特許第6965448号(P6965448)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドの特許一覧

特許6965448半導体ベース光電子増倍管を備える装置及び利得安定化に関する方法
<>
  • 特許6965448-半導体ベース光電子増倍管を備える装置及び利得安定化に関する方法 図000002
  • 特許6965448-半導体ベース光電子増倍管を備える装置及び利得安定化に関する方法 図000003
  • 特許6965448-半導体ベース光電子増倍管を備える装置及び利得安定化に関する方法 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6965448
(24)【登録日】2021年10月22日
(45)【発行日】2021年11月10日
(54)【発明の名称】半導体ベース光電子増倍管を備える装置及び利得安定化に関する方法
(51)【国際特許分類】
   H01J 43/06 20060101AFI20211028BHJP
   H01L 31/08 20060101ALI20211028BHJP
   H01L 31/107 20060101ALI20211028BHJP
   H01L 31/10 20060101ALI20211028BHJP
   G01T 1/20 20060101ALN20211028BHJP
【FI】
   H01J43/06
   H01L31/00 A
   H01L31/10 B
   H01L31/10 G
   !G01T1/20 E
【請求項の数】14
【全頁数】16
(21)【出願番号】特願2020-526308(P2020-526308)
(86)(22)【出願日】2018年11月7日
(65)【公表番号】特表2021-502682(P2021-502682A)
(43)【公表日】2021年1月28日
(86)【国際出願番号】US2018059587
(87)【国際公開番号】WO2019094441
(87)【国際公開日】20190516
【審査請求日】2020年5月12日
(31)【優先権主張番号】62/585,039
(32)【優先日】2017年11月13日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】593150863
【氏名又は名称】サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド
【氏名又は名称原語表記】SAINT−GOBAIN CERAMICS AND PLASTICS, INC.
(74)【代理人】
【識別番号】110003281
【氏名又は名称】特許業務法人大塚国際特許事務所
(74)【代理人】
【識別番号】100076428
【弁理士】
【氏名又は名称】大塚 康徳
(74)【代理人】
【識別番号】100115071
【弁理士】
【氏名又は名称】大塚 康弘
(74)【代理人】
【識別番号】100112508
【弁理士】
【氏名又は名称】高柳 司郎
(74)【代理人】
【識別番号】100116894
【弁理士】
【氏名又は名称】木村 秀二
(74)【代理人】
【識別番号】100130409
【弁理士】
【氏名又は名称】下山 治
(74)【代理人】
【識別番号】100134175
【弁理士】
【氏名又は名称】永川 行光
(74)【代理人】
【識別番号】100188857
【弁理士】
【氏名又は名称】木下 智文
(74)【代理人】
【識別番号】110000855
【氏名又は名称】特許業務法人浅村特許事務所
(72)【発明者】
【氏名】マクラフリン ザ セコンド、マイケル テランス
【審査官】 関口 英樹
(56)【参考文献】
【文献】 特開2003−298101(JP,A)
【文献】 特開2005−283327(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01T1/00−1/16
1/167−7/12
H01J40/00−49/48
H01L31/00−31/02
31/0232
31/0248
31/0264
31/08
31/10
31/107−31/108
31/111
31/18
51/42
(57)【特許請求の範囲】
【請求項1】
半導体ベース光電子増倍管を備える装置であって、前記装置は、
前記半導体ベース光電子増倍管に第1の入力パルスを注入することであって、前記半導体ベース光電子増倍管がSi光電子増倍管である、注入することと
前記第1の入力パルスに対応する第1の出力パルスと、前記第1の出力パルスと比較して別の時間に取得される、前記半導体ベース光電子増倍管からの第2の出力パルスとに少なくとも部分的に基づいて、前記半導体ベース光電子増倍管のための修正バイアス電圧を決定することと、
前記半導体ベース光電子増倍管のためのバイアス電圧を前記修正バイアス電圧に調整することと
を行うように構成された、装置。
【請求項2】
前記修正バイアス電圧の前記決定が温度情報なしに実行される、請求項1に記載の装置。
【請求項3】
前記装置が、さらに、前記装置の健康を監視する又は判断するために、バイアス電圧のセットを分析するように構成された、請求項1に記載の装置。
【請求項4】
半導体ベース光電子増倍管を備える装置を与えることと、
前記半導体ベース光電子増倍管に第1の入力パルスを注入することと、
前記第1の入力パルスに対応する第1の出力パルスと、前記第1の出力パルスと比較して別の時間に取得される、前記半導体ベース光電子増倍管からの第2の出力パルスとに少なくとも部分的に基づいて、前記半導体ベース光電子増倍管のための修正バイアス電圧を決定することと、
前記半導体ベース光電子増倍管のためのバイアス電圧を前記修正バイアス電圧に調整することと
第1の積分された信号を取得するために、前記第1の出力パルスを時間にわたって積分することと
を含む、方法。
【請求項5】
前記修正バイアス電圧を決定することが、前記半導体ベース光電子増倍管のための較正光源又は温度情報なしに実行される、請求項4に記載の方法。
【請求項6】
第2の積分された信号が前記第2の出力パルスに対応する、請求項に記載の方法。
【請求項7】
前記修正バイアス電圧を決定することが、VB1の9%以内である前記修正バイアス電圧を決定することを含み、
B1=VB2+N*(S−S)であり、
B1が、前記第1の出力パルスに対応するバイアス電圧であり、
B2が、前記第2の出力パルスに対応するバイアス電圧であり、
Nが変換係数であり、
が前記第1の積分された信号であり、
が前記第2の積分された信号である、
請求項に記載の方法。
【請求項8】
前記装置の健康を監視する又は判断するために、バイアス電圧のセットを分析することをさらに含む、請求項4に記載の方法。
【請求項9】
前記半導体ベース光電子増倍管がSi光電子増倍管である、請求項に記載の方法。
【請求項10】
前記装置が、前記装置の通常動作中に前記半導体ベース光電子増倍管に前記第1の入力パルスを注入するように構成されたパルス注入回路をさらに備える、請求項1からまでのいずれか一項に記載の装置。
【請求項11】
前記装置が、前記半導体ベース光電子増倍管にバイアス電圧を与えるように構成されたバイアス電圧供給回路をさらに備える、請求項1からまでのいずれか一項に記載の装置。
【請求項12】
前記装置が光源を備える、請求項1からまでのいずれか一項に記載の装置。
【請求項13】
前記光源が、前記半導体ベース光電子増倍管に光学的に結合された発光材料であり、
前記装置が、前記発光材料と前記半導体ベース光電子増倍管との間の界面に隣接する温度センサーをさらに備える、
請求項12に記載の装置。
【請求項14】
温度情報が前記修正バイアス電圧のための粗調整として使用され、前記第1の入力パルスが前記修正バイアス電圧のための微調整として使用される、請求項1又はに記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、半導体ベース光電子増倍管を備える装置、及び利得安定化に関する方法を対象とする。
【背景技術】
【0002】
装置は、Si光電子増倍管(photomultiplier)など、半導体ベース光電子増倍管を含むことができる。使用において、Si光電子増倍管は、特にSi光電子増倍管の温度が変化するとき、それの利得が調整される必要があり得る。温度センサーがSi光電子増倍管の近くに配置され得、温度センサーからの読みが、Si光電子増倍管の利得を調整するために使用され得る。
【発明の概要】
【発明が解決しようとする課題】
【0003】
半導体ベース光電子増倍管を含む装置のさらなる改善が望まれる。
【課題を解決するための手段】
【0004】
実施例は、実例として示されており、添付図において限定されない。
【図面の簡単な説明】
【0005】
図1】一実施例による装置の描写を含む図である。
図2】実施例による装置の別の部分の描写を含む図である。
図3】一実施例による利得安定化シーケンスのフロー・チャートを含む図である。
【発明を実施するための形態】
【0006】
図中の要素は簡単及び明快のために示されており、必ずしも一定の縮尺で描かれているとは限らないことを、当業者は諒解する。たとえば、図中の要素のうちのいくつかの寸法は、本発明の実施例の理解を改善するのを助けるために、他の要素に対して拡大させられ得る。
【0007】
以下の説明は、図と組み合わせて、本明細書で開示する教示を理解するのを支援するために与えられる。以下の説明では、本教示の特定の実装形態及び実施例に焦点を当てる。この焦点は、本教示を説明するのを支援するために与えられ、本教示の範囲又は利用可能性に関する限定として解釈されるべきではない。しかしながら、本出願に開示されているように、本教示に基づいて他の実施例が使用され得る。
【0008】
「化合物半導体」という用語は、少なくとも2つの異なる要素を含む半導体材料を意味するものとする。実例は、SiC、SiGe、GaN、InP、AlxGa(1−x)N、0≦x<1、CdTeなどを含む。III−V族半導体材料は、少なくとも1つの三価金属元素と少なくとも1つの15族元素とを含む半導体材料を意味するものとする。III−N族半導体材料は、少なくとも1つの三価金属元素と窒素とを含む半導体材料を意味するものとする。13族〜15族半導体材料は、少なくとも1つの13族元素と少なくとも1つの15族元素とを含む半導体材料を意味するものとする。II−VI族半導体材料は、少なくとも1つの二価金属元素と少なくとも1つの16族元素とを含む半導体材料を意味するものとする。
【0009】
「アバランシェ・フォトダイオード」という用語は、最小1mmの受光領域を有し、比例モードにおいて動作させられる単一のフォトダイオードを指す。
【0010】
「SiPM」という用語は、複数のフォトダイオードを含む光電子増倍管を意味するものであり、フォトダイオードの各々は、1mmよりも小さいセル・サイズを有し、フォトダイオードはガイガー・モードにおいて動作させられる。SiPM中のダイオードのための半導体材料は、シリコン、化合物半導体、又は別の半導体材料を含むことができる。
【0011】
「備える(comprises)」、「備える(comprising)」、「含む(includes)」、「含む(including)」、「有する(has)」、「有する(having)」という用語、又はそれの他の変形は、非排他的含有をカバーするものとする。たとえば、特徴のリストを備える方法、物品、又は装置は、必ずしもそれらの特徴のみに限定されるとは限らないが、明確に記載されない、又はそのような方法、物品、又は装置に固有の他の特徴を含み得る。さらに、反対に明記されていない限り、「又は」は、包含的な「又は」を指し、排他的な「又は」を指さない。たとえば、条件A又はBは、Aが真である(又は存在する)且つBが偽である(又は存在しない)、Aが偽である(又は存在しない)且つBが真である(又は存在する)、並びにAとBの両方が真である(又は存在する)のうちのいずれか1つによって満たされる。
【0012】
また、「a」又は「an」の使用は、本明細書で説明する要素及び構成要素について説明するために採用される。これは、単に便宜のために、及び本発明の範囲の一般的な意味を与えるために行われる。この説明は、それが他のことを意味することが明らかでない限り、複数をも含むとして1つ、少なくとも1つ、又は単数を含むように、又はその逆であるように読まれるべきである。たとえば、単一の項目が本明細書で説明されるとき、単一の項目の代わりに2つ以上の項目が使用され得る。同様に、2つ以上の項目が本明細書で説明される場合、その2つ以上の項目の代わりに単一の項目が使用され得る。
【0013】
「約(about)」、「約(approximately)」、又は「実質的に(substantially)」という単語の使用は、パラメータの値が、述べられる値又は位置に近いことを意味するものとする。しかしながら、小さい差は、値又は位置が、厳密な記述通りであるのを防ぎ得る。したがって、値についての最高10パーセント(10%)(及び半導体ドーピング濃度については最高20パーセント(20%))の差は、厳密な説明通りの理想的な目標からの妥当な差である。
【0014】
元素周期律表内の列に対応する属番号は、IUPAC元素周期律表、2016年11月28日付けのバージョンに基づく。
【0015】
別段に定義されていない限り、本明細書で使用するすべての技術用語及び科学用語は、本発明が属する技術分野の当業者によって一般的に理解されるのと同じ意味を有する。材料、方法、及び実例は、例示的なものにすぎず、限定的なものではない。本明細書で説明されない程度まで、特定の材料及び処理行為に関する多くの詳細は、従来通りであり、シンチレーション分野、放射検出分野及び測距分野内の教科書及び他のソースにおいて見つけられ得る。
【0016】
本明細書で説明する装置及び方法は、半導体ベース光電子増倍管の利得を安定させるのを助けるために使用され得る。利得が安定させられるので、半導体ベース光電子増倍管からの電子パルス又は対応するデジタル信号は、装置の動作中に半導体ベース光電子増倍管の温度変化を考慮するために調整される必要がない。較正光源、温度センサー、及び温度情報を本方法のために使用する必要はない。さらに、利得を安定させるために使用される本方法は、本装置が、放射検出、撮像、測距など、本装置の主な機能のうちの1つ又は複数のために使用されている間、背景機能として実行され得る(ユーザに見えない)。
【0017】
一実施例では、装置は半導体ベース光電子増倍管を含むことができる。本装置は、半導体ベース光電子増倍管に第1の入力パルスを注入することと、第1の入力パルスに対応する第1の出力パルスと、第1の出力パルスと比較して別の時間に取得される、半導体ベース光電子増倍管からの第2の出力パルスとに少なくとも部分的に基づいて、半導体ベース光電子増倍管のための修正バイアス電圧を決定することと、半導体ベース光電子増倍管のためのバイアス電圧を修正バイアス電圧に調整することとを行うように構成され得る。バイアス電圧を調整することは、バイアス電圧を調整しないことと比較して、半導体ベース光電子増倍管の利得が所定の値により近くなるように実行され得る。
【0018】
本明細書で説明する利得安定化概念を使用する実施例は、半導体ベース光電子増倍管を使用する様々な異なる装置において使用され得る。そのような装置は、放射検出装置、測距装置、及び他の好適な装置を含むことができる。前者は、原子物理学ツール、医療撮像ツール、検層(well logging)又はウェル・ボア(well bore)ツールなどを含むことができる。測距ツールは、光検出及び測距(「LiDAR」)ツール、3次元(「3D」)撮像ツールなどを含むことができる。半導体ベース光電子増倍管は、装置内又は装置の外側にあり得る光源に結合される。光源は、シンチレータ、レーザー、発光ダイオード(「LED」)(無機又は有機)、又は別の好適な光源を含むことができる。以下の説明では、例示的な実施例を与えるために、本装置について放射検出装置に関して説明する。本明細書を読めば、本明細書で説明する概念から逸脱することなく、多くの他の装置が使用され得ることを当業者は諒解しよう。
【0019】
図1は放射検出装置100の実施例を示す。放射検出装置100は、軍事用途などのための、医療撮像装置、検層装置、セキュリティ検査装置であり得る。放射検出装置100は、光源110と、半導体ベース光電子増倍管130と、光源110に光学的に結合するか又は別の発光材料を半導体ベース光電子増倍管130に光学的に結合する光カプラ120とを含むことができる。半導体ベース光電子増倍管130は、制御モジュール140と、パルス・インジェクタ回路152と、バイアス電圧供給回路154とに電気的に結合される。制御モジュール140はパルス・インジェクタ回路152とバイアス電圧供給回路154とに結合される。制御モジュール140はまた、装置内の別の構成要素、コンピュータ、永続メモリ、ディスプレイ、キーボードなど、別の装置(図示されていない)に結合され得る。
【0020】
光源110と半導体ベース光電子増倍管130との間の界面に隣接して随意の温度センサー160が配置され得る。特定の実施例では、温度センサー160は、光源上、半導体ベース光電子増倍管130上、又は(たとえば、集積回路中又は回路板上のサーミスタのように)半導体ベース光電子増倍管内にあり得る。別の特定の実施例では、温度センサー160は、光源110、半導体ベース光電子増倍管130、又は両方から、高々9cm、高々2cm、又は高々0.9cmのところにあり得る。別の実施例では、温度センサー160は制御モジュール140内の集積回路内にあり得る。本明細書で説明する本方法は温度情報を必要としない。したがって、温度センサー160は、他の理由で、たとえば、光源110の温度が変化した際に光源110からの光出力を考慮するために使用され得る。
【0021】
図1において、矢印は、信号が流れる主方向を示す。別の実施例では、電気的結合のうちの1つ又は複数が双方向であり得る。
【0022】
光源110は、シンチレータなどの発光材料であり得、ガンマ線、中性子、イオン化された放射など、ターゲットにされる放射を吸収したことに応答して紫外光又は可視光を放出することができる、ハロゲン化物、酸化物、又は別の好適な材料を含むことができる。光カプラ120は、ウィンドウ、シリコーン若しくはアクリル樹脂材料、又は別の透明材料を含むことができる。必要とされるか又は望まれる場合、光源110から放出された光の波長を、半導体ベース光電子増倍管130のより高い量子効率を可能にする異なる波長に変化させるために、波長シフタが使用され得る。測距装置又は他の装置など、別の装置では、光源は、レーザー、LEDなどであり得る。そのような適用例では、光は、光源から放出され、装置の外側にある物体によって反射され、半導体ベース光電子増倍管130によって受光され得る。別の適用例では、光源は装置100の外部にあり得、光源からの光は半導体ベース光電子増倍管130によって受光され得る。そのような適用例では、光カプラ120が使用されないことがある。
【0023】
本装置及び方法は、半導体ベース光電子増倍管がSiPMであるときに好適である。依然として、本明細書で説明する装置及び方法は、アバランシェ・フォトダイオードなど、別の半導体ベース光電子増倍管とともに使用され得る。SiPMは、温度の変化とともに変化する利得を有することができる。本装置及びプロセスは、以下でより詳細に説明するように、SiPMなど、半導体ベース光電子増倍管の利得を安定させるのを助けるために使用され得る。
【0024】
制御モジュール140は1つ又は複数の異なる機能をサービスすることができる。本装置が放射検出装置であるとき、制御モジュール140は、半導体ベース光電子増倍管130から電子パルスを受信し、1つ又は複数の機能を実行することができる。たとえば、制御モジュール140は、放射イベントを計数すること、放射源を識別することなどを行うように構成され得る。測距適用例において使用されるとき、制御モジュール140は、半導体ベース光電子増倍管130と、放射源、光源、又は半導体ベース光電子増倍管130によって受光される光を反射する物体との間の距離を決定することができる。
【0025】
制御モジュール140はまた、半導体ベース光電子増倍管130の利得を安定させるのを助けるように構成され得る。特定の実装形態では、制御モジュール140はパルス注入回路152に結合され得、制御モジュール140はパルス・インジェクタ回路152に制御信号を送ることができ、パルス・インジェクタ回路152は半導体ベース光電子増倍管130にパルスを送ることができる。制御モジュール140はまた、バイアス電圧回路154に結合され得、バイアス電圧回路154は半導体ベース光電子増倍管130のためのバイアス電圧を設定することができる。バイアス電圧回路154は直流電圧を供給し得る。バイアス電圧回路154からの電圧がパルス注入回路152の動作と干渉するのを防ぐために、キャパシタが使用され得る。そのようなキャパシタは、パルス注入回路152の一部であり得るか、又は、パルス注入回路152と、パルス積分回路152が半導体ベース光電子増倍管130への入力信号ラインに接続する場所との間に配置され得る。利得安定化機能については、フロー・チャートに関して本明細書で後で説明する。
【0026】
図2は制御モジュール140内の構成要素の例を含む。半導体ベース光電子増倍管130は制御モジュール140内の増幅器202に結合される。一実施例では、増幅器202は高忠実度増幅器(high fidelity amplifier)であり得る。増幅器202は電子パルスを増幅することができ、増幅された電子パルスは、アナログデジタル変換器(「ADC」)204において、プロセッサ222によって受信され得るデジタル信号に変換され得る。プロセッサ222は、フィールド・プログラマブル・ゲート・アレイ(「FPGA」)224又は特定用途向け集積回路(「ASIC」)、メモリ226、入出力(「I/О」)モジュール242、パルス注入回路152、及びバイアス電圧回路154など、プログラム可能/再プログラム可能処理モジュール(「PRPM」)に結合され得る。結合は単方向又は双方向であり得る。別の実施例では、より多い、より少ない、又は異なる構成要素が制御モジュール140において使用され得る。たとえば、FPGA224によって与えられる機能はプロセッサ222によって実行され得、したがって、FPGA224は必要とされない。FPGA224は、プロセッサ222よりも速く情報に作用することができる。
【0027】
動作中、半導体ベース光電子増倍管130からの電子パルスは制御モジュール140において受信され得る。プロセッサ222は、信号が、放射検出、測距など、本装置がそれのためにユーザによって使用されるところの機能に対応するのか、又は利得安定化機能に対応するのかを決定するために、信号を分析することができる。たとえば、放射検出のために、プロセッサ222は、ADC204からのデジタル信号を分析し、デジタル信号が、ピークに達し、次いで指数関数的減衰を有する放射イベントに対応するのか、又は、デジタル信号が、パルス注入回路152から半導体ベース光電子増倍管130に注入されるパルスに対応するのかを決定することができる。パルス注入回路152から注入されるパルスは、放射イベントで見られるように、指数関数的減衰を有しない。
【0028】
FPGA224に関して説明した機能のいくつか又はすべてはプロセッサ222によって実行され得、したがって、FPGA224はすべての実施例において必要とされるとは限らない。さらに、FPGA224、メモリ226、I/Oモジュール242、又はそれらの任意の組合せは、プロセッサ222など、同じ集積回路内にあり得る。別の実施例では、制御モジュール140は装置100内に格納される必要がない。またさらに、制御モジュール140の少なくとも1つの構成要素は、図4に示されているように、装置100内にあり得、少なくとも1つの他の構成要素は装置100の外側にあり得る。装置100内の制御モジュール140は、データ送信遅延を有することなしに動作が急速に進むことを可能にすることができる。
【0029】
随意に、本方法を開始する前に、バイアス電圧は、半導体ベース光電子増倍管130のための所望の利得を達成するために、ある値に設定され得る。プロセッサ222はバイアス電圧回路154に命令を送ることができる。バイアス電圧制御回路154は、半導体ベース光電子増倍管のための利得を設定するために、半導体ベース光電子増倍管130にバイアス電圧を供給することができる。半導体ベース光電子増倍管130がSiPMであるとき、バイアス電圧はSiPM中のダイオードのための平均破壊電圧の数ボルト内であり得る。バイアス電圧は平均破壊電圧よりも高く又は低くなり得る。破壊電圧は、ダイオードの半導体材料と、np接合におけるドーパント濃度と、半導体ベース光電子増倍管130の温度とに依存し得る。一実施例では、バイアス電圧は約20VDC〜30VDCの範囲内にあり得る。バイアス電圧のために使用される実際の電圧は、たとえば、許容できる信号対雑音比を与えるために、装置100がうまく動作する場所に依存し得る。バイアス電圧は、最初に、20°C〜25°Cの範囲内など、室温に設定され得る。バイアス電圧のこの初期設定は装置100の最後の設置の前に実行され得る。したがって、初期設定は、テスト・ベンチにおいて、ファクトリーにおいて、又は、フィールドにおける設置が完了される前に、若しくは、始動シーケンス中に実行され得る。別の実施例では、バイアス電圧は、最初に、以下の方法に関して説明するように設定され得る。動作中、半導体ベース光電子増倍管は、最初にバイアス電圧を設定するときに使用される温度から、少なくとも1.1°C、少なくとも5°C、又は少なくとも11°C離れ得る。
【0030】
必要とされる又は望まれる場合、半導体ベース光電子増倍管の利得を、最初にセット又はリセットされた利得の高々9%、高々5%、又は高々1%など、所定の範囲内に保つために、温度情報及び対応するバイアス電圧情報を生成するために、追加の試験が実行され得る。そのような情報はFPGA224又はメモリ226に記憶され得る。
【0031】
図3に示されているフロー・チャート並びに図1及び図2に示されている装置100の部分に関して、動作中に利得安定化機能について説明する。本方法は、ブロック302において、半導体ベース光電子増倍管に入力パルスを注入することから開始する。図1を参照すると、半導体ベース光電子増倍管130はSiPMであり得る。プロセッサ202は、パルス注入回路152が半導体ベース光電子増倍管130にパルスを送るように、パルス注入回路152に信号を送ることができる。一実施例では、パルスは電圧の形態である。パルスを注入することは、所定のスケジュールで、又は、保守、シャットダウン若しくは停電の後のリブート若しくは始動など、所定のイベントに応答して実行され得る。特定の実施例では、1秒の分数ごとに、パルスの大きさは、半導体ベース光電子増倍管130への入力電圧が現在の動作温度における破壊しきい値よりも高く押し上げられるまで、段階的に増加し(バイアス電圧に追加され)得る。1秒の分数は2ms〜500msの範囲内、又は5ms〜50msの範囲内にあり得、電圧における段階的増加は2mV〜500mVの範囲内、又は5mV〜50mVの範囲内にあり得る。半導体ベース光電子増倍管130がSiPMであるとき、SiPMは、同じ破壊電圧を有しない多くのダイオードを有するので、破壊しきい値は平均破壊しきい値であり得る。
【0032】
本方法は、ブロック304において、半導体ベース光電子増倍管からの出力パルスを受信することを含むことができる。半導体ベース光電子増倍管130によって受信される入力パルスにより、半導体ベース光電子増倍管130によって送信され、制御モジュール140によって受信される電子パルスの形態の出力パルスが生成され得る。電子パルスは、増幅器202によって増幅され、ADC204によってデジタル信号に変換され、プロセッサ222によって受信される。
【0033】
本方法は、ブロック322において、半導体ベース増倍管からの出力パルスに少なくとも部分的に基づいて導関数情報を生成することをさらに含むことができる。プロセッサ222は、デジタル信号を分析し、導関数情報を生成することができる。そのような導関数情報は、光源110によって中性子放射が吸収されたのかガンマ放射が吸収されたのか、アイソトープ識別、立ち上り時間、崩壊時間、発光スペクトル、パルス高さ分解能などを含むことができる。本装置が撮像ツール又は測距ツールであるとき、導関数情報は、放射源又は物体が半導体ベース光電子増倍管130からどのくらい遠いかを含むことができる。利得安定化に関して、プロセッサ222は、半導体ベース光電子増倍管130からの電子パルスに対応する電荷を時間にわたって積分することができる。
【0034】
ダイヤモンド342において、外部入力が受信されるか否かの決定が行われ得る。たとえば、利得基準は前に設定されていないことがあり、外部入力は利得基準に設定され得る。利得基準が前に設定されていない場合、利得基準はこの時間に設定され得る。別の実施例では、装置100のパフォーマンスは特徴づけられていることがあり、次に利得基準が設定される必要がある。本方法は決定ダイヤモンド342から「はい」分岐に沿って進むことができ、本方法は、ブロック350において、利得基準を設定することを含むことができる。本方法は、ブロック302に戻り、継続する。
【0035】
ブロック302、304、及び322は繰り返され、決定ダイヤモンド342において決定が行われる。一実施例では、利得基準はセットされており、リセットされていないので、本方法は決定ダイヤモンド342から「いいえ」分岐に沿って進む。本方法は、ブロック364において、修正バイアス電圧を決定することをさらに含む。特定の実施例では、ブロック322からの導関数情報は、時間にわたって積分された半導体ベース光電子増倍管130からの電子パルスの電荷を含むことができる。特定の実施例では、修正バイアス電圧はVBRの9%以内、5%以内、又は1%以内であり得、
VB1=VB2+N*(S2−S1)
であり、ここで、VB1は、現在の出力パルスに対応するバイアス電圧であり、VB2は、前の出力パルスに対応するバイアス電圧であり、Nは変換係数であり、S1は、現在の出力パルスに対応する第1の積分された信号であり、S2は、前の出力パルスに対応する第2の積分された信号である。
【0036】
第1及び第2の積分された信号は、電荷、電流、電圧、アナログ信号、又は、アナログ信号のデジタル化バージョンであり得る。変換係数は、前に収集された出力パルスに対応する積分された信号の関数としてバイアス電圧のデータをプロットすることによって取得され得る。したがって、変換係数は履歴データに基づき得る。
【0037】
本方法は、ブロック364において、バイアス電圧を修正バイアス電圧に調整することを含むことができる。プロセッサ222はバイアス電圧回路154に信号を送ることができ、バイアス電圧回路154はバイアス電圧を修正バイアス電圧に調整することができる。修正バイアス電圧により、半導体ベース光電子増倍管130は、ブロック350において半導体ベース光電子増倍管130が設定されたように半導体ベース光電子増倍管130のための利得のより近くで動作することができる。バイアス電圧を調整することは、パルス注入回路152からの入力パルスが半導体ベース光電子増倍管130に注入されるたびに実行される必要はない。たとえば、バイアス電圧を調整するべきか否かを決定するためにしきい値が使用され得る。特定の実施例では、VBRはVB2とは0.1%未満異なり、バイアス電圧は調整されないことがある。
【0038】
バイアス電圧を調整した後に、決定ダイヤモンド382において、継続するべきかどうかの決定が行われ得る。「はい」の場合、本方法はブロック302を続ける。他の場合(決定ダイヤモンド382の「いいえ」分岐)、本方法は終了することができる。
【0039】
本方法の間又は後、他の行為が行われ得る。たとえば、ユーザがよりエキゾチックな制御方式を実装することができる。代替的に、ユーザがバイアス電圧を手動で調整するか、利得基準を設定するか、又は別の行為を実行することができる。さらに、タイムスタンプ、積分された電荷、バイアス電圧など、データが収集され、メモリ226に記憶され得る。データは、装置100の健康を監視する又は判断するために検討され得る。装置100は、装置100の健康を監視する又は判断するためにバイアス電圧のセットを分析するように構成され得る。たとえば、時間の関数としてのバイアス電圧の変化は増加していることがある。これは、半導体ベース光電子増倍管130が故障に近づいていることがあるか、又は、装置100が保守のためにすぐにシャットダウンされるべきであるというサインであり得る。たとえば、前のバイアス電圧は1%の範囲内であり得、最近のバイアス電圧又はバイアス電圧のセットが前の調整よりも少なくとも2%大きくなり得る。別の実例として、バイアス電圧への前の調整が0.7%の標準偏差を有し得、バイアス電圧への最近の調整又は最近の調整のセットが1.1%の標準偏差を有し得る。調整への統計的に有意な変化、対応する標準偏差、又は変化と標準偏差の両方が使用され得る。したがって、不適当な時間に起こり得る、故障が発生するのを待つのではなく、装置100を維持するためのプロアクティブな手法が使用され得る。
【0040】
本方法の利点は、放射を検出又は識別すること、撮像、測距など、本装置の1つ又は複数の主な機能が使用されている間、本方法が背景において動作することができる(ユーザに容易に明らかでない)ことである。本方法は、本装置の正常動作中にリアルタイムで利得を安定させるのを助けることができる。したがって、本装置は、前に説明したように本方法を使用するときに、シャットダウンされるか又はオフライン状態にされる必要がない。一実施例では、本方法は、たとえば、本装置がオンにされ、ウォーム・アップされた後に、所定のスケジュールで、又は所定のイベントの発生に応答して実行され得る。
【0041】
本方法は、較正光源を必要とせずに実行され得る。さらに、本方法は温度情報なしに実行され得る。したがって、温度センサーが必要とされない。
【0042】
しかしながら、装置100は、必要とされる又は望まれる場合、温度センサーを含むことができる。温度センサーは、他の目的で使用される温度情報を与えることができる。たとえば、シンチレータなど、発光材料の光出力は、温度が上昇するにつれて著しく低くなり得る。温度センサーが光源110の9cm、5cm、又は0.9cm以内に配置され得る。電子パルスが半導体ベース光電子増倍管130によって生成され得、電子パルスに対応する対応するデジタル信号が、発光材料の温度を考慮するために調整され得る。温度に敏感である他の光源も使用され、同様の調整を有することができる。
【0043】
別の実施例では、本明細書で説明する方法とともに温度情報が使用され得る。たとえば、温度センサーが半導体ベース光電子増倍管130の9cm、5cm、又は0.9cm以内に配置され得る。利得基準又はバイアス電圧を設定するために、温度センサーからの温度情報が少なくとも部分的に使用され得る。たとえば、FPGA224又はメモリ226は、温度と利得基準又はバイアス電圧とを相関させる情報を有し得る。図3におけるフロー・チャートを参照すると、利得基準を設定することを伴う分岐は実行されない。注入されたパルス、導関数情報(たとえば、積分された電荷)を生成すること、修正バイアス電圧を決定すること、及びバイアス電圧を調整することが実行され得る。この実施例では、温度はバイアス電圧のための粗設定として使用され得、本方法はバイアス電圧への微調整として使用され得る。
【0044】
さらなる実施例では、温度情報がバイアス電圧から導出され得る。FPGA224又はメモリ226は、温度と利得基準又はバイアス電圧とを相関させる情報を有し得る。特定のバイアス電圧において、その相関から温度が決定され得る。したがって、修正バイアス電圧と前のバイアス電圧との比較に少なくとも部分的に基づいて、温度変化が判断され得る。光源が半導体ベース光電子増倍管130に近いとき、導出された温度情報が、光源からの光出力のための補償係数を決定する際に使用され得る。温度情報は別の目的で使用され得る。
【0045】
本明細書で説明する装置及び方法は、半導体ベース光電子増倍管の利得を安定させるのを助けるために使用され得る。利得が安定させられる際、半導体ベース光電子増倍管が本装置の動作中に受ける温度変化を考慮するために、半導体ベース光電子増倍管からの電子パルス又は対応するデジタル信号が調整される必要はない。較正光源、温度センサー、及び温度情報を本方法のために使用する必要はない。さらに、利得を安定させるために使用される本方法は、本装置が、放射検出、撮像、測距など、本装置の主な機能のうちの1つ又は複数のために使用されている間、背景機能として実行され得る(ユーザに見えない)。
【0046】
多くの異なる態様及び実施例が可能である。それらの態様及び実施例のうちのいくつかについて以下で説明する。本明細書を読めば、それらの態様及び実施例が例示的なものにすぎず、本発明の範囲を限定しないことを当業者は諒解しよう。実施例は、以下に記載する実施例のうちのいずれか一項又は複数項によるものであり得る。
【0047】
「実施例1」
半導体ベース光電子増倍管を備える装置であって、本装置は、半導体ベース光電子増倍管に第1の入力パルスを注入することと、第1の入力パルスに対応する第1の出力パルスと、第1の出力パルスと比較して別の時間に取得される、半導体ベース光電子増倍管からの第2の出力パルスとに少なくとも部分的に基づいて、半導体ベース光電子増倍管のための修正バイアス電圧を決定することと、半導体ベース光電子増倍管のためのバイアス電圧を修正バイアス電圧に調整することとを行うように構成された、装置。
【0048】
「実施例2」
修正バイアス電圧の決定が温度情報なしに実行される、実施例1に記載の装置。
【0049】
「実施例3」
本装置が、さらに、本装置の健康を監視する又は判断するためにバイアス電圧のセットを分析するように構成された、実施例1又は2に記載の装置。
【0050】
「実施例4」
本装置が、さらに、第1の入力パルス中に使用される、修正バイアス電圧と前のバイアス電圧との比較に少なくとも基づいて、温度変化を判断するように構成された、実施例1から3までのいずれか一項に記載の装置。
【0051】
「実施例5」
半導体ベース光電子増倍管を備える装置を与えることと、半導体ベース光電子増倍管に第1の入力パルスを注入することと、第1の入力パルスに対応する第1の出力パルスと、第1の出力パルスと比較して別の時間に取得される、半導体ベース光電子増倍管からの第2の出力パルスとに少なくとも部分的に基づいて、半導体ベース光電子増倍管のための修正バイアス電圧を決定することと、半導体ベース光電子増倍管のためのバイアス電圧を修正バイアス電圧に調整することとを含む、方法。
【0052】
「実施例6」
修正バイアス電圧を決定することが、半導体ベース光電子増倍管のための較正光源又は温度情報なしに実行される、実施例5に記載の方法。
【0053】
「実施例7」
第1の積分された信号を取得するために、第1の出力パルスを時間にわたって積分することをさらに含む、実施例5に記載の方法。
【0054】
「実施例8」
第2の積分された信号が第2の出力パルスに対応する、実施例7に記載の方法。
【0055】
「実施例9」
修正バイアス電圧を決定することが、VB1の9%以内、5%以内、又は1%以内である修正バイアス電圧を決定することを含み、VB1=VB2+N*(S2−S1)であり、VB1が、第1の出力パルスに対応するバイアス電圧であり、VB2が、第2の出力パルスに対応するバイアス電圧であり、Nが変換係数であり、S1が第1の積分された信号であり、S2が第2の積分された信号である、実施例8に記載の方法。
【0056】
「実施例10」
光が半導体ベース光電子増倍管によって受光されたことに応答して、半導体ベース光電子増倍管において電子パルスを生成することをさらに含む、実施例5から9までのいずれか一項に記載の方法。
【0057】
「実施例11」
光が発光材料によって放出される、実施例10に記載の方法。
【0058】
「実施例12」
光が装置の外側の物体から反射される、実施例10に記載の方法。
【0059】
「実施例13」
光が装置の外側の光源から受光される、実施例10に記載の方法。
【0060】
「実施例14」
光の光源に関連する温度情報を取得することと、温度情報に少なくとも部分的に基づいて、電子パルスに対応するデジタル信号を調整することとをさらに含む、実施例10から13までのいずれか一項に記載の方法。
【0061】
「実施例15」
本装置が温度センサーをさらに備え、本方法が、温度センサーからの温度情報に少なくとも部分的に基づいてデジタル信号を調整することをさらに含む、実施例14に記載の方法。
【0062】
「実施例16」
半導体ベース光電子増倍管から受信された電子パルスのさらなる分析を実行することをさらに含み、光源が発光材料を含む、実施例10から15までのいずれか一項に記載の方法。
【0063】
「実施例17」
第1の入力パルスを注入した後に、半導体ベース光電子増倍管に別の入力パルスを注入することをさらに含み、その別の入力パルスを注入することが、所定のスケジュールで、又は所定のイベントの発生に応答して実行される、実施例5から16までのいずれか一項に記載の方法。
【0064】
「実施例18」
半導体ベース光電子増倍管に別の入力パルスを注入することをさらに含み、その別の入力パルスを注入することが、人間からの入力に応答して実行される、実施例5から16までのいずれか一項に記載の方法。
【0065】
「実施例19」
本装置の健康を監視する又は判断するために、バイアス電圧のセットを分析することをさらに含む、実施例5及び7から18までのいずれか一項に記載の方法。
【0066】
「実施例20」
第1の入力パルス中に使用される、修正バイアス電圧とバイアス電圧との比較に少なくとも基づいて温度変化を判断することをさらに含む、実施例5及び7から19までのいずれか一項に記載の方法。
【0067】
「実施例21」
半導体ベース光電子増倍管がSi光電子増倍管である、実施例1から20までのいずれか一項に記載の装置又は方法。
【0068】
「実施例22」
第1の入力パルスが第1の温度に対応し、第2の入力パルスが第2の温度に対応し、第2の温度が20°C〜25°Cの範囲内にあり、第1の温度が第2の温度とは少なくとも1.1°C異なる、実施例1から21までのいずれか一項に記載の装置又は方法。
【0069】
「実施例23」
本装置が較正光源を含まない、実施例1から22までのいずれか一項に記載の装置又は方法。
【0070】
「実施例24」
本装置が、本装置の通常動作中に半導体ベース光電子増倍管に第1の入力パルスを注入するように構成されたパルス注入回路をさらに備える、実施例1から23までのいずれか一項に記載の装置又は方法。
【0071】
「実施例25」
本装置が、半導体ベース光電子増倍管にバイアス電圧を与えるように構成されたバイアス電圧供給回路をさらに備える、実施例1から24までのいずれか一項に記載の装置又は方法。
【0072】
「実施例26」
本装置が光源を備える、実施例1から9まで及び17から25までのいずれか一項に記載の装置又は方法。
【0073】
「実施例27」
半導体ベース光電子増倍管によって受光された光に対応する電子信号を調整するように構成された光調整モジュールをさらに備える、実施例10から16まで及び26のいずれか一項に記載の装置又は方法。
【0074】
「実施例28」
光調整モジュールが、実際の光出力と温度センサーからの温度情報とに少なくとも部分的に基づいて、調整された光出力を生成するように構成された、実施例27に記載の装置又は方法。
【0075】
「実施例29」
光源が、半導体ベース光電子増倍管に光学的に結合された発光材料であり、本装置が、発光材料と半導体ベース光電子増倍管との間の界面に隣接する温度センサーをさらに備える、実施例26から28までのいずれか一項に記載の装置又は方法。
【0076】
「実施例30」
発光材料が、放射を吸収したことに応答して発光光を放出するように構成された、実施例29に記載の装置又は方法。
【0077】
「実施例31」
本装置が測距計器、放射検出装置、又は医療撮像装置の少なくとも一部である、実施例1から30までのいずれか一項に記載の装置又は方法。
【0078】
「実施例32」
修正バイアス電圧のための粗調整として温度情報が使用され、第1の入力パルスが修正バイアス電圧のための微調整として使用される、実施例1、5、及び7から31までのいずれか一項に記載の装置又は方法。
【0079】
一般的な説明又は実例において上記で説明した活動のすべてが必要とされるとは限らないこと、特定の活動の一部分が必要とされないことがあること、及び説明した活動に加えて1つ又は複数のさらなる活動が実行され得ることに留意されたい。またさらに、活動が記載された順序は、必ずしもそれらが実行される順序であるとは限らない。
【0080】
上記で、利益、他の利点、及び、問題へのソリューションについて、特定の実施例に関して説明した。しかしながら、利益、利点、問題へのソリューション、及び、利益、利点、又はソリューションを生じるか又はより顕著にさせ得る特徴は、いずれか又はすべての請求項の重要な特徴、必要とされる特徴、又は本質的な特徴として解釈されるべきではない。
【0081】
本明細書で説明した実施例の仕様及び例示は、様々な実施例の構造の一般的な理解を与えるものとする。仕様及び例示は、本明細書で説明した装置の要素及び特徴のすべて、並びに構造又は方法を使用する装置の網羅的で包括的な説明として働くものではない。別個の実施例はまた、単一の実施例において組み合わせて与えられ得、反対に、簡潔のために、単一の実施例のコンテキストにおいて説明される様々な特徴も別個に又はサブコンビネーションで与えられ得る。さらに、範囲内で述べられる値への参照はその範囲内のあらゆる値を含む。本明細書を読んだ後にのみ、多くの他の実施例が当業者に明らかになり得る。本開示の範囲から逸脱することなく構造の代用、論理の代用、又は別の変更が行われ得るように、本開示から他の実施例が使用され、導出され得る。したがって、本開示は限定的なものではなく、例示的なものと見なされるべきである。
図1
図2
図3