(58)【調査した分野】(Int.Cl.,DB名)
前記信号処理装置は、前記第1受光信号及び前記第2受光信号に対してフーリエ変換処理を個別に行って第1スペクトル及び第2スペクトルをそれぞれ求めるフーリエ変換部と、
前記第2スペクトルを用いて前記第1スペクトルに重畳されている雑音を除去する処理を行う雑音除去部と、
を備える請求項1記載のフーリエ分光分析装置。
前記分岐部は、前記第1波長帯域の波長成分を反射又は透過させ、前記第2波長帯域の波長成分を透過又は反射させるダイクロイックミラーを備える、請求項4記載のフーリエ分光分析装置。
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、フーリエ分光分析装置では、干渉計に設けられた移動ミラーによって光路長差(上述した第1分岐光の光路長と第2分岐光の光路長との差)の変化を生じさせることで変調光であるインターフェログラムを得ている。このため、フーリエ分光分析装置の分析対象である試料は、基本的に、光学特性の時間変化が無いものであるか、或いは光学特性の時間変化があったとしても、その変化の速度が、干渉計に設けられた移動ミラーの移動速度に比べて十分遅いものであることが前提となる。
【0007】
しかしながら、フーリエ分光分析装置を種々の分野で用いようとした場合には、光学特性が上記の移動ミラーの移動速度に対して比較的速く変化する試料が分析対象になることが考えられる。例えば、工業プロセスや化学プロセスにおいては、粒子が浮遊している流体(粉体の場合もあり得る)、表面に凹凸のある光散乱面が形成されている移動体、攪拌容器内で攪拌されている懸濁した流動性のある試料等がフーリエ分光分析装置の分析対象となることが考えられる。
【0008】
このような光学特性が比較的速く変化する試料をフーリエ分光分析装置で分析しようとすると、試料を介したインターフェログラムは、試料の光学特性の時間変化に応じた変動が生じたものになる。言い換えると、試料を介したインターフェログラムは、いわば試料の光学特性の時間変化に応じた変調がなされたものになる。これにより、試料を介したインターフェログラムは、低周波数成分が多く含まれる雑音(いわゆる「色つき雑音」)が重畳されたものとなる。インターフェログラムに重畳された雑音は、フーリエ変換処理を行っても雑音として現れるため、分析精度が低下してしまうという問題がある。
【0009】
本発明は、上記事情に鑑みてなされたものであり、光学特性の時間変動が生ずる試料であっても、高い分析精度を実現することが可能なフーリエ分光分析装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明のフーリエ分光分析装置は、干渉光であるインターフェログラム(L1)を分析対象である試料(SP)に照射し、試料を介した光(L2)を受光して得られる受光信号に対してフーリエ変換処理を行って、前記試料を介した光のスペクトルを求めるフーリエ分光分析装置(1)において、前記試料を介した光に含まれる波長成分のうち、前記スペクトルを求める波長帯域である第1波長帯域(WB1)の波長成分を受光して得られる第1受光信号(S1)と、前記第1波長帯域とは異なる第2波長帯域(WB2)の波長成分を受光して得られる第2受光信号(S2)とを出力する受光部(30)と、前記第1受光信号及び前記第2受光信号を用いて、前記第1波長帯域の波長成分の、雑音を除去したスペクトルを求める処理を行う信号処理装置(40)と、を備える。
また、本発明のフーリエ分光分析装置は、前記信号処理装置が、前記第2受光信号を用いて前記第1受光信号に重畳されている雑音を除去する処理を行う雑音除去部(41)と、前記雑音除去部の処理によって雑音が除去された前記第1受光信号に対してフーリエ変換処理を行って、前記第1波長帯域の波長成分のスペクトルを求めるフーリエ変換部(42)と、を備える。
或いは、本発明のフーリエ分光分析装置は、前記信号処理装置が、前記第1受光信号及び前記第2受光信号に対してフーリエ変換処理を個別に行って第1スペクトル及び第2スペクトルをそれぞれ求めるフーリエ変換部(43)と、前記第2スペクトルを用いて前記第1スペクトルに重畳されている雑音を除去する処理を行う雑音除去部(44)と、を備える。
また、本発明のフーリエ分光分析装置は、前記受光部が、前記第1波長帯域及び前記第2波長帯域を含む第3波長帯域の波長成分を受光可能な第1検出器(31)と、前記第3波長帯域の波長成分を受光可能な第2検出器(32)と、前記試料を介した光を、前記第1検出器に入射する前記第1波長帯域の波長成分と、前記第2検出器に入射する前記第2波長帯域の波長成分とに分岐する分岐部(33、34)と、を備える。
また、本発明のフーリエ分光分析装置は、前記分岐部が、前記第1波長帯域の波長成分を反射又は透過させ、前記第2波長帯域の波長成分を透過又は反射させるダイクロイックミラー(33)を備える
或いは、本発明のフーリエ分光分析装置は、前記分岐部が、前記試料を介した光を、前記第1検出器に向かう第1光と前記第2検出器に向かう第2光とに分岐するハーフミラー(34)と、前記第1光に含まれる波長成分から前記第1波長帯域の波長成分を抽出して前記第1検出器に入射させる第1フィルタ(35)と、前記第2光に含まれる波長成分から前記第2波長帯域の波長成分を抽出して前記第2検出器に入射させる第2フィルタ(36)と、を備える。
また、本発明のフーリエ分光分析装置は、前記受光部が、前記第2波長帯域の波長成分よりも前記第1波長帯域の波長成分に対する検出感度が相対的に高い第1検出器(31)と、前記第1波長帯域の波長成分よりも前記第2波長帯域の波長成分に対する検出感度が相対的に高い第2検出器(32)と、を備える。
ここで、本発明のフーリエ分光分析装置は、前記第1検出器及び前記第2検出器が、前記試料を介した光の光路上に順に配置されている。
【発明の効果】
【0011】
本発明によれば、試料を介した光に含まれる波長成分のうち、スペクトルを求める波長帯域である第1波長帯域の波長成分を受光して第1受光信号を得るとともに、第1波長帯域とは異なる第2波長帯域の波長成分を受光して第2受光信号を得て、第1受光信号及び第2受光信号を用いて、第1波長帯域の波長成分の、雑音を除去したスペクトルを求める処理を行うようにしているため、光学特性の時間変動が生ずる試料であっても、高い分析精度を実現することが可能であるという効果がある。
【発明を実施するための形態】
【0013】
以下、図面を参照して本発明の一実施形態によるフーリエ分光分析装置について詳細に説明する。
【0014】
〈フーリエ分光分析装置の要部構成〉
図1は、本発明の一実施形態によるフーリエ分光分析装置の要部構成を示すブロック図である。
図1に示す通り、本実施形態によるフーリエ分光分析装置1は、光源10、干渉計20、受光部30、及び信号処理装置40を備えており、複数の波長成分が含まれる光L1を試料SPに照射し、試料SPを介した光L2を受光し、得られた受光信号S1,S2に対してフーリエ変換処理を行って試料SPを介した光L2のスペクトル(例えば、波数スペクトル)を求めることで、試料SPの分析を行う。
【0015】
上記の試料SPは、任意のもので良いが、本実施形態では、その光学特性が時間的に変化するものであるとする。例えば、工業プロセスや化学プロセスにおける、粒子が浮遊している流体(粉体の場合もあり得る)、表面に凹凸のある光散乱面が形成されている移動体、攪拌容器内で攪拌されている懸濁した流動性のある試料等である。尚、上記の試料SPを介した光L2としては、試料SPで反射された反射光と試料SPを透過した透過光とが挙げられるが、本実施形態では、試料SPを透過した透過光であるとする。
【0016】
光源10は、複数の波長成分が含まれる光L0を射出する光源である。この光源10としては、試料SPの光学特性に応じて任意の光源を用いることができる。例えば、ハロゲンランプ等の波長帯域幅の広い光源や、LD(Laser Diode)やLED(Light Emitting Diode)等の半導体発光素子を備えるものを用いることができる。尚、本実施形態では、光源10として、ハロゲンランプを用いるものとする。ハロゲンランプの波長帯域幅は、例えば波長350〜4500[nm]程度の範囲である。
【0017】
干渉計20は、光源10から射出された光L0を干渉させて、試料に照射する光(干渉光:インターフェログラム)L1を得るためのものである。尚、干渉計20としては、任意の干渉計を用いることができるが、本実施形態では、干渉計20が、ハーフミラー21、固定ミラー22、及び移動ミラー23を備えるマイケルソン干渉計であるとする。
【0018】
ハーフミラー21は、光源10から射出された光L0を、固定ミラー22に向かう分岐光L11と移動ミラー23に向かう分岐光L12とに分岐する。ハーフミラー21は、光源10から射出された光L0を、例えば1:1の強度比で分岐する。また、ハーフミラー21は、固定ミラー22で反射された分岐光L11と、移動ミラー23で反射された分岐光L12とを干渉させて、インターフェログラムL1を得る。
【0019】
固定ミラー22は、その反射面をハーフミラー21に向けた状態で分岐光L11の光路上に配置されており、ハーフミラー21で分岐された分岐光L11をハーフミラー21に向けて反射させる。移動ミラー23は、その反射面をハーフミラー21に向けた状態で分岐光L12の光路上に配置されており、ハーフミラー21で分岐された分岐光L12をハーフミラー21に向けて反射させる。移動ミラー23は、不図示の駆動機構により、分岐光L12の光路に沿って往復運動が可能に構成されている。移動ミラー23の往復運動速度は、例えば毎秒5回程度に設定されている。
【0020】
ここで、移動ミラー23が往復運動することによって、光源10から射出された光L0に含まれる波長成分は、各々異なる周波数で強度変調されることになる。例えば、波長が相対的に短い波長成分は、波長が相対的に長い波長成分よりも高い周波数で強度変調されることになる。干渉計20で得られるインターフェログラムL1は、このような異なる周波数で強度変調された波長成分が重なったものである。
【0021】
受光部30は、検出器31(第1検出器)及び検出器32(第2検出器)を備えており、試料SPを介した光(インターフェログラムL1の透過光)L2を受光して、受光信号S1(第1受光信号)及び受光信号S2(第2受光信号)を出力する。検出器31は、スペクトルを求める波長帯域(第1波長帯域)の波長成分を受光して受光信号S1を出力する。検出器32は、上記のスペクトルを求める波長帯域とは異なる波長帯域(第2波長帯域)の波長成分を受光して受光信号S2を出力する。
【0022】
ここで、検出器31は、予め規定された分析対象になっている波長帯域(第1波長帯域)のスペクトルを得るために設けられ、検出器32は、試料SPの光学特性の時間的変化に起因する雑音を得るために設けられる。尚、フーリエ分光分析装置1の設計時において、第1波長帯域を任意の波長帯域にすることが可能である。本実施形態では、第1波長帯域が1〜2.5[μm]程度であるとし、第2波長帯域が0.5〜1[μm]程度であるとする。
【0023】
検出器31,32は、種類が同じものであっても良く、種類が異なるものであっても良い。例えば、検出器31,32は何れも、第1波長帯域及び第2波長帯域を含む波長帯域(第3波長帯域)の波長成分を受光可能なもの(種類が同じもの)であって良い。或いは、検出器31は、第2波長帯域の波長成分よりも第1波長帯域の波長成分に対する検出感度が相対的に高く、検出器32は、第1波長帯域の波長成分よりも第2波長帯域の波長成分に対する検出感度が相対的に高いもの(種類が異なるもの)であって良い。
【0024】
尚、種類が同じ検出器31,32を用いる場合には、第1波長帯域と第2波長帯域とを分岐するための分岐部(詳細は後述する)を設け、第1波長帯域の波長成分を検出器31に入射させ、第2波長帯域の波長成分を検出器32に入射させる必要がある。これに対し、種類が異なる検出器31,32を用いる場合には、上記の分岐部と同様のものを設けても良いが、上記の分岐部を省略することも可能である。
【0025】
信号処理装置40は、受光部30の検出器31から出力される受光信号S1と検出器32から出力される受光信号S2とを用いて、試料SPの光学特性の時間的変化に起因する雑音を除去したスペクトルを求める処理を行う。信号処理装置40は、以上の処理によって求められたスペクトルを示す信号を外部に出力し、或いは不図示の表示装置(例えば、液晶表示装置)に表示させる。
【0026】
〈受光部の第1例〉
図2は、本発明の一実施形態によるフーリエ分光分析装置が備える受光部の第1例を示すブロック図である。
図2(a)に示す通り、本例の受光部30は、検出器31,32に加えて、ダイクロイックミラー33(分岐部)を備える。尚、本例においては、検出器31,32は何れも、第1波長帯域及び第2波長帯域を含む波長帯域(第3波長帯域)の波長成分を受光可能なものであるとする。
【0027】
ダイクロイックミラー33は、
図2(b)に示す通り、試料SPを介した光L2に含まれる波長成分のうち、第1波長帯域WB1の波長成分を反射させ、第2波長帯域WB2の波長成分を透過させる光学特性を有する。このダイクロイックミラー33は、第1波長帯域WB1の波長成分を完全に反射させ、第2波長帯域WB2の波長成分を完全に透過させる光学特性を有するのが理想であるが、
図2(b)に示す通り、第1波長帯域WB1の一部の波長成分を透過させる光学特性を有しても良い。
【0028】
例えば、
図2(b)に示す通り、ダイクロイックミラー33は、第1波長帯域WB1の両端部における波長成分(第1波長帯域WB1と第2波長帯域WB2との境界を規定する波長λ1,λ2に近い波長を有する波長成分)については、反射率が徐々に低下する(透過率が徐々に上昇する)光学特性を有していても良い。尚、
図2(b)においては、理解を容易にするために、ダイクロイックミラー33の第1波長帯域WB1の両端部における光学特性を誇張して図示している。
【0029】
尚、検出器31,32の配置が逆の場合には、光学特性が逆のダイクロイックミラー33を用いれば良い。つまり、検出器31が、
図2(a)の検出器32の位置に配置され、検出器32が、
図2(a)の検出器31の位置に配置されている場合には、試料SPを介した光L2に含まれる波長成分のうち、第1波長帯域WB1の波長成分を透過させ、第2波長帯域WB2の波長成分を反射させる光学特性を有するダイクロイックミラー33を用いれば良い。
【0030】
〈受光部の第2例〉
図3は、本発明の一実施形態によるフーリエ分光分析装置が備える受光部の第2例を示すブロック図である。
図3(a)に示す通り、本例の受光部30は、検出器31,32に加えて、ハーフミラー34(分岐部)とフィルタ35(分岐部、第1フィルタ)及びフィルタ36(分岐部、第2フィルタ)とを備える。尚、本例においては、上述の第1例と同様に、検出器31,32は何れも、第1波長帯域及び第2波長帯域を含む波長帯域(第3波長帯域)の波長成分を受光可能なものであるとする。
【0031】
ハーフミラー34は、試料SPを介した光L2を、検出器31に向かう光(第1光)と検出器32に向かう光(第2光)とに分岐する。フィルタ35は、ハーフミラー34と検出器31との間の光路上に配置され、
図3(b)に示す通り、第1波長帯域WB1の波長成分を透過させ、第2波長帯域WB2の波長成分を透過させない光学特性を有する。つまり、フィルタ35は、第1波長帯域WB1の波長成分を抽出して検出器31に入射させる光学特性を有する。フィルタ36は、ハーフミラー34と検出器32との間の光路上に配置され、
図3(b)に示す通り、第2波長帯域WB2の波長成分を透過させ、第1波長帯域WB1の波長成分を透過させない光学特性を有する。つまり、フィルタ36は、第2波長帯域WB2の波長成分を抽出して検出器32に入射させる光学特性を有する。
【0032】
フィルタ35は、第1波長帯域WB1の波長成分のみを透過させ、フィルタ36は、第2波長帯域WB2の波長成分のみを透過させる光学特性を有するのが理想である。しかしながら、
図3(b)に示す通り、フィルタ35は、第2波長帯域WB2の一部の波長成分をある程度透過させ、フィルタ36は、第1波長帯域WB1の一部の波長成分をある程度透過させる光学特性を有しても良い。尚、
図3(b)においては、理解を容易にするために、フィルタ35,36の第1波長帯域WB1と第2波長帯域WB2との境界を規定する波長λ2の近傍における光学特性を誇張して図示している。
【0033】
尚、検出器31,32の配置が逆の場合には、フィルタ35,36の配置も逆にすれば良い。つまり、検出器31が、
図3(a)の検出器32の位置に配置され、検出器32が、
図3(a)の検出器31の位置に配置されている場合には、フィルタ35を
図3(a)のフィルタ36の位置に配置し、フィルタ36を
図3(a)のフィルタ35の位置に配置すれば良い。
【0034】
〈受光部の第3例〉
図4は、本発明の一実施形態によるフーリエ分光分析装置が備える受光部の第3例を示すブロック図である。
図4(a)に示す通り、本例の受光部30は、試料SPを介した光L2の光路上に順に配置された検出器31,32を備える。尚、本例においては、
図4(b)に示す通り、検出器31は、第2波長帯域WB2の波長成分よりも第1波長帯域WB1の波長成分に対する検出感度が相対的に高く、検出器32は、第1波長帯域WB1の波長成分よりも第2波長帯域WB2の波長成分に対する検出感度が相対的に高いものであるとする。
【0035】
本例では、検出器31として、例えばInGaAs(インジウム・ガリウム・ヒ素)フォトダイオードを用いることができ、検出器32として、Si(シリコン)フォトダイオードを用いることができる。InGaAsフォトダイオードは、1〜2.5[μm]程度の波長帯域の光に対する検出感度が高く、Siフォトダイオードは、0.3〜1[μm]程度の波長帯域の光に対する検出感度が高い。
【0036】
本例の受光部30においては、試料SPを介した光L2が検出器31に入射すると、第1波長帯域WB1の波長成分が吸収されて受光信号S1に変換され、検出器31を介した(透過した)光が検出器32に入射すると、第2波長帯域WB2の波長成分が吸収されて受光信号S2に変換される。尚、試料SPを介した光L2の光路上における検出器31,32の配置順は逆であっても良い。また、検出器31,32は、試料SPを介した光L2の光路上に重ねた状態で配置されていても良い。このような検出器としては、例えば国際公開第2011/065057号に開示されたものを用いることができる。
【0037】
〈信号処理装置の第1例〉
図5は、本発明の一実施形態によるフーリエ分光分析装置が備える信号処理装置の第1例を示すブロック図である。
図5に示す通り、本例の信号処理装置40は、受光信号S1,S2を入力とする雑音除去部41と、雑音除去部41の出力信号を入力とするフーリエ変換部42とを備える。
【0038】
雑音除去部41は、受光信号S2を用いて受光信号S1に重畳されている雑音を除去する処理を行う。例えば、雑音除去部41は、受光信号S1から受光信号S2を減算する処理を行うことで、受光信号S1に重畳されている雑音を除去する。尚、受光信号S1に重畳されている雑音を除去できるのであれば、雑音除去部41で行われる処理は任意の処理で良く、受光信号S1から受光信号S2を減算する処理に限らない。
【0039】
フーリエ変換部42は、雑音除去部41から出力される信号に対してフーリエ変換処理を行って、第1波長帯域の波長成分のスペクトルを求める。ここで、雑音除去部41から出力される信号は、試料SPの光学特性の時間的変化に起因する雑音が除去された信号である。このため、フーリエ変換部42で求められる第1波長帯域の波長成分のスペクトルは、試料SPの光学特性の時間的変化に起因する雑音が除去されたものとなる。
【0040】
〈信号処理装置の第2例〉
図6は、本発明の一実施形態によるフーリエ分光分析装置が備える信号処理装置の第2例を示すブロック図である。
図6に示す通り、本例の信号処理装置40は、受光信号S1,S2を入力とするフーリエ変換部43と、フーリエ変換部43の出力信号を入力とする雑音除去部44とを備える。
【0041】
フーリエ変換部43は、受光信号S1及び受光信号S2に対してフーリエ変換処理を個別に行って、受光信号S1のスペクトル(第1スペクトル)と受光信号S2のスペクトル(第2スペクトル)とをそれぞれ求める。ここで、受光信号S1,S2には、試料SPの光学特性の時間的変化に起因する雑音が同様に重畳されているため、フーリエ変換部43で求められる受光信号S1,S2のスペクトルは、試料SPの光学特性の時間的変化に起因する雑音が重畳されたものとなる。
【0042】
雑音除去部44は、受光信号S2のスペクトルを用いて、受光信号S1のスペクトルに重畳されている雑音を除去する処理を行う。例えば、雑音除去部44は、受光信号S1のスペクトルから受光信号S2のスペクトルを減算する処理を行うことで、受光信号S1のスペクトルに重畳されている雑音を除去する。尚、受光信号S1のスペクトルに重畳されている雑音を除去できるのであれば、雑音除去部44で行われる処理は任意の処理で良く、受光信号S1のスペクトルから受光信号S2のスペクトルを減算する処理に限らない。
【0043】
〈フーリエ分光分析装置の動作〉
次に、上記構成におけるフーリエ分光分析装置の動作について説明する。以下では、理解を容易にするために、フーリエ分光分析装置1に設けられる信号処理装置40が
図6に示すものであるとする。尚、フーリエ分光分析装置1に設けられる信号処理装置40が
図5に示すものである場合には、信号処理装置40で行われる処理が異なるが、
図6に示すものと同様の結果(スペクトル)を得ることができる。
【0044】
光源10から複数の波長成分が含まれる光L0が射出されると、その光L0は干渉計20に入射する。干渉計20に入射した光L0は、ハーフミラー21によって、固定ミラー22に向かう分岐光L11と移動ミラー23に向かう分岐光L12とに分岐される。ハーフミラー21によって分岐された分岐光L11は、固定ミラー22によって反射され、光路を逆向きに進んでハーフミラー21に入射する。また、ハーフミラー21によって分岐された分岐光L12は、移動ミラー23によって反射され、光路を逆向きに進んでハーフミラー21に入射する。分岐光L11,L12がハーフミラー21に入射すると干渉し、これによりインターフェログラムL1が得られる。
【0045】
ここで、干渉計20に設けられた移動ミラー23は往復運動していることから、光源10から射出された光L0に含まれる波長成分は、各々異なる周波数で強度変調されることになる。例えば、波長が相対的に短い波長成分は、波長が相対的に長い波長成分よりも高い周波数で強度変調されることになる。このような異なる周波数で強度変調された波長成分が重なったインターフェログラムL1が干渉計20で得られる。
【0046】
干渉計20で得られたインターフェログラムL1は試料SPに照射され、試料SPを透過した透過光が光L2として受光部30に入射する。ここで、試料SPの光学特性が時間的に変化していると、試料SPを介した光L2は、いわば試料SPの光学特性の時間変化に応じた変調がなされたものになる。これにより、試料SPを介した光L1は、低周波数成分が多く含まれる雑音(いわゆる「色つき雑音」)が重畳されたものとなる。尚、試料SPを介した光L2に含まれる波長成分の全てが試料SPの光学特性の時間変化に応じて同様に変調され、これにより試料SPを介した光L2に含まれる波長成分の全てに同様の雑音が重畳される点に注意されたい。
【0047】
図7は、本発明の一実施形態において試料を介したインターフェログラムの一例を示す図である。
図7(a)は、試料SPの光学特性が時間的に変化していない場合のものであり、
図7(b)は、試料SPの光学特性が時間的に変化している場合のものである。尚、
図7(a),(b)においては、干渉計20が備える移動ミラー23の変位を横軸にとり、インターフェログラムの強度を縦軸にとってある。また、
図7(c)は、
図7(a)に示すインターフェログラムのスペクトル(波数スペクトル)を示す図であり、
図7(d)は、
図7(b)に示すインターフェログラムのスペクトル(波数スペクトル)を示す図である。
【0048】
光学特性が時間的に変化していない試料SPを介したインターフェログラムは、
図7(a)に示す通り、所謂センターバーストが生じている典型的な形状のものになる。つまり、移動ミラー23の変位が、特定の変位(分岐光L11,L12の光路差が零になる変位)であるときに強度が極大になり、それ以外の変位では強度が極端に小さくなる(ほぼ零になる)ものになる。また、光学特性が時間的に変化していない試料SPを介したインターフェログラムの波数スペクトルは、
図7(c)に示す通り、試料SPの光学特性(吸収特性)に応じた形状になり、雑音が重畳されていない滑らかなものとなる。
【0049】
これに対し、光学特性が時間的に変化している試料SPを介したインターフェログラムは、
図7(b)に示す通り、所謂センターバーストが生じている点においては、
図7(a)に示すものと同じである。しかしながら、移動ミラー23の変位が、上記の特定の変位以外の変位であるときに、試料SPの光学特性の時間変化に起因して、強度がほぼ零にならずに変動するものとなる。また、光学特性が時間的に変化している試料SPを介したインターフェログラムの波数スペクトルは、
図7(d)に示す通り、雑音が重畳されたものになる。具体的には、波数が小さい成分(低周波数成分)が多く含まれる雑音(いわゆる「色つき雑音」)が重畳されたものとなる。
【0050】
受光部30に入射した光L2のうち、第1波長帯域に含まれる波長成分が検出器31で受光され、検出器31からは受光信号S1が出力される。また、受光部30に入射した光L2のうち、第2波長帯域に含まれる波長成分が検出器32で受光され、検出器32からは受光信号S2が出力される。検出器31から出力された受光信号S1及び検出器32から出力された受光信号S2は、信号処理装置40(
図6参照)に入力される。
【0051】
信号処理装置40に受光信号S1,S2が入力されると、まずフーリエ変換部43において、受光信号S1及び受光信号S2に対してフーリエ変換処理を個別に行って、受光信号S1のスペクトルと受光信号S2のスペクトルとをそれぞれ求める処理が行われる。フーリエ変換部43で求められた各々のスペクトル(受光信号S1のスペクトル、受光信号S2のスペクトル)は、雑音除去部44に出力され、受光信号S2のスペクトルを用いて、受光信号S1のスペクトルに重畳されている雑音を除去する処理が行われる。例えば、受光信号S1のスペクトルから受光信号S2のスペクトルを減算する処理が雑音除去部44で行われる。このような処理が行われることで、試料SPの光学特性の時間的変化に起因する雑音が除去されたスペクトル(第1波長帯域の波長成分のスペクトル)が求められる。
【0052】
図8は、本発明の一実施形態において雑音が除去される原理を説明するための図である。
図8(a)は、受光信号S1のスペクトルの一例を示す図であり、
図8(b)は、受光信号S2のスペクトルの一例を示す図である。検出器31から出力される受光信号S1は、第1波長帯域に含まれる波長成分を受光して得られる信号であり、この受光信号S1には、試料SPの光学特性の時間的変化に起因する雑音が重畳されている。このため、フーリエ変換部43で求められる受光信号S1のスペクトルは、
図8(a)に示す通り、試料SPの光学特性(吸収特性)に応じた形状を有し、試料SPの光学特性の時間的変化に起因する雑音が重畳されたものとなる。
【0053】
これに対し、検出器32から出力される受光信号S2は、第1波長帯域とは異なる第2波長帯域に含まれる波長成分を受光して得られる信号であり、この受光信号S2には、受光信号S1に重畳されている雑音と同様の雑音が重畳されている。このため、フーリエ変換部43で求められる受光信号S2のスペクトルは、
図8(b)に示す通り、試料SPの光学特性の時間的変化に起因する雑音のスペクトルを示すものとなる。受光信号S2のスペクトルがこのようなスペクトルになるのは、試料SPを介した光L2に含まれる波長成分の全てが試料SPの光学特性の時間変化に応じて同様に変調され、これにより試料SPを介した光L2に含まれる波長成分の全てに同様の雑音が重畳されているからである。
【0054】
従って、例えば、雑音除去部44において、
図8(a)に示す受光信号S1のスペクトルから、
図8(b)に示す受光信号S2のスペクトルを減算する処理が行われることで、
図8(c)に示す通り、試料SPの光学特性の時間的変化に起因する雑音が除去されたスペクトル(第1波長帯域の波長成分のスペクトル)が求められる。このような原理によって、試料SPの光学特性の時間的変化に起因する雑音が除去される。
【0055】
以上の通り、本実施形態では、干渉計20によって得られたインターフェログラムL1を試料SPに照射し、試料SPを介した光L2に含まれる波長成分のうち、スペクトルを求める波長帯域である第1波長帯域の波長成分を受光して受光信号S1を得るとともに、第1波長帯域とは異なる第2波長帯域の波長成分を受光して受光信号S2を得て、これら受光信号S1,S2を用いて、第1波長帯域の波長成分の、雑音を除去したスペクトルを求めるようにしている。このように、本実施形態では、試料SPの光学特性の時間変動に起因する雑音が除去されることから、試料SPに光学特性の時間変動が生じていても、高い分析精度を実現することが可能である。
【0056】
以上、本発明の一実施形態によるフーリエ分光分析装置について説明したが、本発明は上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば上述した実施形態では、検出器31,32から出力された受光信号S1,S2を用いて直ちに信号処理装置40が処理を行う例について説明した。しかしながら、検出器31,32から出力される受光信号S1,S2をメモリに記憶しておき、信号処理装置40での処理を後で行うようにしても良い。