(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6965605
(24)【登録日】2021年10月25日
(45)【発行日】2021年11月10日
(54)【発明の名称】調光フィルム
(51)【国際特許分類】
G02F 1/13 20060101AFI20211028BHJP
G02F 1/1334 20060101ALI20211028BHJP
【FI】
G02F1/13 505
G02F1/1334
【請求項の数】4
【全頁数】8
(21)【出願番号】特願2017-135432(P2017-135432)
(22)【出願日】2017年7月11日
(65)【公開番号】特開2019-20433(P2019-20433A)
(43)【公開日】2019年2月7日
【審査請求日】2020年6月19日
(73)【特許権者】
【識別番号】000003193
【氏名又は名称】凸版印刷株式会社
(72)【発明者】
【氏名】青木 健二
(72)【発明者】
【氏名】馬場 潤一
【審査官】
小濱 健太
(56)【参考文献】
【文献】
特開2015−215417(JP,A)
【文献】
特開2015−094801(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/13
G02F 1/1334
(57)【特許請求の範囲】
【請求項1】
透明導電層,配向層が形成されてなる2枚の透明基板の間に、印加電圧に応じてヘイズを2段階以上に切替え可能な調光層を挟持してなる調光フィルムにおいて、
前記配向層は配向領域と非配向領域とが形成されるように領域分割され、前記調光層は前記非配向領域を介して部分的に露出した前記透明導電層と接着され、
前記調光層は、液晶とモノマーの混合液に対して紫外光が照射されることで前記モノマーが光重合化して三次元の網目状に形成されたポリマーネットワークの空隙内に液晶分子が配置された構成、又は液晶分子が高分子マトリックス中に分散配置された構成であることを特徴とする調光フィルム。
【請求項2】
前記配向層は、前記配向領域と前記非配向領域とが連続的かつ交互にパターニングされていることを特徴とする請求項1に記載の調光フィルム。
【請求項3】
前記配向層は、ストライプ状,市松状の何れかのパターンで形成されることを特徴とする請求項1又は請求項2に記載の調光フィルム。
【請求項4】
前記配向層において単位面積当たりに前記非配向領域が占める割合が、1%以上50%以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の調光フィルム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、印加電圧に応じてヘイズを2段階以上に切替え可能な液晶素子を調光層として用いる調光フィルムに関し、特に電圧非印加時に透明状態となり、電圧印加時に散乱状態となる透過散乱型の液晶素子を調光層として用いる調光フィルムに関する。
【背景技術】
【0002】
液晶材料を用いた液晶素子としては、TN(Twisted Nematic)モードが実用化されている。このモードでは、液晶の旋光特性を利用して、光のスイッチングを行うものであり、液晶素子として用いる際には、偏光板を用いる必要がある。しかし、偏光板を用いることで光の利用効率が低くなる。偏光板を用いずに光の利用効率の高い液晶素子として、液晶の透過状態(透明状態ともいう)と散乱状態との間でスイッチングを行う液晶素子がある。液晶素子としては、一般的に、液晶分子がポリマー中に分散配置された高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)や、三次元の網目状に形成された樹脂からなるポリマーネットワークの内部に形成された空隙内に配置された液晶分子を有するポリマーネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)を用いたものが知られている。PDLC,PNLCはいずれも、紫外線により重合する重合性化合物を含む液晶組成物の一部又は全体が液晶性を示している。そして、PDLC,PNLCのいずれも、紫外線照射により上記液晶組成物の硬化が行われ、液晶と重合性化合物との硬化物複合体を形成する工程を経て製造される。
【0003】
液晶層により透過状態や散乱状態を切り替える技術として、高分子中に液晶を分散させた高分子分散型液晶表示装置が知られている(例えば、特許文献1,2)。このような高分子分散型液晶表示装置では、液晶と高分子との屈折率の差を利用することにより、液晶が電界方向に配列する状態(透過状態)と液晶分子がランダムな方向を向く状態(散乱状態)の切り替えが行なわれる。
【0004】
上記液晶素子を調光層として用いる調光フィルムには、その使用態様により、ノーマルモードとリバースモードの二種が知られている。ノーマルモードとは、電圧印加により透過状態となり、電界除去により散乱状態となるモードを言う。また、リバースモードとは、電圧非印加により透過状態となり、電圧印加により散乱状態となるモードを言う。リバース型液晶素子としては例えば、特許文献3〜5に記載の構成が知られている。
【0005】
リバース型の液晶素子で、紫外線照射装置により紫外線を照射して硬化させた液晶層を有し、かつ基板の少なくとも一方が液晶を垂直に配向させるような液晶配向層を備える液晶素子は、例えば、特許文献6に開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平10−36317号公報
【特許文献2】特開2013−76956号公報
【特許文献3】特許第2885116号公報
【特許文献4】特許第4132424号公報
【特許文献5】特許第6103108号公報
【特許文献6】国際公開第2015/022980号
【0007】
PNLCまたはPDLCを用いたリバース型素子では、液晶を垂直に配向させなければならないため、液晶を垂直に配向させる液晶配向層(垂直液晶配向層)が用いられる。垂直液晶配向層は疎水性が高い膜であるため、液晶層と液晶配向層との密着性が低くなってしまう。そのため、リバース型素子に用いる液晶組成物には、液晶層と液晶配向層との密着性を高めるための硬化剤を多く導入する対策が講じられている。しかし、硬化剤を多く導入すると、液晶の垂直配向性が阻害され、電圧無印加時の透明性と電圧印加時の散乱特性が大きく低下する。そのため、硬化剤を多く導入した場合、液晶配向層は、液晶の垂直配向性が高いものが必要となる。
【0008】
現在、主に工業的に利用されている液晶配向層は、耐久性に優れ、液晶のプレチルト角の制御に好適なポリイミド系重合体から成る有機膜が用いられている。ポリイミド系重合体は、ポリイミド前駆体であるポリアミド酸やポリアミド酸をイミド化したポリイミド等を用いている。液晶配向層は、これらの重合体を用いた液晶配向処理剤から作製されている。
【0009】
ここで、液晶組成物、特に液晶組成物中の重合性化合物は、ポリマーネットワークを形成させ、目的とする光学特性を得る役割がある。しかし、この重合性化合物は、上記硬化剤としての役割もあり、少ない導入量でも、より効率的に垂直液晶配向層との密着性を高めるための改良が必要とされている。
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、リバース型の液晶素子を使用する調光フィルムであって、製造時や製品使用時の取扱い安定性の点で実用上の問題ない密着強度が確保された調光フィルムを提供することを目的とする。
【課題を解決するための手段】
【0011】
上記の課題を解決するため、本発明による調光フィルムは、
透明導電層,配向層が形成されてなる2枚の透明基板の間に、印加電圧に応じてヘイズを2段階以上に切替え可能な調光層を挟持してなる調光フィルムにおいて、
前記配向層は配向領域と非配向領域とが形成されるように領域分割され、前記調光層は前記非配向領域を介して部分的に露出した前記透明導電層と重合接着されることを特徴とする。
【発明の効果】
【0012】
本発明に係るリバース型の液晶素子を使用する調光フィルムにより、製造時や製品使用時の取扱い安定性の点で実用上の問題ない密着強度が確保された調光フィルムを提供することが実現される。
すなわち、電圧無印加時の透明性と電圧印加時の散乱特性の低下を招くことなく、調光層(PNLCまたはPDLC)と透明導電層,配向層付き透明フィルム基材との密着強度が十分に確保され、製造時・製品使用時の取扱い安定性の点で実用上の問題ない密着性が付与された調光フィルムが提供される。
【図面の簡単な説明】
【0013】
【
図1】本発明の実施形態の調光フィルムの要部を示す断面図である。
【
図2】本発明の実施形態の調光フィルムの配向層のパターニング例を示す概念図である。
【
図3】本発明の実施形態の調光フィルムの配向層のパターニング例を示す概念図である。
【
図4】本発明の実施形態の調光フィルムの配向層のパターニングの変形例を示す概念図である。
【
図5】本発明の実施形態の調光フィルムの配向層のパターニングの変形例を示す概念図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態の調光フィルムについて、PNLCの場合を例にとり説明する。但し、本発明に係る調光フィルムは、以下の説明によって限定されるものではない。例えば、本発明は、PDLCであっても同様に適用可能である。なお、説明の便宜上、実際の縮尺とは異なるサイズで誇張して図示する場合もある。
PNLCは、液晶層内部の網目状の高分子繊維に沿って液晶分子が不規則に並んだ状態では、表示が不透明(散乱状態)となり、液晶分子が表示面に対して垂直に整列した状態では、表示が透明(透過状態)になる。
PDLCでは、高分子マトリックス内で、樹脂材料の硬化物から形成されている各高分子の内部に、液晶分子を含んだ(液状,カプセル状の)液晶材料が設けられて構成され、液晶分子の配向状態に応じて、高分子マトリックスとの屈折率差が変化するに伴い、散乱状態/透過状態が変調される。
【0015】
リバース型のPNLCによる調光層を具備する調光フィルムの製造は、一般的に以下のようにしてなされる。すなわち、まず液晶と光重合性化合物(モノマー)との混合物を一対の透明基板(透明電極,配向層が積層されてなる)の間に挟む。次いで、一定の条件下で紫外線を照射することにより、光重合によって液晶中の光重合性化合物を高分子に変化させる。光重合および架橋結合により、微細なドメイン(高分子の空隙)を無数に有するポリマーネットワークが液晶中に形成される。
【0016】
図1は本発明の実施形態の調光フィルム1の要部を示す断面図である。調光フィルム1は、調光層2を有する。調光層2は、ポリマーネットワークと液晶分子を有するPNLCタイプである。調光層2の各面には一対の配向層7a,7bが積層されている。各配向層7a,7bにおける調光層側と反対に位置する面には透明導電フィルム3a、3bが積層されている。
【0017】
調光層2は、相分離において未反応成分が殆どなく、ポリマーネットワークと液晶領域が高い純度で明確に分かれる挙動を示す。また、基板(導電膜)のラビングによるプレチルト配向処理を行なうことなく、理想的な配向状態を実現することが可能であり、液晶分子はポリマーネットワークによって分割されたドメインごとにほぼ一様に配向することになる。
【0018】
PNLCのドメインのサイズは、光拡散シート内の微粒子(概ね2〜10μm径)やPDLCにおける分散させたネマティック液晶ドロップレット(一般に、数μm径)に対して、約1μmと微細であり、レイリー散乱(波長選択的な散乱)は招かず、少なくとも可視光領域波長(400〜780nm)を含む広い波長域の散乱が効率的に発生する。
【0019】
PNLCの駆動電圧は、一般にポリマーネットワークの構造上の特性(ドメインの大きさや形状,ポリマーネットワークの膜厚など)に依存しており、ポリマーネットワークの構造と、得られる光透過と散乱の度合いとの関係において、駆動電圧が決定されている。100V以下の電圧領域において、十分な光透過と散乱の度合いが得られるようなPNLCを構成するには、各ドメインがいずれも適正な大きさで均一となるように、かつ、形状も均一となるようにポリマーネットワークを形成する必要がある。本発明では、ポリマーネットワーク構造に依存するドメインサイズを3μm以下、好ましくは2μm以下、一層好ましくは約1μmとなる様に制御する。
【0020】
製造方法の詳細については、九州ナノテック光学株式会社による特許第4387931号に説明されており、本発明の実施形態においても、調光層となる液晶素子(PNLC)の製造は前記特許に準拠したプロセスを採用する。本プロセスは、上述した「サイズ等が制御されたネットワーク構造」の設計〜製造の上で非常に有効である。
【0021】
透明導電フィルム3a,3bを構成する透明基材5には、ポリエチレンテレフタレート(PET)フィルム,ポリエチレン(PE)フィルム,ポリカーボネート(PC)フィルムなどを用いることができる。このような樹脂フィルムを透明基材5として使用することにより、可撓性や柔軟性に富む。そのため、平坦なガラスに積層して使用する以外にも、曲面形状への適用や巻き取り収納など、取扱い上の自由度が高いという利点がある。本実施形態では、透明基材5の厚みは、約50〜200μm程度に設定される。透明導電層6には、一般的にITOなどの金属酸化物が用いられる。但し、ITOに替えて低抵抗の導電性ポリマーを採用することも可能である。導電性ポリマーとしては、PEDOTやPSSに例示されるπ共役系導電性高分子にドープされたポリアニオンを含む材料の採用が好適である。
【0022】
配向層7a,7bは垂直配向層であり、調光層2に電圧を印加していないときに、液晶分子の長手方向が配向層7a,7bの法線方向に沿うように、当該液晶分子を配向する。このため、リバースタイプの調光層2は、電圧を印加していないときに低ヘイズ状態となり、透過性が高くなる。
【0023】
本発明の主要な特徴の一つである配向層7a、7bについて説明する。本実施形態の配向層はポリイミド系重合体から成る有機膜を想定する。そのため、既述の通り、リバース型の調光フィルムは配向層と調光層の密着性の低さに起因する信頼性の低下が発生するおそれがある。そこで本実施形態の調光フィルム1では、以下のように配向層7a、7bをパターニング、換言すれば一部領域を選択的に除去することで密着性の向上さらには信頼性の向上を図っている。
【0024】
図2、
図3は、本実施形態の配向層7a、7bのパターニングの一例について示した図である。各図(a)は配向層7aを、(b)は配向層7bを示す。なお、
図4、
図5においても同様とする。各図において、塗りつぶした領域が配向領域71、空白領域が非配向領域72を示す。ここで、配向領域71とは、配向層のうち、調光層に対して積極的に配向効果を付与する機能を持つ領域をいう。つまり、従来の配向層は全域にわたって配向領域71によって占められていたといえる。また、非配向領域72とは、配向層において、透明電極が露出している領域をいう。つまり、非配向領域72は配向領域71と比較して調光層に対する配向効果が少ない領域といえる。一例では非配向領域72は、配向効果が全くない構成であっても良い。各図に示すように、配向層において、配向領域71と非配向領域72とは、一定の規則性をもって連続的に交互に配置されている。
【0025】
上記構成において、非配向領域72では調光層2は直接透明電極6に当接する。一般に調光層2は配向層7a、7bとの関係よりも透明電極6との関係の方が密着強度は高い。そのため、非配向領域72を設けることにより、調光層2は配向層7a、7bを介して透明電極6に堅固に接着される。加えて配向領域71によって適正な配向制御がなされ、液晶の正常な動作も保証される。ここで、上記密着強度と配向規制力とはトレードオフの関係にある。本実施形態では、密着強度と配向規制力とのバランスを意識している。そのため、
図2や
図3に示すように配向領域71と非配向領域72の面積比率が略50:50、換言すると配向層における単位面積当たりの非配向領域72の割合が50%となるように配向層7a、7bを設計している。
【0026】
図2は、ストライプ状にパターニングされた配向層7a、7bを示す。
図3は、市松状にパターニングされた配向層7a、7bを示す。
図2(a)、(b)及び
図3(a)、(b)に示すように、各配向層は、一方の配向領域71に対応する位置に他方の非配向領域72が形成されている。このように配置することにより、各層間の確実な接着を実現しつつも液晶の配向制御を適切に担保している。ここで配向層のパターニング(選択的除去)により、トレードオフの関係を有する液晶分子の配向規制力と調光フィルムの密着強度とのバランスを適切に設計する必要がある。この設計は、例えば製造時や施工時、さらには製品使用時における取扱いの安定性、安心性という観点から行うことが好ましい。
【0027】
配向層のパターニング手法としては、特開2000−47219号公報に例示される手法が採用しうる。具体的には、所定の配向層パターン形状にレジストを形成し、基板全面に紫外線を照射してアッシングを行なう。その後、アルカリ性のレジスト剥離液等で基板を洗浄することにより、アッシングされた配向層とレジストを除去し、配向層のパターニングを行なう。なお、上記手法はあくまでも一例である。例えば、パターニング手法として、印刷版を用いた転写印刷方式を採用することも可能である。
【0028】
以上が本発明の実施形態である。実施形態の調光フィルムによれば、調光層に硬化剤等を注入し液晶組成物の構成を変更することなく調光層の密着強度を高めることを可能としている。なお、本発明は上記実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で変形が可能である。
【0029】
例えば、上記実施形態では、配向層における単位面積当たりの非配向領域72の割合が50%となるように配向層7a,7bを設計していると説明した。本発明はこれに限定されるものではない。本発明に係る調光フィルムの使用用途、採用される製品に求められる仕様に応じて上記面積比率を自在に変更することが可能である。例えば、リバース型の液晶素子では、OFF(電界非印加)時の透明性が重要とされることが多い。そのため、配向層による配向規制力(液晶分子の垂直配向性)の確保が優先される場合も想定される。その場合には、各配向層における配向領域71と非配向領域72の面積比率が後者より前者のほうが高くなるよう設定することが可能である。
図4は、配向領域に対する非配向領域の面積比率を小さく設定した変形例に係る各配向層を示す概念図である。
図4に示す変形例に係る各配向層は、他の例と比べ、非配向領域72が極めて狭小かつ間欠的に設けられている。本変形例においては、単位面積あたりに非配向領域が占める割合は略5%に設定されている。
【0030】
発明者は、垂直液晶配向層を有さず透明電極に液晶が当接するタイプの調光フィルム(ノーマル型)と、垂直液晶配向層を全面に具備するタイプの調光フィルム(従来のリバース型)とを試験(剥離試験)、評価してみた。その結果、調光フィルム製造後の密着強度(単位:N/25mm)に関し、前者を基準とすると後者は約50倍の強度を有するという測定データが得られている。
【0031】
図4に示す変形例の調光フィルム1の密着強度を測定したところ、従来のリバース型の密着強度を基準とすると、約20倍の強度を有するという測定データが得られた。つまり、
図4に示す変形例であっても、従来のリバース型調光フィルムよりも確実に密着強度の向上が確認できた。但し、単位面積あたりに非配向領域が占める割合が1%を下回ると従来のリバース型の密着強度と比して有効な数値を得にくいことから、1%以上に設定することが推奨される。
【0032】
よって、上記の通り、密着強度と配向規制力とのバランスを意識するとともに、配向膜の作製負担の軽減という観点を重視するのであれば、上記実施形態の構成に基づき設計することが好ましい。一方で、より配向規制力を重視するのであれば
図4に示すような変形例に基づく設計が好ましい。
【0033】
また、上記実施形態では、規則性があるパターニングを施された配向層を説明した。本発明に係る調光フィルムは必ずしも規則性ある配向層でなくてもよい。例えば
図5に示すように少なくとも配向領域と非配向領域が交互に形成されていればよい。さらに、本発明に係る調光フィルムでは、必ずしも各配向層は、一方の配向領域71に対応する位置に他方の非配向領域72が形成されている必要は無い。例えば
図5に示すように、一方の配向領域71に対応する位置に他方の配向領域71が形成されていてもよい。
【0034】
また、上記実施形態で説明したパターニングはあくまで一例であり配向領域と非配向領域との連続パターンはこれらに限定されるものではない。各領域の境界線も直線状である必要は無い。なお、配向層の配向領域に配向機能を付与する手法としてはラビングや光配向のほか種々の周知の技術が採用可能である。
【符号の説明】
【0035】
1 調光フィルム
2 調光層
3a、3b 透明導電フィルム
5 透明基材
6 透明電極
7 配向層