ−Fe)を示し、且つ、実験用鋳造において0.01から5.0μmのサイズで析出する。モーダル構造を有する本明細書の鋼合金は、開始厚さサイズ及び特定の合金の化学的性質に応じて、典型的には以下の引張特性を示す。144から514MPaの降伏応力、384から1194MPaの範囲における最大抗張力、及び0.5から41.8の総延性。
【0014】
モーダル構造を有する本明細書の鋼合金(構造#1、
図1A)は、鋼合金を一以上の熱及び応力のサイクル(例えば、熱間圧延)にさらすことによってナノ相微細化(メカニズム#1、
図1A)を通して均質化され且つ微細化され得て、最終的にナノモーダル構造(構造#2、
図1A)の形成につながる。より具体的には、モーダル構造は、2.0mm以上の厚さで形成される及び/又は250K/s以下の冷却速度で形成されるときに、好ましくは、650℃の温度へ固相線温度未満の温度へ、より好ましくは固相線温度(T
m)より50℃下、且つ好ましくは厚さ減少によって10
−6から10
4のひずみ速度で、加熱される。構造#2への変態は好ましくは、鋼合金が、温度及び応力の連続的適用の間の機械的変形、並びに、熱間圧延間に生じるように構成され得るもの等の厚さ減少を経験するときに、中間の均質化モーダル構造(構造#1a、
図1A)を通して連続的に生じる。
【0015】
ナノモーダル構造(構造#2、
図1A)は好ましくは、初期オーステナイトマトリクス(ガンマ−Fe)を有し、且つ、化学的性質に応じて、フェライト粒(アルファ−Fe)、及び/又は、ホウ化物(ホウ素が存在する場合)及び/又は炭化物(炭素が存在する場合)等の析出物を追加的に含み得る。開始粒径に応じて、ナノモーダル構造は典型的には、1.0から100μmの粒径を有する初期オーステナイトマトリクス(ガンマ−Fe)を示し、及び/又は実験用鋳造においてサイズ1.0から200nmで析出する。マトリクス粒径及び析出サイズは、合金の化学的性質、開始鋳造厚さ及び特定の処理パラメータに応じて、商業生産で5倍まで大きくなり得る。ナノモーダル構造を有する本明細書の鋼合金は、典型的には以下の引張特性を示す。264から1174MPaの降伏応力、827から1721MPaの範囲における最大抗張力、及び5.6から77.7%の総延性。
【0016】
従って、構造#2は好ましくは熱間圧延によって形成され、厚さの減少は好ましくは、1.0mmから10.0mmの厚さを提供する。加えて、(元々は2.0mmから500mmの範囲である)モーダル構造へ適用される厚さの減少は、厚さの減少が、1.0mmから10.0mmの範囲における減少した厚さへつながるようになることが理解され得る。
【0017】
ナノモーダル構造を有する本明細書の鋼合金(構造#2、
図1A)が好ましくは冷間圧延を介して及び好ましくは10
−6から10
4のひずみ速度で、周囲/近周囲温度(例えば、±5℃で25℃)で応力を受けるとき、動的ナノ相強化メカニズム(メカニズム#2、
図1A)は、活性化されて、高強度ナノモーダル構造(構造#3、
図1A)の形成につながる。厚さはここで、好ましくは、0.4mmから3.0mmへ減少される。
【0018】
高強度ナノモーダル構造は典型的には、合金の化学的性質に応じて、オーステナイト粒(ガンマ−Fe)を追加的に含み得るフェライトマトリクス(アルファ−Fe)、並びに、ホウ化物(ホウ素が存在する場合)及び/又は炭化物(炭素が存在する場合)を含み得る析出粒を示す。高強度ナノモーダル構造は典型的には、25nmから50μmのマトリクス粒径、及び、実験用鋳造において1.0から200nmのサイズでの析出粒を示す。
【0019】
高強度ナノモーダル構造を有する本明細書の鋼合金は、典型的には以下の引張特性を示す。720から1683MPaの降伏応力、720から1973MPaの範囲における最大抗張力、及び1.6から32.8%の総延性。
【0020】
高強度ナノモーダル構造(構造#3、
図1A及び
図1B)は、合金の融点未満の加熱等のアニーリングを受けるとき、再結晶(メカニズム#3、
図1B)を経験するための能力を有し、オーステナイトへ戻るフェライト粒の変態が、再結晶モーダル構造(構造#4、
図1B)の形成につながる。ナノスケール析出物の部分的な溶解もまた起こる。ホウ化物及び/又は炭化物の存在は、合金の化学的性質に応じて材料において可能である。完全な変態に関する好ましい温度範囲は、650℃から特定の合金のT
m未満で生じる。再結晶化されるとき、構造#4は、(再結晶化前に見出されるものと比較して)転位又は双晶をほとんど含まず、積層欠陥は、いくつかの再結晶粒において見出され得る。400から650℃のより低い温度で、回復メカニズムが生じ得ることに留意されたい。再結晶モーダル構造(構造#4、
図1B)は典型的には、0.5から50μmの粒径を有する初期オーステナイトマトリクス(ガンマ−Fe)、及び実験用鋳造において1.0から200nmのサイズでの析出粒を示す。マトリクス粒径及び析出サイズは、合金の化学的性質、開始鋳造厚さ及び特定の処理パラメータに応じて、商業生産で2倍まで大きくなり得る。従って、粒径は、0.5μmから100μmの範囲であり得る。再結晶モーダル構造を有する本明細書の鋼合金は、典型的には以下の引張特性を示す。142MPaから723MPaの降伏応力、720から1490MPaの範囲における最大抗張力、及び10.6から91.6%の総延性。
【0021】
スラブ鋳造によるシート生産
図1Cはここで、どのようにスラブ鋳造において
図1A及び1Bにおけるメカニズム及び構造が好ましくは達成されるかを示す。それは、それらの融点より上の範囲における温度で本明細書の合金を加熱することによって合金を融解させ、且つ、好ましくは構造1、モーダル構造を形成するための1x10
3から1x10
−3K/sの範囲における冷却に相当する合金の融解温度未満で冷却することによる鋳造手順によって始まる。鋳放し厚さは、典型的には2から40mmの厚さの範囲におけるシングル又はデュアルベルト鋳造による製造方法に依存するであろう。薄スラブ鋳造は典型的には20から150mmの厚さの範囲であり、厚スラブ鋳造は典型的には150から500mmの厚さより大きい範囲である。従って、前述のような全体的な鋳放し厚さは、2から500mmの範囲に、その中のすべての値で、1mmの増分において、入り得る。従って、鋳放し厚さは、500mmまで、2mm、3mm、4mm等であり得る。
【0022】
それによって動的ナノ相微細化を提供する厚スラブプロセスからの凝固スラブの熱間圧延は、好ましくは、鋳造スラブが、ときどき移動バーと呼ばれる中間厚さスラブへ下げられるように行われる。移動バーは好ましくは、50mmから300mmの範囲における厚さを有するであろう。移動バーはその後、好ましくは、可変個の熱間圧延ストランド、典型的には鋳造マシン当たり1又は2個、によって熱間圧延されて、典型的には1から10mmの厚さの範囲における、鋼のコイルである、ナノモーダル構造を有する、ホットバンドコイルを製造する。このような熱間圧延は好ましくは、固相線温度(つまり、融点)より50℃下の650℃までの温度範囲で適用される。
【0023】
薄スラブ鋳造の場合では、鋳放しスラブは好ましくは、鋳造後に直接熱間圧延されて、典型的には1から10mmの厚さの範囲におけるホットバンドコイルを製造する。この状況における熱間圧延は再び好ましくは、固相線温度(つまり、融点)より50℃下から650℃までの温度範囲で適用される。動的ナノ相強化に対応する冷間圧延はその後、特定の用途に関する目標厚さを達成するために利用される、より薄いゲージシート生産に関して用いられ得る。AHSSに関して、より薄いゲージは通常、0.4mmから3.0mmまでの範囲において目標とされる。このゲージ厚さを達成するために、冷間圧延は、中間アニーリング前に好ましくは1から50%の総減少によって単一又は複数のパスを通して適用され得る。冷間圧延は、Z−ミル、Z−ハイミル、タンデムミル、リバーシングミル等を含む様々なミルにおいて且つ1から15までの様々な数の圧延スタンドによって、行われ得る。したがって、熱間圧延コイルにおいて達成された1から10mmの範囲におけるゲージ厚さはその後、冷間圧延において0.4mmから3.0mmの厚さへ減少され得る。パス当たりの典型的な減少は、材料特性及び設備能力に応じて5から70%である。好ましくは、パスの数は、10から50%の総減少によって1から8の範囲であろう。冷間圧延後、(
図1Bにおいて再結晶としてメカニズム3として識別される)中間アニーリングが行われ、プロセスは最終的なゲージ目標が達成されるまで1から9サイクル繰り返される。特定のプロセスフロー、特に開始厚さ及び熱間圧延ゲージ減少の量に応じて、アニーリングは好ましくは、追加の冷間圧延ゲージ減少を可能にするための材料の延性を回復するために適用される。これは、例えば、冷間圧延高強度ナノモーダル構造(構造#3)がTm未満でアニールされて再結晶モーダル構造(構造#4)を製造する
図1bにおいて示される。中間コイルは、バッチアニーリング又は連続アニーリングライン等の従来法を利用することによって、且つ好ましくは600℃からT
mまでの範囲における温度でアニールされ得る。
【0024】
本明細書の合金からの最終的な目標ゲージによって0.4mmから3.0mmの本明細書の厚さでの冷間圧延シートの最終的なコイルはその後、バッチアニーリング又は連続アニーリング等の従来法を利用することによって、同様にアニールされ得て、再結晶モーダル構造を提供する。従来のバッチアニーリング炉は、加熱、目標温度への時間、及び0.5から7日の総時間による冷却速度を含む長い総アニーリング時間によって400から900℃の好ましい目標範囲において動作する。連続アニーリングは好ましくは、アニール及び酸洗両方のライン又は連続アニーリングラインを含み、20から500秒の暴露時間を備える600から1250℃の好ましい温度を含む。従って、アニーリング温度は、600℃からTmまでの範囲に入り得、20秒から数日の期間の間であり得る。アニーリングの結果は、上記のように、再結晶モーダル構造として本明細書で記載されるもの、又は
図1Bにおいて示されるような構造#4を製造する。
【0025】
加工の各ステップでのスラブからの上記シート生産の実験室シミュレーションが本明細書で記載される。加工による合金特性の進化は、事例#1において実証される。
【0026】
最終シート製品(アニールコイル)における微細構造
0.4mmから3.0mm、好ましくは2mm以下の厚さを有するアニールシートへの加工後の本明細書の合金は、0.5から100μmの粒径を有する初期オーステナイトマトリクス(ガンマ−Fe)及び実験用鋳造において1.0nmから200nmのサイズでの析出粒を典型的には示す再結晶モーダル構造として本明細書で識別されるものを形成する。いくつかのフェライト(アルファ−Fe)は、合金の化学的性質に応じて存在し得、且つ一般的に0から50%の範囲であり得る。マトリクス粒径及び析出サイズは、合金の化学的性質、開始鋳造厚さ及び特定の処理パラメータに応じて、商業生産で2倍まで大きくなり得る。マトリクス粒は、0.5から100μmのサイズの範囲に入るとここでは考えられる。再結晶モーダル構造を有する本明細書の鋼合金は、典型的には以下の引張特性を示す。142から723MPaの降伏応力、720から1490MPaの範囲における最大抗張力、及び10.6から91.6%の総延性。
【0027】
0から10%の磁気相体積を有する、再結晶モーダル構造(構造#4、
図2)を有する本明細書の鋼合金が延伸に起因した変形を経験するとき、延伸は、適用された応力によって合金の伸びへの参照であり、これは2つの条件のいずれかの下で生じ得ることが本明細書では認識されてきた。具体的には、延伸は、臨界速度未満の速度(<S
CR)で、又は、このような臨界速度以上の速度(≧S
CR)で適用され得る。又は、再結晶モーダル構造は、臨界延伸比(D
CR)より大きい延伸比の下で、又は、臨界延伸比(D
CR)以下である延伸比で、延伸され得る。再び
図2を参照する。延伸比は、完全なカップが形成されるときに(つまり、フランジなし)、パンチの直径によって割られたブランクの直径として本明細書では定義される。
【0028】
加えて、臨界速度未満の速度(<S
CR)で、又は、臨界延伸比より大きい延伸比で(>D
CR)、延伸するときに、もともと存在する磁気相体積のレベル(0から10%)が、量「V1」へ増加することになることが見出されてきた。ここで、「V1」は、10%より大きく60%までの範囲である。代わりに、臨界速度以上の速度(≧S
CR)で、又は、臨界延伸比以下の延伸比(≦D
CR)で、延伸する場合、磁気相体積は、量「V2」を提供するであろう。ここで、V2は、1%から40%の範囲である。
【0029】
図3は、再結晶モーダル構造を有する本明細書の合金がS
CR未満の、又は、臨界延伸比D
CRより大きい延伸比で、延伸を経験するときに生じるものを示し、2つの微視的成分が形成され、微視的成分1及び微視的成分2として識別される。これらの2つの微視的成分の形成は、オーステナイトの安定性並びに2つのタイプのメカニズム:ナノ相微細化&強化メカニズム及び転位に基づいたメカニズムに依存する。
【0030】
再結晶モーダル構造を有する本明細書の合金は、変形の間にフェライト相への変態を利用できないことを意味する比較的安定なオーステナイトを有する領域と、塑性変形時にフェライトへの変態を利用できないことを意味する比較的不安定なオーステナイトを有する領域と、を含むようである。S
CR未満の延伸速度で又は臨界延伸比(D
CR)より大きい延伸比での変形時に、比較的安定なオーステナイトを有する領域は、オーステナイトの性質を保持し、且つ、最終的な混合微視的成分構造(構造#5、
図3)における微視的成分1を表す構造#5a(
図3)として記載される。微細構造の未変態部分(
図3、構造#5a)は、微細化されず典型的には0.5から100μmのサイズを有するオーステナイト粒(ガンマ−Fe)によって表される。構造#5aにおける未変態のオーステナイトは、転位の3次元配列の形成による塑性変形によって変形することが考えられることに留意すべきである。転位は、材料が結晶における全体の結合ではなく少量の冶金学的結合を破壊することを可能にしつつ変形プロセスを補助する結晶構造内の結晶学的欠陥又は不規則性である冶金学用語として理解される。これらの高度に変形したオーステナイト粒は、高い割合の転位をもたらす変形の間に生じる既存の既知の転位プロセスに起因して、セルにおいて配される転位の密な絡み合いを形成し得る比較的大きな密度の転位を含む。
【0031】
比較的不安定なオーステナイトを有する領域は、S
CR未満の速度で又はD
CRより大きい延伸比での変形時にフェライトへの変態を経験して、最終的な混合微視的成分構造(構造#5、
図3)において微視的成分2を表す構造#5b(
図3)を形成する。ナノ相微細化は、これらの領域で起きて、微細化高強度ナノモーダル構造(構造#5b、
図3)の形成につながる。そのため、微細構造(
図3、構造#5b)の変態部分は、ナノ相微細化&強化(メカニズム#1、
図2)を通して形成された追加の析出物を有する微細化されたフェライト粒(アルファ−Fe)によって表される。フェライト(アルファ−Fe)の微細化された粒のサイズは、100から2000nmまで変動し、析出物のサイズは、実験用鋳造において1.0から200nmまでの範囲である。したがって、構造5a及び構造5bにおけるマトリクス粒の全体サイズは典型的には、0.1μmから100μmまで変動する。好ましくは、この変態を開始するための応力は、>142MPaから723MPaの範囲である。したがって、構造#5b形成につながるナノ相微細化&強化メカニズム(
図3)は、その間に準安定なオーステナイト相が、析出によってフェライトに変態する動的プロセスであり、一般的にマトリクス相の粒微細化(つまり、粒径の減少)をもたらす。それは、前述したようなオーステナイトが比較的不安定である、ランダムに分布した構造領域において生じる。相変態後に、新たに形成されたフェライト粒は、同様に転位メカニズムを通して変形し、且つ、測定される総延性に寄与することに留意されたい。
【0032】
混合微視的成分構造(構造#5、
図3)における各微視的成分(構造#5a対構造#5b)の、結果として得られる体積分率は、合金の化学的性質、及び初期再結晶モーダル構造形成に向かう処理パラメータに依存する。典型的には、5体積パーセントから75体積パーセントの合金構造が、分布した構造領域において変態することになり、微視的成分2を形成し、残部は未変態のままであり微視的成分1を表す。そのため、微視的成分2は、0.1%の増分において5から75までのすべての個別の体積パーセント値であり得つつ(つまり、5.0%、5.1%、5.2%、…75.0%まで)、微視的成分1は、0.1%の増分において75から5までの体積パーセント値であり得る。(ホウ素が存在する場合)ホウ化物及び/又は(炭素が存在する場合)炭化物の存在は、合金の化学的性質に応じて材料において可能である。
図2の構造#4において示される析出物の体積パーセントは、0.1から15%であると予想される。これらの析出物の磁気特性は個別に測定することは困難である一方で、それらは非磁性であるので測定された磁気相体積%(Fe%)に寄与しないと考えられる。
【0033】
上記で触れたように、所与の合金に関して、異なるレベルのオーステナイト安定度に向かって合金の化学的性質を選択し調整することによって変態領域(構造#5b)対未変態領域(構造#5a)の体積分率を制御し得る。一般的な傾向は、より多くのオーステナイト安定化元素の追加によって、結果として得られる微視的成分1の体積分率は増加するであろうということである。オーステナイト安定化元素の例は、ニッケル、マンガン、銅、アルミニウム及び/又は窒素を含むであろう。窒素は、加工の間の雰囲気からの不純物元素として見出され得ることに留意されたい。
【0034】
加えて、フェライトが磁性でありオーステナイトが非磁性であるときに、存在する磁気相の体積分率は、構造#5a又は構造#5bの相対的な存在を評価するための便利な方法を提供することに留意されたい。従って、
図3において示されるように、構造#5は、微視的成分2の含有量に対応する磁気相体積V
1を有するように示され、>10から60%までの範囲に入る。磁気相体積は、Fe%として本明細書でときどき省略され、磁気応答を識別する合金におけるフェライト及び任意の他の成分の存在への参照として理解されるべきである。本明細書で磁気相体積は、フェライトスコープによって都合よく測定される。フェライトスコープは、シートサンプル上に直接配されたプローブによる磁気誘導法を用い、総磁気相体積%(Fe%)の直接読み取りを提供する。
【0035】
商業生産でのアニールコイルにおけるシートの状態に対応する完全に加工されアニールされたシートにおける微細構造並びに変形による微細構造の発達は、本明細書の選択された合金に関して事例#2&#3において実証される。
【0036】
遅れ破壊
本明細書の鋼合金は、それによって鋼ブランクがパンチの動作によって成形ダイに延伸される延伸の後に水素助長遅れ破壊を経験するように示される。本明細書に含まれる鋼合金における変形の間の特有の構造的形成経路は、
図3において提供される構造的形成によって混合微視的成分構造の形成を含む経路を経験する。見出されたものは、微視的成分2の体積分率が特定の値に達するときに、磁気相体積によって測定され、遅れクラッキングが生じることである。遅れクラッキングに関する磁気相体積パーセントの量は、>10体積%以上、又は典型的には10%超から60%の磁気相の体積分率を含む。臨界速度(S
CR)での又はそれより大きい速度へ増加することによって、磁気相体積パーセントの量は、1%から40%へ減少し、遅れクラッキングは減少する又は回避される。本明細書で遅れクラッキングへの参照は、合金が、それらが45分間の100%水素への暴露で及び/又はその後で、24時間の間の空気への周囲温度での暴露後に割れないであろうという特徴への参照である。
【0037】
遅れクラッキングは、それによって変態フェライト粒において特定の冶金学的平面が、それらが分かれる点へ弱められて、クラック開始及びその後、粒を通る伝搬を引き起こす粒内へき開として知られる独特のメカニズムを通して起こることが考えられる。粒内の特定の平面のこの弱体化は、これらの平面内への水素拡散によって助けられることが考えられる。遅れクラッキングをもたらす微視的成分2の体積分率は、本明細書で開示されるように、合金の化学的性質、延伸条件、及び、通常の空気若しくは純粋な水素環境等の周囲環境に依存する。微視的成分2の体積分率は、磁気相体積によって決定され得る。なぜなら、開始粒がオーステナイトであるので非磁性であり、変態粒が大部分はフェライト系(磁性)であるからである(いくらかのアルファ−マルテンサイト又はイプシロンマルテンサイトが存在し得ると考えられるが)。アルファ−鉄及び任意のマルテンサイトを含む変態マトリクス相はすべて磁性であるので、この体積分率は、結果として得られる磁気相体積(V
1)を通してモニタリングされ得る。
【0038】
鉄鋼業によって現在利用される条件でのカップ延伸の場合に本明細書での鋼合金における遅れ破壊は、事例#5において記載されるような延伸されたカップにおける水素含有量分析及び事例#6において示される破壊分析と共に事例#4における選択された合金に関して示される。延伸されたカップにおける構造的変態は、SEM及びTEMによって分析され、事例#7において説明された。
【0039】
特有の応力状態が変形の間に形成されるので、延伸は、特有のタイプの変形プロセスである。延伸操作の間、シート金属のブランクは、エッジで拘束され、内部セクションは、パンチによってダイに押し進められて、円形、正方形の矩形、又はダイ設計に依存するちょうど任意の断面を含む様々な形状であり得る延伸された部分へと金属を伸ばす。延伸プロセスは、適用される変形の量及び複雑なスタンプされた部分に望まれるものに応じて、浅い又は深いかのいずれかであり得る。浅い延伸は、延伸の深さが延伸の内部直径未満であるプロセスを説明するために用いられる。内部直径より大きい深さへの延伸は、深い延伸と呼ばれる。
【0040】
識別された合金の本明細書での延伸は、好ましくは、進行性ダイスタンピング操作の一部として達成され得る。進行性ダイスタンピングは、スタンピングダイの一以上のステーションを通して金属のストリップを押し込んだ金属加工法への参照である。各ステーションは、完成部品が製造されるまで一以上の操作を実行し得る。従って、進行性ダイスタンピング操作は、単一ステップ操作を含み得る、又は複数のステップを含み得る。
【0041】
延伸の間の延伸比は、完全なカップが形成されるときに(つまり、フランジなし)、パンチの直径によって割られたブランクの直径として定義され得る。延伸プロセスの間に、ブランクの金属は、インピンジング(impinging)ダイによって曲げて、その後ダイ壁を流れ落ちる必要がある。これは、縦方向引張応力、輪状引張応力及び横方向圧縮応力を含む3軸応力状態をもたらし得る延伸された部品の側壁領域において特に、特有の応力状態を生成する。(a)において側壁に存在する材料のブロック(小さい立方体)の例による延伸されたカップの像を提供し、(b)において縦方向引張応力(A)、横方向圧縮応力(B)及び輪状引張応力(C)を含む延伸された材料(引き延ばされた立方体)の側壁において見出される応力を示す
図4Aを参照する。
【0042】
これらの応力条件はその後、水素拡散及び蓄積に関する好ましいサイトにつながり得て、周囲温度での水素拡散に起因して形成の間又は後ですぐに生じ得るクラッキング(つまり、遅れクラッキング)へ潜在的につながる。そのため、延伸プロセスは、本明細書の鋼合金における、例えば事例#8及び#9における遅れ破壊に実質的な効果を有し得る。
【0043】
本明細書で合金における遅れクラッキングへの感受性(つまり、クラッキングを示す可能性)は、
図4に記載されるような変形経路のシフトに起因して、延伸速度を増加すること、又は、延伸比の減少によって減少する。S
CRへの又はそれより上の速度へ増加することによる総磁気相体積(つまり、フェライト、イプシロンマルテンサイト、アルファマルテンサイト又はこれらの相の任意の組み合わせを含み得る磁気相の総体積分率)の減少は、事例#10において示される。DP980等の従来の鋼種は、事例#11に示されるような構造又は性能への延伸速度依存性を示さない。
【0044】
遅れクラッキングを防止するための構造的発達の新しい経路
現在の開示の主題である新しい現象は、存在する微視的成分1及び2の量における変化、及び、
図3及び
図4において記載されるような結果として得られる磁気相体積パーセント(Fe%)である。速度及び延伸比の両方に依存する延伸の特定の条件下では、構造#4(再結晶モーダル構造)から構造#5(混合微視的成分構造)への変態は、
図2の概観において提供されるような2つの道の内の1つにおいて起こり得る。これの特徴は、識別された延伸条件が、
図3の構造#5における磁気相体積%(Fe%)未満である
図4の構造#5において提供される総磁気相体積%(Fe%)をもたらすことである。
【0045】
図4で提供されるように、本明細書の合金に関して
図4において提供される延伸条件下で双晶がオーステナイトマトリクス粒において生じることが考えられる。双晶は、それによって異なる配向を有する新しい結晶が、双晶境界と呼ばれる鏡面によって分離される母相から生成される、変形の冶金学的モードであることに留意されたい。その後、微視的成分1におけるこれらの双晶の領域は、微視的成分1の体積分率が増加し、微視的成分2の体積分率が対応して減少することを意味する変態を経験しない。
図4に提供されるような延伸の好ましい方法に関して結果として得られる総磁気相体積パーセント(Fe%)は、1から40Fe%である。そのため、延伸速度を増加することによって、本明細書の合金における遅れクラッキングは、減少し得る又は回避され得るが、それでもなお、それらは、変形され得、且つ、改善された冷間成形性を示し得る(事例#9)。
【0046】
DP980等の商用の鋼種は、事例#11に示されるような構造又は性能いずれの延伸速度依存性も示さない。
【0047】
加えて、本発明の広い文脈では、1%から40%である最終的な磁気相体積を好ましくは達成すべきことも観察されている。従って、臨界延伸速度、S
CR未満である速度で、又は、臨界延伸比、D
CRより大きい延伸比で、又は、S
CR以上で、又は、D
CR以下で延伸するかどうかにかかわらず、合金は、1%から40%へ最終的な磁気相体積を制限するものであるべきである。この状況において、再び、本明細書の遅れクラッキングは、減少する及び/又は排除される。これは、例えば、合金14による事例#8において提供され
図29において示され、遅れクラッキングは、低い延伸速度(0.8mm/s)でさえ観測されなかった。追加の例は、
図28における合金42、及び1.4以下での延伸比で
図27における合金9、及び、延伸比1.2以下での
図25における合金1に関する。
【0048】
シート合金:化学的性質&特性
本明細書の合金の化学組成が表1に示され、利用される好ましい原子比率を提供する。
【0051】
表1からわかり得るように、本明細書の合金は、鉄系金属合金であり、50原子%Fe超、より好ましくは60原子%Fe超を有する。最も好ましくは、本明細書の合金は、示された原子パーセントで以下の元素:Fe(61.30から80.19原子%);Si(0.2から7.02原子%);Mn(0から15.86原子%);B(0から6.09原子%);Cr(0から18.90原子%);Ni(0から6.80原子%);Cu(0から3.66原子%);C(0から3.72原子%);Al(0から5.12原子%)、を含む、それら本質的に成る、又は、それらから成るものとして記載され得る。加えて、本明細書の合金は、それらが、Feと、Si,Mn,B,Cr,Ni,Cu,Al又はCから選択される少なくとも4以上の、又は5以上の、又は6以上の元素とを含むようなものであることが理解され得る。最も好ましくは、本明細書の合金は、それらがSi,Mn,B,Cr,Ni,Cu,Al及びCと一緒に、60原子%以上のレベルでFeを含む、それらから本質的に成る、又はそれらから成るようなものである。
【0052】
本明細書の合金の実験室の加工は、工業生産の、しかしはるかに小さいスケールで、各ステップをモデリングするために行われた。このプロセスにおける重要なステップは、以下を含む:鋳造、トンネル炉加熱、熱間圧延、冷間圧延及びアニーリング。
【0053】
鋳造
合金は、表1における対応する原子比率に従う既知の化学的性質及び不純物含有量を有する商用的に利用可能な鉄添加物(ferroadditive)粉末を用いて3,000から3,400グラムの範囲の充填に検量された。充填物は、Indutherm VTC800V真空チルト鋳造機内に配されたジルコニア被覆シリカるつぼ内に充填された。機械はその後、鋳造チャンバ及び融解チャンバを空にし、その後、融液の酸化を防止するために鋳造の前に数回大気圧へとアルゴンによって埋め戻した。融液は、完全に融解されるまで、合金組成及び充填質量に応じておよそ5.25から6.5分、14KHz RF誘導コイルによって加熱された。最後の固形物が融解するのが観測された後で、それは、追加の30から45秒間その温度で保持されて、過熱状態を提供し、融液の均質性を確保した。その後、鋳造機は、融解チャンバ及び鋳造チャンバを空にし、るつぼを傾けて、水冷銅ダイにおける50mm厚さ、75から80mm幅及び125mmカップチャネルに融液を注いだ。融液は、チャンバがアルゴンによって大気圧へ満たされる前に、200秒間真空下で冷却することが許容された。2つの異なる合金からの実験用鋳造スラブの例の絵は
図5に示される。
【0054】
熱的特性
本明細書の合金の熱的分析は、Netzsch Pegasus 404 示差走査熱量計(DSC)を用いて凝固したままの鋳造スラブ上で実行された。合金のサンプルは、その後DSC内に充填されたアルミナるつぼ内に充填された。その後DSCは、チャンバを空にし、アルゴンによって大気圧へ埋め戻した。アルゴンの一定パージがその後開始され、ジルコニウムゲッターがガス流路において設置されて、システムにおける酸素の量をさらに減少させた。サンプルは、完全に融解されるまで加熱されて、完全に凝固されるまで冷却され、その後、融解させることによって10℃/分で再加熱された。固相線温度、液相線温度及びピーク温度の測定は、平衡状態における材料の代表的な測定を確実にするために第2の融解から取られた。表1に挙げられた合金において、融解は、合金の化学的性質及び1440℃までの最終的な融解温度に応じて〜1111℃からの初期融解によって1つ又は複数の段階において起こる(表2)。融解挙動における変化は、それらの化学的性質に応じて合金の凝固での相形成を反映する。
【0057】
熱間圧延
熱間圧延の前に、実験用スラブは、加熱するためにLucifer EHS3GT−B18炉内に充填された。炉の設定点は、合金融点T
mに応じて1100℃から1250℃の間で変動し、炉温度はT
mより〜50℃下で設定される。スラブは、それらが目標温度に達することを確実にするために熱間圧延の前に40分間浸ることが許可された。熱間圧延パスの間、スラブは、4分間炉に戻されて、スラブが再加熱することを可能にする。
【0058】
予熱されたスラブは、Fenn Model 061 2高圧延機内にトンネル炉から押し出された。50mm厚さスラブは、空気冷却が許容される前にミルを通して5から8回のパスの間熱間圧延された。初期パスの後で、各スラブは、7.5と10mmとの間の最終厚さへ80と85%との間で減少した。冷却後、各結果として得られるシートは分割され、底の190mmは、ミルを通して追加の3から4回のパスの間熱間圧延されて、1.6と2.1mmとの間の最終的な厚さへ72と84%との間でプレートをさらに減少した。熱間圧延後の2つの異なる合金からの実験用鋳造スラブの例の絵は
図6に示される。
【0059】
密度
合金の密度は、空気及び蒸留水の両方において計量することが可能な特別に構築されたはかり(balance)においてアルキメデス法を用いて熱間圧延された材料からサンプル上で測定された。各合金の密度は、表3で集計され、7.51から7.89g/cm
3までの範囲であることが見出された。この技術の精度は0.01g/cm
3である。
【0061】
冷間圧延
熱間圧延後、結果として得られるシートは、ミルスケールを除去するために酸化アルミニウムによってメディアブラストされ、その後、Fenn Model 061 2高圧延機上で冷間圧延された。冷間圧延は、典型的には1.2mmの目標厚さへシートの厚さを減少するために複数のパスをとる。熱間圧延シートは、最小ギャップが達成されるまで、着実に減少するロールギャップでミル内に供給された。材料がゲージ目標にいまだに当たらなかった場合は、最小ギャップで追加のパスが、1.2mm厚さが達成されるまで、用いられた。多数のパスが、実験用ミルの能力の限界に起因して適用された。2つの異なる合金からの冷間圧延シートの例の絵は
図7に示される。
【0062】
アニーリング
冷間圧延後、引張試料は、ワイヤEDMを介して冷間圧延シートから切られた。これらの試料はその後、表4にリスト化された異なるパラメータによってアニールされた。アニーリング1a及び1bは、Lucifer 7HT−K12箱形炉において行われた。アニーリング2及び3は、Camco Model G−ATM−12FL炉において行われた。空気標準化された試料は、サイクルの終わりで炉から取り除かれ、空気中で室温へ冷却が許可された。炉冷却された試料に関して、アニーリングの終わりで炉は止められ、サンプルが炉と共に冷却することを可能にする。熱処理は、実証に関して選択されるが、範疇を限定する意図がなかったことに留意されたい。各合金に関して融点のすぐ下までの高温処理が、予想され得る。
【0064】
引張特性
引張特性は、表4にリスト化されたパラメータによる冷間圧延及びアニーリング後で、本明細書のシート合金上で測定された。シート厚さは1.2mmであった。引張試験は、Instron’s Bluehill制御ソフトウェアを用いてInstron 3369機械的試験フレーム上で行われた。すべての試験は室温で行われ、底グリップは固定され且つ上部グリップは0.012mm/sの速度で上に進むように設定された。ひずみデータは、Instron’s Advanced Video Extensometerを用いて集められた。冷間圧延され且つアニールされた状態における表1においてリスト化された合金の引張特性は、表5から表8において以下に示される。最大抗張力値は、10.6から91.6%までの引張伸びと共に720から1490MPaまで変わり得る。降伏応力は、142から723MPaまでの範囲である。本明細書の鋼合金における機械的特性値は、合金の化学的性質及び加工条件に依存するであろう。フェライトスコープ測定は、合金の化学的性質に応じて0.3から3.4Fe%まで変わる熱処理1bの後で本明細書の合金からのシート上で行われた(表6A)。
【0086】
事例
事例#1:異なる加工のステップでの合金1及び合金6の特性範囲
50mmの厚さを有する実験用スラブは、合金1及び合金6から鋳造された。合金は、表1における原子比率に従う既知の化学的性質及び不純物含有量を有する商用的に利用可能な鉄添加物(ferroadditive)粉末を用いて3,000から3,400グラムの範囲の充填に検量された。充填物は、Indutherm VTC800V真空チルト鋳造機内に配されたジルコニア被覆シリカるつぼ内に充填された。機械はその後、鋳造チャンバ及び融解チャンバを空にし、融液の酸化を防止するために鋳造の前に数回大気圧へとアルゴンによって埋め戻した。融液は、完全に融解されるまで、合金組成及び充填質量に応じておよそ5.25から6.5分、14KHz RF誘導コイルによって加熱された。最後の固形物が融解するのが観測された後で、それは、追加の30から45秒間過熱することが許されて、過熱状態を提供し、融液の均質性を確保した。その後、鋳造機は、融解チャンバ及び鋳造チャンバを空にし、るつぼを傾けて、水冷銅ダイにおける50mm厚さ、75から80mm幅及び125mm深さのチャネルに融液を注いだ。融液は、チャンバがアルゴンによって大気圧へ満たされる前に、200秒間真空下で冷却することが許容された。引張試料は、ワイヤEDMによって鋳放しスラブから切られ、引張の試験がされた。引張特性は、Instron’s Bluehill制御ソフトウェアを用いてInstron 3369機械的試験フレーム上で測定された。すべての試験は室温で行われ、底グリップは固定され且つ上部グリップは0.012mm/sの速度で上に進むように設定された。ひずみデータは、Instron’s Advanced Video Extensometerを用いて集められた。引張試験の結果は、表9に示される。分かるように、鋳放し条件における本明細書の合金は、168から181MPaの降伏応力、494から554MPaの極限強度、及び8.4から18.9%の延性を示す。
【0088】
実験用鋳造スラブは、異なる圧下で熱間圧延された。熱間圧延の前に、実験用鋳造スラブは、加熱するためにLucifer EHS3GT−B18炉内に充填された。炉の設定点は、合金融点に応じて1000℃から1250℃の間で変動する。スラブは、それらが目標温度に達することを確実にするために熱間圧延の前に40分間浸ることが許可された。熱間圧延パスの間、スラブは、4分間炉に戻されて、スラブが再加熱することを可能にする。予熱されたスラブは、Fenn Model 061 2高圧延機内にトンネル炉から押し出された。パスの数は、目標とされる圧延圧下に依存する。熱間圧延後、結果として得られるシートは、それがいまだに熱いうちに、熱間圧延ミルから、550℃へ予熱された炉内へ直接充填されて、商業生産でのコイリング条件をシミュレートする。炉内に充填されるとすぐに、炉は、20℃/時間の制御された速度で冷却するように設定された。サンプルは、温度が150℃未満であるときに取り除かれた。熱間圧延シートは、熱間圧延圧下設定に応じて6mmから1.5mmの範囲の最終的な厚さを有した。2mm未満の厚さを有するサンプルは、均一性を確保するために表面研削され、引張サンプルはワイヤ−EDMを用いて切られた。2mmから6mm厚さの材料に関して、引張サンプルは、まずカットされ、その後、ミルスケールを除去するためにメディアブラストされた。引張試験の結果は、表10に示される。分かるように、両方の合金は、熱間圧延圧下上の特性の依存性を示さず、41.3から68.4%の範囲の延性、1126から1247MPaの極限強度、及び272から350MPaの降伏応力である。
【0090】
1.6から1.8mmの最終的な厚さを有する熱間圧延シートは、ミルスケールを除去するために酸化アルミニウムによってメディアブラストされ、その後、Fenn Model 061 2高圧延機上で冷間圧延された。冷間圧延は、1mmに下がるまで、目標厚さへシートの厚さを減少するために複数のパスをとる。熱間圧延シートは、最小ギャップが達成されるまで、着実に減少するロールギャップでミル内に供給された。材料がゲージ目標にいまだに当たらない場合は、最小ギャップで追加のパスが、目標厚さに達するまで、用いられた。本明細書の各合金に関するパスの数による冷間圧延条件は、表11にリスト化される。引張試料は、ワイヤEDMによって冷間圧延シートから切られ、引張の試験がされた。引張試験の結果は表11に示される。冷間圧延は、1404から1712MPaまでの範囲における最大抗張力を有する大幅な強化につながる。冷間圧延状態において本明細書における合金の引張伸びは、20.4から35.4%まで変わる。降伏応力は、793から1135MPaまでの範囲において測定される。より高い最大抗張力及び降伏応力は、我々の場合では実験用ミル能力によって制限される、より大きい冷間圧延圧下(>40%)によって本明細書の合金において達成され得ることが予想される。
【0092】
引張試料は、ワイヤEDMによって冷間圧延シートサンプルから切られ、Lucifer 7HT−K12箱形炉において10分間850℃でアニールされた。サンプルは、サイクルの終わりで炉から取り除かれ、空気中で室温へ冷却が許可された。引張試験の結果は、表12に示される。分かるように、冷間圧延後の本明細書の合金のアニーリングの間の再結晶は、1168から1269MPaの範囲における最大抗張力及び52.5から62.6%の引張伸びによる特性の組み合わせをもたらす。降伏応力は、462から522MPaまでの範囲において測定される。再結晶モーダル構造(構造#4、
図2)を有するこのシート状態は、本明細書で絞り試験に関して利用される最終的なシート条件に対応する。
【0094】
この事例は、商用のスケールでシート生産をシミュレートする加工ステップ、及び、本明細書で絞り試験に関して利用される再結晶モーダル構造(構造#4、
図1B)を有する冷間圧延されアニールされたシートの最終的な条件に向かう加工の各ステップでの対応する合金特性範囲を実証する。
【0095】
事例#2:アニールシートにおける再結晶モーダル構造
50mmの厚さを有する実験用スラブは、表1における原子比率に従って合金1及び合金6から鋳造され、その後、本出願の本文に記載されるように熱間圧延し、冷間圧延し、且つ10分間850℃でアニーリングすることによって実験用に加工された。商業生産でのアニールコイルにおけるシートの条件に相当するアニーリング後の1.2mm厚さを有する加工されたシートの形における合金の微細構造は、SEM及びTEMによって調べられた。
【0096】
TEM試料を用意するために、サンプルは、EDMによって最初に切られ、その後、毎回減少したグリットサイズのパッドによって研削することによって薄くされた。60から70μm厚さの箔を作製するためにさらに薄くすることは、それぞれ9μm、3μm及び1μmのダイヤモンド懸濁溶液によって研磨することによって行われた。直径3mmのディスクは、箔からパンチされ、最終的な研磨は、ツインジェット研磨装置を用いた電解研磨によって実行された。用いられる化学溶液は、メタノール塩基において混合された30%硝酸であった。TEM観察に関する不十分に薄い領域の場合、TEM試料は、Gatan Precision Ion Polishing System (PIPS)を用いてイオンミリングされ得る。イオンミリングは通常、4.5keVで行われ、傾斜角度は、4°から2°へ減少されて、薄い領域を広くする。TEM調査は、200kVで動作するJEOL2100高解像度顕微鏡を用いて行われた。TEM試料は、SEMによって調査された。微細構造は、Carl Zeiss SMT Inc.によって製造されるEVO−MA10走査型電子顕微鏡を用いてSEMによって調べられた。
【0097】
合金1からのアニールシートにおける再結晶モーダル構造は、
図8に示される。分かるように、鋭くてまっすぐな境界を有する等軸粒が構造において存在し、粒は、再結晶モーダル構造に関して典型的である転位を含まない。双晶をアニーリングすることは、粒においてときどき見出されるが、積層欠陥が一般的に見られる。TEM像に示される積層欠陥の形成は、オーステナイト相の面心立方結晶構造に関して典型的である。
図9は、TEM試料から取られた合金1における再結晶モーダル構造の後方散乱SEM像を示す。合金1の場合では、再結晶粒のサイズは、2μmから20μmの範囲である。SEM像上でみられる粒の異なるコントラスト(暗い又は明るい)は、この場合におけるコントラストが主に粒配向に由来しているので、粒の結晶配向がランダムであることを示唆する。
【0098】
合金1と同様に、再結晶モーダル構造は、アニーリング後に合金6シートにおいて形成された。
図10は、冷間圧延及び10分間850℃でのアニーリング後の合金6における微細構造の明視野TEM像を示す。合金1の場合では、等軸粒は、鋭くてまっすぐな境界を有し、積層欠陥は粒において存在する。それは、構造が良く再結晶化されたことを示唆する。TEM試料からのSEM像は、再結晶モーダル構造を同様に示す。
図11に示されるように、再結晶粒は、等軸であり、ランダム配向を示す。粒径は、合金1におけるものと同様に、2から20μmまでの範囲である。
【0099】
この事例は、本明細書の鋼合金が、例えば商業生産でのアニールコイルにおけるシートの条件に追加的に対応するアニーリング後の1.2mm厚さを有する加工されたシートにおいて再結晶モーダル構造を形成することを実証する。
【0100】
事例#3:微細化高強度ナノモーダル構造への変態
再結晶モーダル構造は、準静的変形、この場合では引張変形下で混合微視的成分構造に変態する。TEM分析が行われ、合金1及び合金6シートサンプルにおける引張変形後の混合微視的成分構造の形成を示した。
【0101】
TEM試料を用意するために、サンプルは、EDMによって引張ゲージから最初に切られ、その後、毎回減少したグリットサイズのパッドによって研削することによって薄くされた。60から70μm厚さの箔を作製するためにさらに薄くすることは、9μm、3μm及び1μmまでのダイヤモンド懸濁溶液によって研磨することによって行われた。直径3mmのディスクは、箔からパンチされ、最終的な研磨は、ツインジェット研磨装置を用いた電解研磨によって実行された。用いられる化学溶液は、メタノール塩基において混合された30%硝酸であった。TEM観察に関する不十分な薄い領域の場合、TEM試料は、Gatan Precision Ion Polishing System (PIPS)を用いてイオンミリングされ得る。イオンミリングは通常、4.5keVで行われ、傾斜角度は、4°から2°へ減少されて、薄い領域を広くする。TEM調査は、200kVで動作するJEOL2100高解像度顕微鏡を用いて行われた。
【0102】
事例#2において記載されるように、本明細書の合金からの加工されたシートにおいて形成される再結晶モーダル構造は、ランダム配向及び鋭い境界の等軸粒を有するオーステナイト相から主に成る。引張変形時に、微細構造は、オーステナイトからナノ析出物を有するフェライトへ微細構造のランダムに分布した領域における相変態によって劇的に変化している。
図12は、引張変形後の合金1サンプルゲージにおける微細構造の明視野TEM像を示す。アニーリング後で再結晶モーダル構造において最初はほとんど転位を含まなかったマトリクス粒と比較して、引張応力の適用は、マトリクスオーステナイト粒内で高密度の転位を生成する(例えば
図12aの下部での領域)。
図12a及び
図12bにおける上部は、ナノ相微細化&強化メカニズムによる微細化高強度ナノモーダル構造への構造的変態に起因した顕著に微細化された微細構造の構造領域を示す。
図12bにおける、より高倍率のTEM像は、いくつかの粒において微細析出物を有する100から300nmの微細化された粒を示す。同様に、微細化高強度ナノモーダル構造はまた、引張変形後で合金6シートにおいて形成される。
図13は、試験後の引張ゲージにおける合金6シート微細構造の明視野TEM像を示す。合金1におけるように、高密度の転位は、未変態のマトリクス粒において生成され、ランダムに分布した構造領域における実質的な微細化は、変形中の相変態の結果として達成される。相変態は、変形前後でシートサンプルからのFischer Feritscope (Model FMP30)測定を用いて検証される。フェライトスコープは、試験されたサンプルにおけるすべての磁気相の誘導を測定するので、測定は一以上の磁気相を含み得ることに留意されたい。
図14に示されるように、合金1及び合金6の両方からの再結晶モーダル構造を有するアニールされた状態におけるシートサンプルは、1から2%のみの磁気相を含み、微細構造が主にオーステナイトであり非磁性であることを示唆している。変形後に、試験されたサンプルの引張ゲージにおいて、磁気相の量は、両方の合金において50%超へ増加する。引張サンプルゲージにおける磁気相体積の増加は、TEMによって示される構造領域におけるフェライトへのオーステナイト変態に大部分は対応しており、混合微視的成分構造の形成につながる。
【0103】
この事例は、本明細書の合金からの加工されたシートにおける再結晶モーダル構造が、1つの微視的成分を表す未変態のオーステナイト粒における高い転位密度、及び、他の1つの微視的成分を表す変態した微細化高強度ナノモーダル構造のランダムに分布した領域によって、冷間変形の間に混合微視的成分構造へ変態することを実証する。変態した領域のサイズ及び体積分率は、合金の化学的性質及び変形条件に依存する。
【0104】
事例#4 カップ延伸後の遅れ破壊
50mmの厚さを有する実験用スラブは、表1において提供される原子比率に従って合金1、合金6及び合金9から鋳造され、本出願の本文に記載されるように熱間圧延及び冷間圧延によって実験用に加工された。表13においてリスト化される直径のブランクは、ワイヤEDMによって冷間圧延シートから切られた。切られた後で、ブランクのエッジは、任意の大きな凹凸を除去するために240グリットの炭化ケイ素研磨紙を用いて軽く研削され、その後、ナイロンベルトを用いて研磨された。ブランクはその後、本明細書で記載されるように850℃で10分間アニールされた。1.0mmの最終的な厚さ及び再結晶モーダル構造を有する各合金からの、結果として得られるブランクは、絞り試験のために用いられた。ブランクをダイ及びラムに押し込むことによって生じた延伸は、完全なカップが延伸されるまで(つまり、フランジ材料なし)、ダイ内へ連続的に上向きに移動された。カップは、準静的速度(つまり、非常に遅い/ほぼ静的な)を表す0.8mm/sのラム速度で延伸された。
【0106】
延伸後、カップは、調査され、45分間室内空気において置くことが許容された。カップは、空気暴露の後に調査され、遅れクラックの数が、もしあれば、記録された。延伸されたカップは、45分間の100%水素へ追加的にさらされた。45分間の100%水素への暴露は、延伸されたピースの寿命に関する最大水素暴露をシミュレートするために選択された。延伸されたカップは、雰囲気制御された筐体において配され、100%水素ガスへ切り替えられる前に窒素が勢いよく流された。水素における45分の後で、チャンバは、窒素において10分間パージされた。延伸されたカップは、筐体から取り除かれ、生じた遅れクラックの数が記録された。1.78の延伸比による0.8mm/sでの延伸及び45分間の水素への暴露後の合金1からのカップの例の写真は、
図15に示される。
【0107】
空気及び水素暴露後のクラックの数は、表14に示される。合金1及び合金6は、空気及び水素暴露の後で水素助長遅れクラッキングを有した一方で、合金9からのカップは、空気暴露後にクラックしなかったことに留意されたい。
【0109】
この事例は、水素助長遅れクラッキングが、用いられる延伸比での0.8mm/sの遅い速度でのカップ延伸後で本明細書の合金において生じることを実証する。クラックの数は、合金の化学的性質に依存する。
【0110】
事例5:延伸後のさらされたカップにおける水素の分析
50mmの厚さを有するスラブは、表1において提供される原子比率に従って合金1、合金6及び合金14から実験用鋳造され、本明細書に記載されるように熱間圧延及び冷間圧延によって実験用に加工された。直径85.85mmのブランクは、ワイヤEDMによって冷間圧延シートから切られた。切られた後で、ブランクのエッジは、任意の大きな凹凸を除去するために240グリットの炭化ケイ素研磨紙を用いて軽く研削され、その後、ナイロンベルトを用いて研磨された。ブランクはその後、本出願の本文部分において記載されるように850℃で10分間アニールされた。1.0mmの最終的な厚さ及び再結晶モーダル構造(構造#4、
図2)を有する各合金からの、結果として得られるシートは、カップ延伸のために用いられた。
【0111】
ブランクをダイ及びラムに押し込むことによって生じた延伸は、完全なカップが延伸されるまで(つまり、フランジ材料なし)、ダイ内へ連続的に上向きに移動された。カップは、このタイプの試験に関して典型的に用いられる0.8mm/sのラム速度で延伸された。結果として得られる試験されたブランクに関する延伸比は、1.78であった。
【0112】
延伸されたカップは、45分間100%水素へさらされた。45分間の100%水素への暴露は、延伸されたピースの寿命に関する最大水素暴露をシミュレートするために選択された。延伸されたカップは、雰囲気制御された筐体において配され、100%水素ガスへ切り替えられる前に窒素が勢いよく流された。水素における45分の後で、チャンバは、窒素によって10分間パージされた。
【0113】
延伸されたカップは、筐体から取り除かれ、プラスチックバッグにおいて迅速に密封された。各々がここでは延伸されたカップを含むプラスチックバッグは、ドライアイスと共に梱包された断熱箱内部に素早く配された。延伸されたカップは、カップ底及びカップ壁の両方から水素分析のためにとられることになるサンプルのために簡潔にドライアイスにおける密封されたプラスチックバッグから取り除かれた。カップ及び分析サンプルの両方は、再びプラスチックバッグにおいて密封され、ドライアイス温度で保持された。水素分析サンプルは、試験直前までドライアイス温度で保持され、その時間で各サンプルは、ドライアイス及びプラスチックバッグから取り除かれ、不活性ガス溶融(IGF)によって水素含有量に関して分析された。各合金に関してカップ底及び壁における水素含有量は、表15において提供される。このIGF分析に関する水素に関する検出限界は、0.0003重量%水素である。
【0115】
カップ延伸プロセスの間に最小の変形を経験したカップ底が、100%水素への45分暴露の後で最小の水素含有量を有したことに留意されたい。しかしながら、カップ延伸プロセスの間に大規模な変形を有したカップ壁は、100%水素への45分暴露の後でかなり高い水素含有量を有した。
【0116】
この事例は、特定の応力状態が達成されるときのみに水素が材料に入っていることを実証する。加えて、これの重要な要素は、水素吸収が、延伸されたカップの大規模に変形した領域において起こるのみであることである。
【0117】
事例#6:水素がさらされたカップの破面解析
本明細書のナノスチール(NanoSteel)合金は、事例#4において実証されたように0.8mm/sの延伸速度でのカップ延伸後に遅れクラッキングを経験する。合金1、合金6及び合金9からのカップにおけるクラックの破断面は、二次電子検出モードにおいて走査型電子顕微鏡(SEM)によって分析された。
【0118】
図16から
図18は、それぞれ、合金1、合金6及び合金9の破断面を示す。すべての像において、破断面上の明確な粒子境界の欠如が観測されるが、大きい平坦な粒内ファセットが見出され、破壊が水素助長遅れクラッキングの間に合金における粒内へき開を介して起こることを示す。
【0119】
この事例は、水素が、複雑な3軸応力状態においてカップの変態した領域を攻撃していることを実証する。変態した領域(つまり、フェライト)の特定の平面は、水素によって攻撃されており、粒内へき開破壊につながる。
【0120】
事例#7:低速でのカップ延伸の間の構造的変態
冷間塑性変形の形として、カップ延伸は、本明細書の鋼合金における微細構造の変化を引き起こす。この事例において、合金1及び合金6における構造変態は、それらがカップ絞り試験に関して工業において一般的に用いられる0.8mm/sの比較的遅い延伸速度で延伸されるときに、実証される。再結晶モーダル構造及び1mmの厚さを有するアニール状態における合金1及び合金6からの鋼シートは、1.78の延伸比でのカップ延伸のために用いられた。SEM及びTEM分析は、合金1及び合金6からの延伸されたカップにおける構造変態を調べるために用いられた。比較の目的のために、カップの壁及びカップの底は、
図19に示されるように調査された。
【0121】
TEM試料を用意するために、カップの壁及び底は、EDMによって切られ、その後、毎回減少したグリットサイズのパッドによって研削することによって薄くされた。60から70μm厚さの箔を作製するためにさらに薄くすることは、9μm、3μm及び1μmまでのダイヤモンド懸濁溶液によって研磨することによって行われた。直径3mmのディスクは、箔からパンチされ、最終的な研磨は、ツインジェット研磨装置を用いた電解研磨によって実行された。用いられる化学溶液は、メタノール塩基において混合された30%硝酸であった。TEM観察に関する不十分な薄い領域の場合、TEM試料は、Gatan Precision Ion Polishing System (PIPS)を用いてイオンミリングされ得る。イオンミリングは通常、4.5keVで行われ、傾斜角度は、4°から2°へ減少されて、薄い領域を広くする。TEM調査は、200kVで動作するJEOL2100高解像度顕微鏡を用いて行われた。
【0122】
合金1では、カップの底は、アニールシートにおける初期再結晶モーダル構造と比較して、劇的な構造的変化を示さない。
図20に示されるように、まっすぐな境界を有する粒は、TEMによって明らかにされ、積層欠陥は目に見える、オーステナイト相の典型的な特性である。つまり、カップの底は、再結晶モーダル構造を維持する。しかしながら、カップ壁における微細構造は、延伸プロセスの間にかなりの変態を示す。
図21に示されるように、サンプルは、高密度の転位を含み、まっすぐな粒子境界は、再結晶構造におけるようにもはや目に見えない。変形の間の劇的な微細構造変化は、準静的引張試験後の混合微視的成分構造に非常に似ているが顕著により高い体積分率の変態した微細化高強度ナノモーダル構造を備える微細構造を達成するナノ析出物を備えるフェライト(アルファ−Fe)へのオーステナイト相(ガンマ−Fe)の変態と大きく関連する。
【0123】
合金6において同様に、塑性変形及び再結晶モーダル構造をほとんど経験していないカップの底は、
図22に示されるように、存在する。合金6からのカップの壁は、激しく変形されて、
図23に示されるように、粒における高密度の転位を示す。一般的に、変形した構造は、混合微視的成分構造として分類され得る。しかし、合金1と比較すると、オーステナイトは、合金6において、より安定しているように見え、延伸後に少量の微細化高強度ナノモーダル構造をもたらす。転位は両方の合金において豊富であるが、合金6における相変態によって引き起こされる微細化は、合金1と比較して顕著でなく見える。
【0124】
微細構造変化は、カップの壁及び底からのフェライトスコープ測定と一致する。
図24に示されるように、カップの底は、少量の磁気相(1から2%)を含み、オーステナイトマトリクスを備える再結晶モーダル構造が支配的であることを示唆する。カップの壁において、磁気相(ほとんどフェライト)は、それぞれ合金1及び合金6カップにおいて50%及び38%まで上昇する。磁気相における増加は、相変態及び微細化高強度ナノモーダル構造の形成に対応する。合金6における、より小さい変態は、TEM観察と一致して、より安定なオーステナイトを示唆する。
【0125】
この事例は、微細化高強度ナノモーダル構造への顕著な相変態が、0.8mm/sの低速でのカップ延伸の間にカップ壁において起こることを実証する。変態した相の体積分率は、合金の化学的性質に依存する。
【0126】
事例#8 カップ延伸後の遅れ破壊への延伸比効果
50mmの厚さを有する実験用スラブは、表1において提供される原子比率に従って合金1、合金6、合金9、合金14及び合金42から鋳造された。鋳造スラブは、本出願の本文に記載されるように熱間圧延及び冷間圧延によって実験用に加工された。表12おいてリスト化される直径を備えるブランクは、ワイヤEDMによって冷間圧延シートから切られた。切られた後で、ブランクのエッジは、任意の大きな凹凸を除去するために240グリットの炭化ケイ素研磨紙を用いて軽く研削され、その後、ナイロンベルトを用いて研磨された。ブランクはその後、本明細書で記載されるように850℃で10分間アニールされた。1.0mmの最終的な厚さ及び再結晶モーダル構造を有する各合金からの、結果として得られるシートブランクは、表16に特定される比率でのカップ延伸のために用いられた。
【0128】
1.0mmの最終的な厚さ及び再結晶モーダル構造を有する各合金からの、結果として得られるブランクは、絞り試験のために用いられた。ブランクをダイ及びラムに押し込むことによって生じた延伸は、完全なカップが延伸されるまで(つまり、フランジ材料なし)、ダイ内へ連続的に上向きに移動された。カップは、このタイプの試験に関して典型的に用いられる0.8mm/sのラム速度で延伸された。異なるサイズのブランクは、同一の延伸パラメータによって延伸された。
【0129】
延伸後、カップは、調査され、45分間室内空気において置くことが許容された。カップは、空気暴露の後に調査され、遅れクラックの数が、もしあれば、記録された。延伸されたカップは、45分間の100%水素へ追加的にさらされた。45分間の100%水素への暴露は、延伸されたピースの寿命に関する最大水素暴露をシミュレートするために選択された。延伸されたカップは、雰囲気制御された筐体において配され、100%水素ガスへ切り替えられる前に窒素が勢いよく流された。水素における45分の後で、チャンバは、窒素において10分間パージされた。延伸されたカップは、筐体から取り除かれ、生じた遅れクラックの数が記録された。延伸されたカップの空気及び水素暴露の間に生じたクラックの数は、それぞれ表17及び表18において示される。
【0132】
分かるように、合金1に関して、かなりのクラッキングが、空気及び水素両方への暴露後にカップにおいて1.78の延伸比で観測されるのに対して、その数は、1.4以下の延伸比でゼロへ迅速に減少する。フェライトスコープ測定は、合金の微細構造が、より高い延伸比と共に増加するカップ壁における顕著な変態を経験することを示す。合金1に関する結果は、
図25に示される。合金6、合金9及び合金42は同様の挙動を示し、合金の化学的性質の変化に起因した遅れクラッキングへのより高い抵抗を実証する1.6以下の延伸比で測定される遅れクラッキングがない。フェライトスコープ測定はまた、合金の微細構造が、より高い延伸比と共に増加するが、合金1と比較してより小さい程度で、カップ壁における変態を経験することを示す。合金6、合金9及び合金42に関する結果はまた、
図26、
図27及び
図28にそれぞれ示される。合金14は、本明細書のすべての試験条件で遅れクラッキングがないことを実証する。フェライトスコープ測定による合金14に関する結果はまた、
図29に与えられる。分かるように、変態相の量が合金の化学的性質に依存する臨界値未満であるときにカップにおいて遅れクラッキングが起こらない。例えば、合金6に関して、臨界値は、約30Fe%であり(
図25)、一方で、合金9に関して、それは約23Fe%である(
図27)。変態の総量はまた、合金の化学的性質に依存する。1.78の同じ延伸比で、変態磁気相の体積分率は、合金1に関してほぼ50Fe%で測定され(
図25)、一方で、合金14においてそれは約10Fe%のみである(
図29)。明らかに、変態の臨界値は、合金14からのカップ壁において達せられず、水素暴露後に遅れクラッキングは観察されなかった。
【0133】
この事例は、本明細書の合金に関して、延伸比への遅れクラッキングの明確な依存性が存在することを実証する。遅れクラッキングに関するしきい値に対応する、それより上でクラッキングが起こる延伸比の値は、合金の化学的性質に依存する。
【0134】
事例#9 カップ延伸後の遅れ破壊への延伸速度効果
50mmの厚さを有する実験用スラブは、表1において提供される原子比率に従って合金1及び合金6から鋳造され、本出願の本文に記載されるように熱間圧延及び冷間圧延によって実験用に加工された。直径85.85mmのブランクは、ワイヤEDMによって冷間圧延シートから切られた。切られた後で、ブランクのエッジは、任意の大きな凹凸を除去するために240グリットの炭化ケイ素研磨紙を用いて軽く研削され、その後、ナイロンベルトを用いて研磨された。ブランクはその後、本明細書で記載されるように850℃で10分間アニールされた。1.0mmの最終的な厚さ及び再結晶モーダル構造を有する各合金からの、結果として得られるシートブランクは、表19に特定される8つの異なる速度でのカップ延伸のために用いられた。ブランクをダイ及びラムに押し込むことによって生じた延伸は、完全なカップが延伸されるまで(つまり、フランジ材料なし)、ダイ内へ連続的に上向きに移動された。カップは、表19に示されるように、様々な延伸速度で延伸された。結果として得られる試験されたブランクに関する延伸比は、1.78であった。
【0136】
延伸後、カップは、調査され、45分間室内空気において置くことが許容された。カップは、空気暴露の後に調査され、遅れクラックの数が、もしあれば、記録された。延伸されたカップは、45分間の100%水素へ追加的にさらされた。45分間の100%水素への暴露は、延伸されたピースの寿命に関する最大水素暴露をシミュレートするために選択された。延伸されたカップは、雰囲気制御された筐体において配され、100%水素ガスへ切り替えられる前に窒素が勢いよく流された。水素における45分の後で、チャンバは、窒素において10分間パージされた。延伸されたカップは、筐体から取り除かれ、生じた遅れクラックの数が記録された。合金1及び合金6からの延伸されたカップの空気及び水素暴露の間に生じたクラックの数は、それぞれ表20及び表21において示される。45分間の水素への暴露及び異なる延伸速度での1.78の延伸比によって延伸された合金1からのカップの例は、
図30において示される。
【0139】
分かるように、延伸速度の増加と共に、合金1及び合金6の両方からの延伸されたカップにおけるクラックの数は、減少し、水素及び空気暴露の両方の後にゼロへと行く。合金1及び合金6に関する結果はまた、
図31及び
図32にそれぞれ示される。試験されたすべての合金に関して、100%水素雰囲気への45分の暴露後に、19mm/s以上の延伸速度で、遅れクラッキングは観測されなかった。
【0140】
この事例は、本明細書の合金に関して、延伸速度への遅れクラッキングの明確な依存性が存在し、合金の化学的性質に依存する臨界しきい値(S
CR)のそれよりも高い延伸速度でクラッキングが観測されないことを実証する。
【0141】
事例#10 高速でのカップ延伸の間の構造的変態
延伸速度は、水素助長遅れクラッキングの観点から、延伸されたカップの構造的変態及び性能に影響を与えるように示される。この事例において、構造的解析は、高速での合金1及び合金6シートから延伸されたカップに関して実行された。両方の合金からのスラブは、本出願の本文に記載されるように熱間圧延、冷間圧延及び10分間の850℃でのアニーリングによって加工された。1.0mmの最終的な厚さ及び再結晶モーダル構造を有する、結果として得られるシートは、事例#8に記載されるように異なる速度でのカップ延伸のために用いられた。203mm/sで延伸されるカップの壁及び底における微細構造は、TEMによって分析された。比較の目的のために、カップの壁及びカップの底は、
図19に示されるように調査された。
【0142】
TEM試料を用意するために、サンプルは、EDMによって最初に切られ、その後、毎回減少したグリットサイズのパッドによって研削することによって薄くされた。60から70μm厚さの箔を作製するためにさらに薄くすることは、9μm、3μm及び1μmまでのダイヤモンド懸濁溶液によって研磨することによって行われた。直径3mmのディスクは、箔からパンチされ、最終的な研磨は、ツインジェット研磨装置を用いた電解研磨によって実行された。用いられる化学溶液は、メタノール塩基において混合された30%硝酸であった。TEM観察に関する不十分な薄い領域の場合、TEM試料は、Gatan Precision Ion Polishing System (PIPS)を用いてイオンミリングされ得る。イオンミリングは通常、4.5keVで行われ、傾斜角度は、4°から2°へ減少されて、薄い領域を広くする。TEM調査は、200kVで動作するJEOL2100高解像度顕微鏡を用いて行われた。
【0143】
203mm/sの速い延伸速度では、カップの底は、再結晶モーダル構造と類似の微細構造を示す。
図33に示されるように、粒は、わずか数個の転位を有してきれいであり、粒子境界は、まっすぐであり鋭く、再結晶構造に関して典型的である。積層欠陥は、同様に粒において見られ、オーステナイト相(ガンマ−Fe)を示す。カップ延伸前のシートは、10分間850℃でのアニーリングによって再結晶化されたので、
図33に示される微細構造は、カップの底がカップ延伸の間に非常に制限された塑性変形を経験したことを示唆する。低速(0.8mm/s)で、合金1からのカップの底の微細構造(
図20)は、一般的に、高速でのものと同様の構造、つまり、最小限の変形がカップ底上で起きたので予想されないことではない、まっすぐな粒子境界及び積層欠陥の存在を示す。
【0144】
対称的に、高速で延伸されたカップの壁は、低速で延伸されたカップにおいて見られたような底と比較して、非常に変形される。しかしながら、異なる変形経路が、異なる速度で延伸されるカップにおいて明らかにされる。
図34に示されるように、速く延伸されたカップの壁は、オーステナイトマトリクス粒内の転位に加えて、高い割合の変形双晶を示す。0.8mm/sの低速での延伸の場合では(
図21)、カップ壁における微細構造は、変形双晶の証拠を示さない。構造的外観は、混合微視的成分構造(構造#2、
図2及び
図3)のものに関して典型的である。相変態は、両方の場合において高密度の転位の蓄積から生じるが、微細化された構造は、ランダムに分布した構造領域において生成され、転位の活動は、低い程度の相変態につながる双晶による活性な変形に起因してこの速い延伸の場合においてあまり顕著ではない。
【0145】
図35及び
図36は、合金6から203mm/sの高速で延伸されたカップの底における及び壁における微細構造を示す。合金1と同様に、カップ底における再結晶モーダル構造が存在し、双晶は、カップ壁の変形を支配している。0.8mm/sの速度での、遅い延伸の後のカップでは、双晶はなくむしろ転位が、合金6からのカップの壁において見出される(
図23)。
【0146】
図37は、合金1及び合金6からのカップ上のフェライトスコープ測定を示す。遅く延伸されたカップ及び速く延伸されたカップの両方の底における微細構造が支配的にはオーステナイトであることが分かり得る。カップ延伸の間にカップの底で応力が非常に少ない又は全くないので、構造的変化は最小限であり、これはその後、開始再結晶モーダル構造(つまり、
図2における構造#4)のベースライン測定(Fe%)によって表される。カップ底でのフェライトスコープ測定は、本明細書の合金両方における任意の延伸速度での磁気相体積分率における変化がないことを示す
図37におけるオープンシンボルによって表される。しかしながら、対照的に、両方の合金に関するカップの壁は、変形での相変態に関連した磁気相の量が、延伸速度を増加することによって減少していること(
図37におけるソリッドシンボル)を示し、TEM調査と一致している。カップ壁は、混合微視的成分構造形成に向かう構造的変化につながる延伸での大規模な変形を経験する。分かるように、微視的成分2を表す磁気相の体積分率は、延伸速度を増加することによって減少する(
図37)。臨界速度(S
CR)は、クラッキングが直接観察される場所に基づいて各合金に関して提供されることに留意されたい。合金1に関して、それぞれ
図31及び
図32に存在するクラックの数によって示されるように、S
CRは、19mm/sであるように決定され、合金6に関して、S
CRは、9.5mm/sであるように決定された。
【0147】
この事例は、本明細書の合金のカップ延伸の間に延伸速度を増加することは、磁気相体積パーセントの低下及び微細化高強度ナノモーダル構造へのオーステナイト変態の抑制につながる変形双晶による支配による変形経路の変化をもたらすことを実証する。
【0148】
事例#11 異なる速度での従来のAHSSカップ延伸
1mmの厚さを有する商業的に製造され加工されるDual Phase 980(DP980)鋼シートが購入され、受け取った状況としてカップ絞り試験のために用いられた。直径85.85mmのブランクは、ワイヤEDMによって冷間圧延シートから切られた。切られた後で、ブランクのエッジは、任意の大きな凹凸を除去するために240グリットの炭化ケイ素研磨紙を用いて軽く研削され、その後、ナイロンベルトを用いて研磨された。結果として得られるシートブランクは、表17において特定される3つの異なる速度でカップ延伸のために用いられた。
【0149】
1.0mmの最終的な厚さ及び再結晶モーダル構造を有する各合金からの、結果として得られるブランクは、絞り試験のために用いられた。ブランクをダイ及びラムに押し込むことによって生じた延伸は、完全なカップが延伸されるまで(つまり、フランジ材料なし)、ダイ内へ連続的に上向きに移動された。カップは、表22に示されるように、様々な延伸速度で延伸された。結果として得られる試験されたブランクに関する延伸比は、1.78であった。
【0151】
延伸後、フェライトスコープ測定が、カップ壁及び底上で行われた。測定の結果は
図38に示される。分かるように、磁気相の体積分率は、延伸速度の増加と共に変化せず、適用される全速度範囲にわたって一定のままである。
【0152】
この事例は、従来のAHSSのカップ延伸での延伸速度を増加することは、構造的な相組成に影響を与えない、又は変形経路を変化させないことを実証する。
【0153】
事例#12 延伸限界比率
表1において提供される原子比率に従う合金6及び合金14からのブランクは、ワイヤEDMによって両方の合金からの1.0mm厚さの冷間圧延シートから表23にリスト化された直径で切られた。切られた後で、ブランクのエッジは、任意の大きな凹凸を除去するために240グリットの炭化ケイ素研磨紙を用いて軽く研削され、その後、ナイロンベルトを用いて研磨された。ブランクはその後、本明細書で記載されるように850℃で10分間アニールされた。1.0mmの最終的な厚さ及び再結晶モーダル構造を有する各合金からの、結果として得られるシートブランクは、表23に特定される比率でのカップ延伸のために用いられた。初期状態では、フェライトスコープ測定は、合金6に関して0.94及び合金14に関して0.67のFe%を示す。
【0155】
試験は、36.31mmのダイ直径を備え、小さい直径パンチ(31.99mm)を用いるInterlaken SP 225 マシン上で完了された。ブランクをダイ及びラムに押し込むことによって生じた延伸は、完全なカップが延伸されるまで(つまり、フランジ材料なし)、ダイ内へ連続的に上向きに移動された。カップは、このタイプの試験に関して典型的に用いられる0.85mm/sのラム速度で及び25mm/sで延伸された。異なるサイズのブランクは、同一の延伸パラメータによって延伸された。
【0156】
異なる延伸比によって延伸された合金6及び合金14からのカップの例は、それぞれ
図39及び
図40に示される。延伸パラメータは、最適化されなかったので、上部でのいくつかの耳発生及び側壁上のくぼみが、カップサンプルにおいて観察されたことに留意されたい。これは、例えば、クランプ力又は潤滑剤が最適化されずいくつかの延伸欠陥が存在するようなときに起こる。延伸後、カップは、遅れクラッキング及び/又は破断に関して調査された。延伸後のカップ壁上のフェライトスコープ測定を含む試験の結果が、
図41に示される。分かるように、0.85mm/sの遅い延伸速度では、磁気相の量は1.9の延伸比での34Fe%から2.4の延伸比での46%へ合金6からのカップの壁において連続的に増加する。遅れ破壊は、2.4の延伸比でのカップの破断によってすべての延伸比で起こった。25mm/sへの延伸速度における増加は、2.4の延伸比での最大の21.5Fe%によってすべての延伸比でより低いFe%をもたらす。カップ破断は、同じ2.4の延伸比で起こった。合金14からのカップの壁では、磁気相の量は、ここでのすべての試験条件で比較的、より低い。遅れクラッキングは、この合金からの任意のカップにおいて観察されず、より高速の試験(25mm/s)の場合では、破断が、より高い2.5の延伸比で起こった。合金6に関する限界延伸比(LDR)は、2.3であるように決定され、合金14に関して2.4であるように決定された。LDRは、所与のパンチ直径下でうまく延伸され得るブランクの最大直径の比率として定義される。
【0157】
この事例は、本明細書の合金のカップ延伸の間に延伸速度を増加することが、合金6例上で示されるような遅れ破壊の抑制、及び、合金14例上で示されるような延伸限界比率(DLR)を定義した破断前の延伸比の増加をもたらすことを実証する。延伸速度における増加は、水素脆化の影響を受けやすい変形後の磁気相の量を顕著に低下する微細化高強度ナノモーダル構造への相変態を減少させることをもたらす。