【実施例】
【0056】
式Iの化合物の合成
式Iの化合物を製造するために、種々の合成スキームを計画することができる。化合物II及び化合物III〜Vの合成スキームを
図1及び
図2Aにそれぞれ示す。これらのスキームは、従来の固相合成、Boc保護HCQ又はp−ニトロ−フェノールエステルBoc保護HCQの調製、並びに従来の共役及び他の官能基の側鎖の脱保護等の後の、最終化合物の調製のためのこれらの使用を含む。これらの方法、又は所望により他の同様の合成プロセスを当業者が計画し、実行することができる。化合物V〜VIIIの合成スキームを、
図2Bに示す。まず、リンカー1,4−ベンゼンジメタノールを1,1’−カルボニルジイミダゾール(CDI)によって活性化して、化合物2(1H−イミダゾール−1−カルボン酸、1,4フェニレンビス(メチレン)エステル Cas番号107845−94−3)を最初に得る。化合物2とHCQの縮合により、化合物3(4−((((2−((4−((7−クロロキノリン−4−イル)アミノ)ペンチル)(エチル)アミノ)エトキシ)カルボニル)オキシ)メチル)ベンジル1H−イミダゾール−1−カルボキシラート Cas番号未指定)を生成する。同時に、配列番号1(ペプチド)を、リジン、アスパラギン酸及びグルタミン酸のヒドラジンで除去可能な保護基を用いて調製する。化合物3と保護した配列番号1の反応により、共役した4が生じ、この複合体4を、脱保護ステップに供して最終複合体5を生成する。HCQのアミノ基及び/又はアルギニンのグアニジル基を保護/脱保護する追加ステップを、必要に応じて行って最終生成物を得る。化合物IX、X及びXIの合成は、化合物V〜VIIIの合成スキームと同様である。
【0057】
上記の特徴の変形及び組合せは、代替又は代用ではなく、本発明の意図する範囲内で、組み合わせて、またさらなる実施形態を形成することができることが、当業者にさらに理解されるべきである。
【0058】
治療の機序
これらの結果により、ヒト自己免疫疾患の治療のためのこの方法を、さらに発展させる機構原理を提供する。この試験はまた、インビボ及びインビトロで誘導性であり、免疫寛容の誘導を検出するにおいて、及び細胞免疫療法において有望なツールである、Tregのサブセットを同定する。
【0059】
本明細書で使用するモデルは、関節リウマチの患者における炎症の一因であり得る、配列番号1等のT細胞エピトープに対する免疫寛容が、検出可能な臨床効果をもたらし得るという仮説に基づく。メトトレキサート又は生物製剤の投与が許可されていなかった、合計96人の早期関節リウマチ患者を、配列番号1に対する粘膜誘導型免疫寛容によって試験した。患者が、試験中どの時点においても応答基準を満たす場合、患者を「奏効例」として定義する。これらの方法は、安全であり、メトトレキサート単独の使用と比較して臨床的有効性をもたらした。配列番号1による治療は、腫瘍壊死因子α(TNFα)産生の減少及びインターロイキン10(IL−10)産生の増加を特徴とする、末梢血単核細胞(PBMC)における免疫偏向に関与していた。
【0060】
臨床的奏効例由来のPBMCにおいて、配列番号1に対するプログラム細胞死1(PD−1)の発現が、有意に上昇する(ACR、米国リウマチ学会反応基準又は評価項目において高くなる)こと(本明細書では、臨床的奏効例と呼ぶ)が、観察された(データ非提示)。PD−1は、T細胞アネルギー並びに慢性ウイルス感染症及びがんの枯渇に対する寄与因子として初めて報告された。
【0061】
したがって、本明細書で試験する最初の仮説は、CD4+/CD127+エフェクターT(Teff)細胞アネルギーが、配列番号1による治療によって誘導されたかどうかである。PD−1を発現しているTeffの割合は、臨床的奏効例又は非奏効例において、試験開始と終了との間で有意には変わらなかった(
図3a、Y軸:Teff母集団におけるPD−1+の%、奏効例:6.312+/−1.428対4.930+/−1.433、n=5、t検定 p=0.2157(平均値+/−c.(平均値の標準誤差))、非奏効例:3.230+/−1.136対3.111+/−0.8345、n=6、t検定 p=0.9248(平均値+/−s.e.m.))。さらに、Teffは、従来の多クローン性刺激に対して増殖させることができた(データ非提示)。これは、TeffにおけるPD−1の発現レベルが、アネルギーを誘導するのに不十分であり、他の機序が役割を果たす必要があったことを示唆する。
【0062】
配列番号1で治療した臨床的奏効例におけるTeffのさらなる分析は、IL−23受容体の発現の減少(非提示)と共に、インターロイキン17A(IL−17A)の発現が有意に減少したことを示した(
図3b、左2つの棒グラフ)。逆に、IL−17Aの発現の上昇が、プラセボで処置した臨床的非奏効例において検出された。IL−17A発現の減少に加えて、選別したTeffは、TaqManにより測定した場合、TH−17に関連する転写因子RORCの発現の有意な減少を示した(
図3b、右2つの棒グラフ)。したがって、配列番号1による治療成功例は、炎症促進性サイトカインを産生する能力の減退と共に、Teffの免疫偏向を誘導した。
【0063】
図3bでは、Y軸は、Teffが産生するIL−17A(FACSにより測定した、最初の2つの棒グラフ)とRORC発現(TaqManにより測定した)の両方の発現に関する、TendとT0との間の%純変化である。Teff細胞における細胞内IL−17Aの発現は、臨床的奏効例では、T0と比較してTendで有意に低下した(T0対Tend、8.003+/−0.07839%対4.873+/−0.6933%、n=3、t検定 p0.05)が一方、臨床的非奏効例では、IL−17Aの発現は増加した(T0対Tend、3.980+/−1.520%対8.860+/−3.309%、n=2、t検定 p0.2224)。TaqManでは、mRNA単離及びcDNA合成のために細胞ペレットを溶解し、RORCの発現を測定した。GAPDHの割合として結果を分析した。TendでのTeffにおけるRORC遺伝子発現は、臨床的奏効例では、T0よりも有意に低下した(T0対Tend、3.382+/−0.684対1.670+/−0.714、n=5、t検定 p0.0035)。逆に、臨床的非奏効例では、T0及びTendでのTeffにおけるRORC発現は、変わらなかった(T0対Tend、2.510+/−1.180対2.875+/−1.205、n=2、t検定 p0.8487)。値は、平均値であり、s.e.m.である。
【0064】
しかし、Teff免疫偏向は、臨床的制御を達成する役割における唯一の機序ではない可能性がある。いくつかの自己免疫疾患並びに関節リウマチでは、調節性T細胞(Treg)は、発生頻度及び/又は機能において不十分なものとして報告されている。
【0065】
臨床的奏効例におけるCD4+/CD25++/CD127−Tregの発生頻度の変化は、試験開始及び終了時との間で検出されなかった(
図3c)。治療奏効例とプラセボ非奏効例との間の極めて有意な差が、試験終了時のTregの抑制能において見出された(
図3d)。この差は、配列番号1による治療に対する臨床的奏効例において、Tregの機能性が回復したことを示す(
図3d及び5a)。
【0066】
しかし、PD−1、そのリガンド、並びにFoxP3及びCTLA−4等のT細胞調節に関連する他の分子が、非奏効例と比較して臨床的奏効例、特に、式Iの組成物を摂取している臨床的奏効例のPBMCにおいて、なぜ有意に上昇したかを、Teffの免疫偏向によっても、Treg活性の回復によっても、直接説明できなかった(
図4)。両方の群は、試験開始(T0)時に、ヒドロキシクロロキン(HCQ)の同等の用量を摂取していた。T0のPBMCを、10mg/mlの配列番号1と共に48時間、インビトロでインキュベートし、前述のとおりTaqManを実施した。データは、GAPDHの2(−dCT)×100として表される。PD−1、0.3595+/−0.1033対0.9310+/−0.1961、n=5、p0.0327 PD−L1、0.1400+/−0.05308対1.080+/−0.1926、n=6、p0.0005 CTLA−4、0.2667+/−0.07313対4.809+/−2.606、n=6、p0.0588 Foxp3、0.2678+/−0.1267対2.329+/−0.9527、n=6、p0.0422 P値は、t検定によって得た。
【0067】
単にT細胞アネルギーというよりも、PD−1の発現が、活性調節性T細胞機能に関与し得ると本発明者らは仮定した。最近の文献は、実際に、Treg機能におけるPD−1関連経路の活発な役割を提唱している。
【0068】
この系において、FACSにより選別したPD−1+Treg(CD4+/CD25++/PD−1+/CD127−)は、Teff増殖を明らかに抑制したが、PD−1−Tregは、匹敵する抑制能は示さなかった(
図5a)。興味深いことに、PD−1+Tregの全抑制能は、試験開始と終了との間で変わらなかった(
図5a)。しかし、Treg母集団中で、PD−1+Treg発生頻度の有意な増加が見られた(
図5b)。これは、臨床的非奏効例のTregの場合ではなかった(
図5c)。したがって、全Tregプール中で、PD−1+TregとPD−1−Tregとの割合が偏ることとなり、このことは、試験終了時の抑制能の向上を、説明している可能性がある。
【0069】
PD−1+Tregの抑制能は、抗PD−1抗体の存在下で著しく減少し(56.94%の抑制減少)、したがって、抑制機序におけるPD−1分子の機能的役割を示唆している。さらに、PD−1をブロックすると、リン酸化STAT−5を発現しているPD−1+Treg数の72%が減少した(FACSにより測定した場合、p<0.01、
図5d)。これらの所見は、PD−1+Tregの培養物の抗PD−1抗体による処置に伴うpSTAT5の統計学的に有意な減少と共に(p<0.001)、共焦点顕微鏡により確認された(
図5e)。これらの所見は、PD−1シグナル伝達経路をTreg機能と直接結びつける可能性がある。実際、STAT−5のリン酸化は、FoxP3の発現及び機能性Tregの発達を制御する。PD−1が関与すると、IL−2受容体結合時のSTAT−5の正準なリン酸化に代わる経路がもたらされる可能性がある。ヒトにおいてPD−1を発現しているTregは、特異的状況に対してTreg機能を精密にモジュレートするためのPD−1の関与を中心とした、高度な調節機序を有する、抗原特異的T細胞の万能な集団を代表すると考えられている。ある者は、PD−1の関与に伴う経路が、もっぱら抑制性であるのではなく、むしろ状態及び微小環境によって、Treg機能及び恒常性をモジュレートすることが可能であると仮定し得る。
【0070】
インビトロでのPD−1の抑制はまた、TeffにおけるSTAT−3のリン酸化の増加をもたらした(
図5f)。STAT−3の活性化は、TeffをTH−17表現型へ誘導する(
図5f)。これらの所見は、TeffにおけるPD−1+Tregの直接的な下方調節機序の可能性を強調する。実際、
図3bに示すように、配列番号1に対する免疫寛容は、TeffによるIL−17産生の減少を誘導する。この効果は、効率的なPD−1+Treg機能に依存しており、PD−1+Treg機能の消失によって元に戻すことができ、その結果、TeffによるIL−17の産生を生じさせる。
【0071】
これらの複合データに基づいて、PD−1が、エピトープ特異的免疫療法に伴う適応免疫の調節に必要不可欠であると論じることができる。
【0072】
PD−1+Tregの機能をさらに特徴付けるために、FACSにより選別したCD4+/CD25++/CD127−全Treg、PD−1+Treg及びPD−1−TregからmRNAを抽出し、Treg機能に関与する種々の遺伝子の発現についてqPCRにより試験した。CTLA−4、FoxP3及びIL−10の発現は、すべてTregの特徴であるが、PD−1+TregとPD−1−Tregとの間で異なるようには思われなかった。しかし、TGF−βの発現は、PD−1−Tregと比較して、PD−1+Tregにおいて有意に上昇した(
図5g)。抗TGF−β抗体を抑制アッセイに加えた場合、PD−1+Tregの抑制能の大幅な減少(84.97%)が見られた。したがって、TGF−βは、PD−1+Treg機能において重要な役割を果たし得る。
【0073】
これらのデータは、臨床的に重要な免疫寛容の発生において中心的である、Tregサブセットの誘導を、ヒト自己免疫疾患において初めて示す。これらのTregは、PD−1の発現によって、及びTGF−βの産生によって、表現型的に及び機能的に特徴付けられる。これらの所見は、単なるアネルギーとしての、PD−1を発現するT細胞の特徴を超えたものを示す、増えつつある証拠により裏付けられている。
【0074】
治療計画と関連してPD−1+Tregの発達をもたらし得る機序を検討した。次のデータが、その方法を導いた。i)第II相試験の事後評価は、配列番号1による治療と併用した場合、HCQを先行して使用することにより、臨床的制御が支持されたことを示した。ii)PD−1、PD−L1、CTLA−4、及びFoxP3は、式Iの化合物で治療した臨床的奏効例において、有意に上方調節された(
図4)。
【0075】
HCQによる治療が、抗原提示細胞における機能的変化の誘導を介して、Treg細胞におけるPD−1発現の誘導に関与すると仮定した。この仮説を試験するために、健常対照の単球由来のLPS誘導樹状細胞(成熟DC、mDC)を、HCQを用いてインビトロで処置した。HCQなしの培養物と比較して、HLA−DR、CD83、及びCD86の発現の有意な減少が見られた(
図6a〜c)。逆に、IL−10及びCD200の発現の有意な増加が、mDCをHCQで処置した場合に認められた(
図6d及びe)。
【0076】
図6a〜eでは、濃い折れ線グラフは、mDC対照群を表し、薄灰色の領域は、HCQで処置したmDC群を表す。MFI=平均蛍光指数である。
図6f〜gでは、濃い折れ線グラフは、mDC対照群と共培養したCD4+細胞を表し、薄灰色の領域は、HCQで前処置したmDC群と共培養したCD4+細胞を表す。MFI=平均蛍光指数である。
【0077】
次いで、選別したCD4+T細胞を、mDCで、さらに24時間共培養した。HCQに予め曝露したmDCと共に培養したCD4+細胞は、HCQなしのmDCと共に培養したCD4+細胞と比較して、PD−1(
図6f〜g)、FoxP3、IL−10、CTLA−4及びTGF−βの発現を上方調節した(
図6h)。
【0078】
これらのデータは、治療成功例によってインビボで誘導された事象のうちのいくつかを、インビトロで再現し得る。これは、免疫寛容原性環境において、本発明の配列番号1(又は他の炎症促進性エピトープ)を用いて、mDCの機能及び表現型の変化を誘導することにより、HCQが、エピトープ特異的免疫療法に対する免疫アジュバントとしてインビボで作用することを示唆し得る。この変化は、調節機能を発揮してTeffにおける免疫寛容を誘導する、PD−1+T細胞の発達を助ける。
【0079】
総じて、本明細書で述べたデータは、関節リウマチ、及び恐らくは、他のヒト自己免疫疾患において臨床的に重要な免疫寛容の誘導に必要不可欠な、交差する免疫経路の多重度及び複雑度への洞察をもたらす。このような経路の1つは、インビボ及びインビトロで誘導され得る、TregのPD−1+サブセットに依存しており、したがって、薬物療法又は細胞療法による免疫寛容の誘導に有望な新規ツールを提供する(
図7)。
【0080】
配列番号1による治療が、腫瘍壊死因子α(TNFα)及びIL−10それぞれの減少及び増加を特徴とする、T細胞サブセットにおける免疫偏向に関与したということが確立される。さらに、配列番号1臨床的奏効例を起源とする末梢血単核細胞(PBMC)がまた、T細胞アネルギー並びに慢性ウイルス感染症及びがん等の病態の枯渇に寄与することがこれまでに報告されていた、プログラム細胞死1(PD−1)タンパク質を有意に高いレベルで発現することが見出された。
【0081】
健常者及び関節リウマチ患者の免疫プロファイルのクラスター分析により、種々の免疫細胞コンパートメントにおける著明な摂動が明らかになった(
図8)。配列番号1の治療によって達成した免疫寛容により、リウマチ患者のイムノームが再形成された(
図8B)。免疫寛容の背後にある根本的な免疫学的機序を、T細胞において表面染色パネル及び活性化マーカーを利用することにより検討した(
図13)。エフェクターT細胞(Teff)の炎症促進作用のモジュレートにおける調節性T細胞(Treg)の重要な役割を前提として、配列番号1奏効例及びプラセボ非奏効例のTregコンパートメントを、任意の表現型的差異について評価した(
図8C)。t−SNEクラスタリングにより、配列番号1臨床的奏効例において、より有意性を表したT細胞のサブセットが、CD25、HLA−DR及びGITRの発現を特徴とするCD4+T細胞であったことが示された(
図8D)。CD4+FoxP3+Tregの手動ゲーティングにより、配列番号1奏効例におけるTregが高い割合で、グルココルチコイド誘導性TNFR関連タンパク質(GITR)、PD−1及びヒト白血球抗原−D関連抗原(HLA−DR)を発現することが明らかになった(
図8E)。これは、配列番号1奏効例において見出されたT細胞が、免疫寛容の誘導に潜在的に寄与し得る、活性化Tregであることを示す。
【0082】
配列番号1奏効例由来のCD4+Teff細胞は、治療計画の終了時に、有意に低いレベルのIL−17A及びIFNγを発現した(
図9A)。したがって、配列番号1による治療成功例は、炎症促進性サイトカインを産生する、これらの能力を減退させることによって、Teff細胞の免疫偏向を誘導した。Treg細胞数の増加は、この知見に対する1つの可能性のある説明となり得る。しかし、Tregの発生頻度は、試験開始と終了との間で変わらなかった(
図9B)。これは、代わりに、Tregの活性への変化が、CD4+Teff細胞において観察された変化に寄与している可能性を示唆する。配列番号1奏効例及びプラセボ非奏効例から単離されたTregは、CD4+Teff細胞の増殖を抑制する、これらの能力において有意に異なり(
図9C)、これは、臨床的制御の確立が、配列番号1奏効例におけるTreg機能性の回復又は強化に起因し得ることを示していた。
【0083】
前述のとおり、配列番号1奏効例由来のCD4+FoxP3+Tregは、プラセボ非奏効例と比較して、PD−1を高い割合で発現する(
図8E)。この知見と一致して、Tendでの臨床的非奏効例ではなく配列番号1奏効例から単離したTregにおけるPD−1の発現は、配列番号1のペプチドでインキュベートした後、T0と比較して増加した(
図10A)。これまでの研究は、Treg機能におけるPD−1関連経路の活発な役割を提唱してきており、したがって、TregにおけるPD−1の発現を強化することにより、これらの機能性が活発に影響され得るということが妥当であると思われる。Teffの増殖を抑制する、これらの能力を、配列番号1による治療終了時のPD−1+TregとPD−1−Tregとの間で比較した。PD−1−Tregではなく、PD−1+Tregが、Teff細胞の増殖を抑制することができた(
図10B)。さらに、PD−L1の抑制により、Teffの増殖を制御する、これらの能力が変化しなかったため、この抑制効果は、そのリガンドであるPD−L1ではなく、PD−1に依存していた(
図10C)。
【0084】
STAT−5のリン酸化は、FoxP3発現の制御による、Treg恒常性の維持及び機能性Tregの発達に関係づけられている。本発明者らの研究では、PD−1をブロックすると、PD−1+Tregにおいてリン酸化STAT−5(pSTAT−5)の発現が減少した(
図10D)。PD−1+TregにおけるpSTAT−5をまた、共焦点顕微鏡により検査し、
図10E及び10Fに示すように、PD−1をブロックすることにより、pSTAT−5の発現が有意に減少した。したがって、Tregの機能は、STATシグナル伝達経路を介する、PD−1の発現に複雑に関与し得る。
【0085】
定量的PCRを全Treg、PD−1+Treg及びPD−1−Tregに実施して、Treg機能の種々の遺伝情報の発現を評価した。
図10Gに示すように、特徴的遺伝子であるCTLA−4、FoxP3、及びIL−10の発現は、PD−1+TregとPD−1−Tregとの間で変わらなかった。代わりに、TGFβの発現は、PD−1−Tregのそれよりも、PD−1+Tregにおいて有意に上昇した(
図10G)。さらに、遺伝子アレイ解析によってまた、配列番号1奏効例のPBMCにおいて、潜在型TGFβ結合タンパク質4(LTBP−4)遺伝子がわずかに上方調節したことが明らかになった(
図14A)。LTBP4は、TGFβ経路の活性化を制御するのに重要な役割を果たす、LTBPファミリーに属するタンパク質をコードする。PD−1とTGFβの両方を抑制することにより、Teffの増殖を抑制するPD−1+Tregの能力が、PD−1又はTGFβのみの抑制よりも大幅に減退したため、TGFβの発現の上昇は、PD−1+Tregによって開拓された、抑制機序のうちの1つを表している可能性がある(
図14B)。
【0086】
興味深いことに、効果的な免疫寛容の媒介におけるPD−1の重要性は、Tregにおける、その発現に限定されない可能性がある。Teff細胞におけるPD−1の発現は、配列番号1による治療をした場合と変わらず、奏効例と非奏効例との間で差はなかったが(
図10H)、Teff細胞におけるPD−1の発現を抑制すると、pSTAT−3の発現が有意に上昇した(
図10I)。STAT−3の活性化は、TeffのTH17表現型への分極化に関与すると報告されている。
【0087】
第2のクラスター分析を、配列番号1HCQ奏効例及びプラセボHCQ非奏効例のPBMCにおいて、メモリーT細胞コンパートメントをハイライトするマーカーを用いて実施した(
図11A)。配列番号1奏効例のこの細胞サブセットにおける濃縮した免疫表現型は、活性及び免疫寛容原性の特性を示すメモリーT細胞であった(
図11B)。より詳細には、プラセボ非奏効例と比較して、配列番号1奏効例におけるCD4+CD45RO+メモリーT細胞は、CD69及びTGFβそれぞれの高い発現から明らかなように、高い割合で活性化され、調節性の性質であった(
図11C)。配列番号1の臨床的退薬の1ヵ月後に評価された対象は、プラセボよりも優れた効果を示した(
図11D)。したがって、治療中止にかかわらない、関節痛(
図11E)及び関節腫脹(
図11F)等のパラメータにおける持続的な改善は、活性メモリーT細胞の存続に起因し得る。
【0088】
配列番号1の投与に先行したヒドロキシクロロキン(HCQ)の使用により、配列番号1の治療活性に相乗効果がもたらされる。単球由来の樹状細胞(DC)を、健常対照から単離し、リポ多糖(LPS)で活性化した。HCQ存在下で生成した成熟DCは、HLA−DR、CD83及びCD86等の活性化マーカーの減少、並びに免疫寛容原性マーカー、IL−10及びCD200の発現の上昇を示した(
図12A)。次いで、HCQで処置及び無処置の成熟DCをCD4+T細胞と共培養して、T細胞の活性化における、これらDCの潜在能力を評価した。
図12Bに示すように、HCQで処置したDCの存在下で培養したCD4+T細胞は、より多くのPD−1(表面及び細胞内に)及びPDL1を発現した。
【0089】
さらに、これらのT細胞はまた、CTLA−4、FoxP3、IL−10、TGFβの発現を上方調節した(
図12C)。これは、HCQが、DCの表現型を変え、このDCの表現型が、Teff細胞における調節機能を発揮できる、PD−1+Treg細胞の発達を次に助けることを示唆する。
【0090】
上記の特徴の変形及び組合せが、代替又は代用ではなく、本発明の意図する範囲内で、組み合わせて、またさらなる実施形態を形成することができることが、当業者にさらに理解されるべきである。