(58)【調査した分野】(Int.Cl.,DB名)
被写体を撮影するカメラを備えた可動モジュールを収容する収容体と、前記カメラの光軸周りに回転自在に前記収容体を固定体に対して支持する回転支持機構と、前記カメラによって撮影される被写体像の前記カメラの光軸周りに生じる像振れを矯正することができる矯正体を前記カメラの光軸を回転軸として回転させて前記カメラの光軸周りに生じる像振れを補正する回転振れ補正機構とを備えた振れ補正機能付き光学機器の振れ補正特性を評価する振れ補正特性評価装置において、
前記回転振れ補正機構によって前記カメラの光軸を回転軸として前記矯正体を回転させて、固定されたサンプル体の画像を前記カメラによって複数撮影する制御手段と、
前記制御手段の制御によって撮影される各画像における前記サンプル体像の各傾きに基づいて、前記カメラの光軸周りについての前記光学機器の回転振れ補正特性を評価し、前記回転振れ補正機構によって前記矯正体が回転した回転振れ角を前記サンプル体像の各傾きに基づいて算出し、算出した回転振れ角から前記回転振れ補正機構の駆動特性を回転振れ補正特性として評価し、第1の前記回転振れ角に前記矯正体を回転させるのに必要とされる第1駆動信号の単位回転振れ角当たりの信号量と、第2の前記回転振れ角に前記矯正体を回転させるのに必要とされる第2駆動信号の単位回転振れ角当たりの信号量との比を算出し、算出した比に基づいて前記回転振れ補正機構の駆動特性を評価する評価手段と
を備えることを特徴とする振れ補正機能付き光学機器の振れ補正特性評価装置。
前記光学機器は、前記可動モジュールを前記収容体に対して揺動自在に支持する揺動支持機構と、前記カメラによって撮影される被写体像の前記カメラの光軸に直交する方向の周りに生じる像振れを、前記収容体に対して前記可動モジュールを動かして補正する揺動振れ補正機構とを備え、
前記制御手段は、固定されたサンプル体の画像を前記カメラによって撮影しながら、前記揺動振れ補正機構によって前記可動モジュールを前記収容体に対して動かして、前記サンプル体の画像を複数撮影し、
前記評価手段は、前記制御手段の制御によって撮影された複数の画像によって描かれる前記サンプル体像の軌跡に基づいて、前記カメラの光軸に直交する方向の周りに生じる像振れについての前記光学機器の振れ補正特性を評価する
ことを特徴とする請求項1から請求項6のいずれか1項に記載の振れ補正機能付き光学機器の振れ補正特性評価装置。
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、上記従来の振れ補正機能付き光学機器1の検査装置5は、ロール方向の可動部角度特性を測定する際、レーザーオートコリメータ7から出射されるレーザ光の反射光を利用するので、被検査体の表面に反射率90%以上の鏡面を設ける必要がある。このため、製品自体を加工して製品の表面に鏡面を形成したり、鏡面を測定用部品として製品に搭載した上で測定を行う必要がある。
【0008】
また、ロール方向の可動部角度特性を測定する際、レーザーオートコリメータ7に加えて回転ステージ9を使用し、製品全体を回転して測定する必要があるので、検査装置5は高価なものとなってしまう。さらに、可動部角度特性の測定方向と回転ステージ9の回転方向を連動させる必要があるので、測定方向の変更を簡単に行えない。
【課題を解決するための手段】
【0009】
本発明はこのような課題を解決するためになされたもので、被写体を撮影するカメラを備えた可動モジュールを収容する収容体と、カメラの光軸周りに回転自在に収容体を固定体に対して支持する回転支持機構と、カメラによって撮影される被写体像のカメラの光軸周りに生じる像振れを矯正することができる矯正体をカメラの光軸を回転軸として回転させてカメラの光軸周りに生じる像振れを補正する回転振れ補正機構とを備えた振れ補正機能付き光学機器の振れ補正特性を評価する振れ補正特性評価装置において、回転振れ補正機構によってカメラの光軸を回転軸として矯正体を回転させて、固定されたサンプル体の画像をカメラによって複数撮影する制御手段と、制御手段の制御によって撮影される各画像におけるサンプル体像の各傾きに基づいて、カメラの光軸周りについての光学機器の回転振れ補正特性を評価
し、回転振れ補正機構によって矯正体が回転した回転振れ角をサンプル体像の各傾きに基づいて算出し、算出した回転振れ角から回転振れ補正機構の駆動特性を回転振れ補正特性として評価し、第1の回転振れ角に矯正体を回転させるのに必要とされる第1駆動信号の単位回転振れ角当たりの信号量と、第2の回転振れ角に矯正体を回転させるのに必要とされる第2駆動信号の単位回転振れ角当たりの信号量との比を算出し、算出した比に基づいて回転振れ補正機構の駆動特性を評価する評価手段とを備えることを特徴とする。
【0010】
本構成によれば、制御手段の制御により、回転振れ補正機構によってカメラの光軸を回転軸として矯正体を回転させて、固定されたサンプル体の画像をカメラによって複数撮影することで、サンプル体の複数の画像が得られる。これら各画像におけるサンプル体像の各傾きの変化から、カメラの光軸周りの像振れを知ることができる。したがって、複数の画像におけるサンプル体像の各傾きに基づいて、カメラの光軸周りの被写体像の像振れを補正する際における回転振れ補正機構の駆動特性を知ることができ、さらに、回転振れ補正機構のこの駆動特性から、振れ補正機能付き光学機器の回転振れ補正特性を評価手段によって評価することが可能になる。
【0011】
このため、振れ補正機能付き光学機器の製品に搭載されているカメラや回転振れ補正機構といった構成要素を用いて、その回転振れ補正特性を評価することができ、レーザーオートコリメータや回転ステージを用いた従来の高価な検査装置を使用する必要は無くなる。よって、ロール方向の可動部角度特性を測定する際、レーザーオートコリメータを使用するために、製品自体を加工して製品の表面に鏡面を形成したり、鏡面を測定用部品として製品に搭載した上で測定を行うことなく、振れ補正機能付き光学機器の回転振れ補正特性を評価することができる。また、回転ステージを使用するために必要となっていた、振れ補正機能付き光学機器の可動部角度特性の測定方向と回転ステージの回転方向を連動させる処置も不要になり、測定方向の変更を簡単に行えるようになる。
【0013】
また、本構成によれば、回転振れ補正機構によって矯正体が回転して振れた回転振れ角を評価手段によってサンプル体像の各傾きに基づいて算出することで、回転振れ補正機構に対する駆動信号と、この駆動信号による矯正体の回転振れ角との関係を可動部角度特性として測定することができる。そして、この可動部角度特性に基づき、測定した回転振れ補正機能が正常であるか否かを判断することができる。
また、本構成によれば、矯正体を第1の回転振れ角だけ回転させる第1駆動信号の単位回転振れ角当たりの信号量と、矯正体を第2の回転振れ角だけ回転させる第2駆動信号の単位回転振れ角当たりの信号量との比を評価手段が算出することで、矯正体を単位回転振れ角だけ回転させるのに必要とされる駆動信号の信号量、つまり、矯正体の動作感度について、その直線性を評価することができる。評価手段は、矯正体の動作感度の直線性に基づいて、すなわち、矯正体を第2の回転振れ角まで回転させる可動回転範囲において矯正体の動作感度が一定に保たれているか否かに基づいて、光学機器の回転振れ補正機能が正常であるか否かを判断することができる。
【0014】
また、本発明は、制御手段が、矯正体の可動回転範囲を矯正体が往復する駆動信号を回転振れ補正機構に与えて回転振れ補正機構を駆動制御し、評価手段が、可動回転範囲を矯正体が往復してカメラが撮影するサンプル体の複数の画像から得られる回転振れ角と駆動信号との関係に基づいて、回転振れ補正機構の駆動特性を評価することを特徴とする。
【0015】
本構成によれば、制御手段の回転振れ補正機構に対する制御により矯正体がその可動回転範囲を往復させられることで、矯正体の回転振れ角の駆動信号に対する変化が、ヒステリシス特性として評価手段により把握される。したがって、評価手段は、このヒステリシス特性に基づいて、光学機器の回転振れ補正機能が正常であるか否かを判断することができる。
【0016】
また、本発明は、制御手段が、回転振れ補正機構に与える駆動信号の大きさを、矯正体の回転が他の部品に干渉しない可動回転範囲内に制限することを特徴とする。
【0017】
本構成によれば、矯正体の回転が制御手段によって他の部品に干渉しない可動回転範囲内に制限されることで、矯正体とその周囲の他の部品との衝突に起因する故障を防止することができる。また、矯正体の回転が一定の可動回転範囲内に制限されることで、必要以上の回転振れ角まで広範囲にわたって無駄に測定が行われるのが防止され、回転振れ補正特性の測定時間の短縮化を図ることができる。
【0020】
また、本発明は、サンプル体が、大きさの異なる2つの発光点もしくは点光源または1本の輝線から構成されることを特徴とする。
【0021】
本構成によれば、大きさの異なる2つの発光点もしくは点光源または1本の輝線をサンプル体として撮影することで、2つの発光点もしくは点光源間を結ぶ直線または1本の輝線からサンプル体像の傾きを容易に把握することができる。この際、2つの各発光点もしくは点光源の大きさが異なるため、各発光点もしくは点光源を明確に区別して認識でき、各発光点もしくは点光源間を結んで得られる直線の傾きの変化を誤ることなく確実に検出することができる。
【0022】
また、本発明は、サンプル体が、カメラの光軸と一致する位置に1つの発光点または点光源を有し、回転支持機構が、カメラの光軸がカメラの結像側で固定体と交わる箇所を支点に収容体を回転自在に支持し、評価手段が、制御手段の制御によってカメラの光軸を回転軸として収容体を回転させて撮影されるサンプル体の複数の各画像における1つの発光点または点光源が描く軌跡に基づいて、支点を通るカメラの光軸の被写体側における振れを評価することを特徴とする。
【0023】
本構成によれば、回転振れ補正機構によってカメラの光軸を回転軸として収容体を回転させて、カメラの光軸と一致する位置にある1つの発光点または点光源をカメラによって複数撮影し、発光点像または点光源像が描く軌跡を認識することで、支点を通るカメラの光軸の被写体側における振れが判明する。この振れは、収容体の頭部が支点を基点に円を描くことに起因して、カメラの光軸の被写体側端部がすりこぎを擦るように首を振ることで起きる。この振れからカメラの光軸の軸振れを評価して、光学機器の回転振れ補正機能が正常であるか否かを判断することができる。
【0024】
また、本発明は、回転支持機構が、カメラの光軸がカメラの結像側で固定体と交わる箇所を支点に収容体を回転自在に支持し、評価手段が、制御手段の制御によってカメラの光軸を回転軸として収容体を回転させて撮影されるサンプル体の複数の各画像における2つの発光点もしくは点光源を結ぶ直線の交点、または1本の輝線の交点、またはカメラの光軸と一致する位置に位置する直線もしくは1本の輝線上の1点が描く軌跡に基づいて、支点を通るカメラの光軸の被写体側における振れを評価することを特徴とする。
【0025】
本構成によれば、サンプル体の複数の各画像における2つの発光点もしくは点光源を結ぶ直線の交点、または1本の輝線の交点、またはカメラの光軸と一致する位置に位置する直線もしくは1本の輝線上の1点が描く軌跡を認識することで、支点を通るカメラの光軸の被写体側における振れが判明する。したがって、この振れからも、カメラの光軸の軸振れを評価して、光学機器の回転振れ補正機能が正常であるか否かを判断することができる。
【0026】
また、本発明は、光学機器が、可動モジュールを収容体に対して揺動自在に支持する揺動支持機構と、カメラによって撮影される被写体像のカメラの光軸に直交する方向の周りに生じる像振れを、収容体に対して可動モジュールを動かして補正する揺動振れ補正機構とを備え、制御手段が、固定されたサンプル体の画像をカメラによって撮影しながら、揺動振れ補正機構によって可動モジュールを収容体に対して動かして、サンプル体の画像を複数撮影し、評価手段が、制御手段の制御によって撮影された複数の画像によって描かれるサンプル体像の軌跡に基づいて、カメラの光軸に直交する方向の周りに生じる像振れについての光学機器の振れ補正特性を評価することを特徴とする。
【0027】
本構成によれば、制御手段の制御により、固定されたサンプル体の画像をカメラによって撮影しながら、揺動振れ補正機構によって可動モジュールを動かすことで、複数のサンプル体の画像が得られる。これら複数のサンプル体の画像から、サンプル体像の軌跡を得ることができる。このサンプル体像の軌跡は、可動モジュールの動きに応じて描かれる。したがって、このサンプル体像の軌跡に基づいて、カメラの光軸に直交する方向の周りに生じる被写体像の像振れを補正する際における可動モジュールの動きの特性を知ることができ、さらに、可動モジュールのこの動特性から、振れ補正機能付き光学機器の揺動振れ補正特性を評価手段によって評価することが可能になる。
【0028】
したがって、カメラの光軸周りの被写体像の像振れを補正する際における回転振れ補正機構の駆動特性と共に、カメラの光軸に直交する方向の周りに生じる被写体像の像振れを補正する際における揺動振れ補正機構の駆動特性を知ることができる。このため、これらの駆動特性から、振れ補正機能付き光学機器のロール方向の回転振れ補正特性に加えて、ピッチ方向およびヨー方向の揺動振れ補正特性を評価手段によって評価することが可能になる。
【発明の効果】
【0029】
本発明の振れ補正機能付き光学機器の振れ補正特性評価装置によれば、光学機器のロール方向の可動部角度特性を測定する際、従来の高価な検査装置を使用する必要が無くなり、レーザーオートコリメータを使用するために製品に鏡面を設けることなく、また、回転ステージを使用するために測定方向の変更に手間をかけることなく、振れ補正機能付き光学機器の回転振れ補正特性を安価に評価することができる。
【発明を実施するための形態】
【0031】
次に、本発明による振れ補正機能付き光学機器の振れ補正特性評価装置を実施するための形態について説明する。
【0032】
図3(a)は、本発明の一実施形態による振れ補正機能付き光学機器11の振れ補正特性評価装置を構成する検査装置10のシステム構成図、
図4は回路ブロック図である。本明細書において、XYZの3軸は互いに直交する方向であり、X軸方向の一方側を+X、他方側を−Xで示し、Y軸方向の一方側を+Y、他方側を−Yで示し、Z軸方向の一方側を+Z、他方側を−Zで示す。Z軸方向は、振れ補正機能付き光学機器11の可動モジュール13が揺動していない状態で、可動モジュール13に搭載されるカメラ13aの光軸Lに沿う方向である。また、+Z方向が光軸L方向の像側、−Z方向が光軸L方向の物体側(被写体側)である。
【0033】
検査装置10の検査対象は、振れ補正機能付き光学機器11であり、検査装置10による検査は、検査対象とされる光学機器11の製品そのものを使用して行われ、光学機器11の振れ補正特性を評価する。
【0034】
光学機器11は、カメラ付き携帯電話機や空撮などを行うドローン等の電子機器に用いられる薄型カメラであり、電子機器の機器本体に支持された状態で電子機器に搭載される。光学機器11は、
図3(b)に概念的に示すように、収容体12に可動モジュール13が揺動自在に収容され、固定体14に対して収容体12がカメラの光軸L周りに回転自在に支持されて、構成される。可動モジュール13は、被写体を撮影するカメラ13a、角速度センサ13bおよび揺動アクチュエータ13c等から構成される。カメラ13aは可動モジュール13の前面にレンズ15を備えて構成され、レンズ15には、可動モジュール13が揺動していない状態で−Z方向から被写体光が入射する。カメラ13aに内蔵された不図示の撮像素子には、レンズ15によって被写体像が結像される。この被写体像は、カメラ13aに内蔵された不図示の撮像用回路モジュールによって映像信号に変換される。
【0035】
カメラ13aは、揺動支持機構を構成する不図示のジンバル機構により、収容体12に対してX軸方向およびY軸方向に揺動自在に支持されている。収容体12のX軸周りの回転はピッチング(縦揺れ)、Y軸周りの回転はヨーイング(横揺れ)として、可動モジュール13に設けられた角速度センサ13bに検出される。
【0036】
可動モジュール13と収容体12との間には、カメラ13aによって撮影される被写体像のピッチ方向およびヨー方向の像振れを補正する揺動振れ補正機構が揺動アクチュエータ13cとして設けられている。この揺動アクチュエータ13cは、収容体12に設けられた不図示の磁石と、可動モジュール13に設けられた不図示のコイルとから構成され、可動モジュール13と収容体12との間で、可動モジュール13を収容体12に対してX軸方向およびY軸方向に揺動させ相対変位させる磁気駆動力を発生する。
【0037】
収容体12は、その底部中央に凸部12aが設けられ、凸部12aは固定体14に設けられたボールベアリング16によってその周囲が囲まれている。これら凸部12aおよびボールベアリング16は、カメラの光軸L周りに回転自在に収容体12を固定体14に対して支持する回転支持機構を構成する。Z軸周り、つまり、カメラの光軸L周りの収容体12の回転はローリング(回転揺れ)として、収容体12に設けられた角速度センサ12bに検出される。または、角速度センサ13bが、X軸周りの回転としてピッチング(縦揺れ)、Y軸周りの回転としてヨーイング(横揺れ)の他に、光軸L周りの回転としてローリング(回転揺れ)を検出してもよい。
【0038】
収容体12と固定体14との間には、カメラ13aによって撮影される被写体像のロール方向の像振れを補正する回転振れ補正機構が回転アクチュエータ12cとして設けられている。この回転アクチュエータ12cは、収容体12に設けられた不図示の磁石と、固定体14に設けられた不図示のコイルとから構成され、収容体12と固定体14との間で、収容体12を固定体14に対してZ軸周りに回転変位させる磁気駆動力を発生する。本実施形態では、収容体12は、被写体像の光軸L周りに生じる像振れを矯正することができる矯正体を構成する。
【0039】
光学機器11には、可動モジュール13や収容体12等への給電や信号授受を行うためのフレキシブル配線基板17が引き出されており、フレキシブル配線基板17の端部には、補強板18に補強されて不図示のコネクタが設けられている。映像処理基板19および制御基板20はこのコネクタによってフレキシブル配線基板17に接続され、フレキシブル配線基板17を介して、可動モジュール13や収容体12等との間で信号の授受等を行う。映像処理基板19には映像処理IC(Integrated Circuit)19a、制御基板20には制御IC20aが搭載されている。
【0040】
映像処理基板19に搭載された映像処理IC19aは、カメラ13aで撮影された映像信号を取り込み、所定の映像処理を行う。この映像処理基板19は、USB(Universal Serial Bus)通信により、PC(Personal Computer)で構成される上位システム21にUVC(USB Video Class)仕様で接続され、上位システム21によって制御され、また、上位システム21との間で映像信号を授受する。
【0041】
制御基板20は、映像処理基板19からDC3.3Vの電源供給を受けて動作し、角速度センサ13bから可動モジュール13の角速度信号を受信する。また、角速度センサ12bから収容体12の角速度信号を受信する。制御基板20に搭載された制御IC20aは、角速度センサ13bから受信した角速度信号により収容体12のピッチングおよびヨーイングを検出して、このピッチングおよびヨーイングを相殺するPWM(Pulse Width Modulation)駆動信号を揺動アクチュエータ13cへ出力する。揺動アクチュエータ13cはこのPWM駆動信号によって駆動制御され、撮像素子に結像されるピッチ方向およびヨー方向の像振れを打ち消す方向に可動モジュール13を揺動する。また、角速度センサ12bから受信した角速度信号により収容体12のローリングを検出して、このローリングを相殺するPWM駆動信号を回転アクチュエータ12cへ出力する。回転アクチュエータ12cはこのPWM駆動信号によって駆動制御され、撮像素子に結像されるロール方向の像振れを打ち消す方向にカメラ13aの光軸Lを中心に収容体12を回転する。
【0042】
制御基板20は、I2C(Inter-Integrated Circuit)通信でUSB−I2Cコンバータ22を介して上位システム21に接続され、上位システム21によって制御され、また、上位システム21との間でデータを授受する。
【0043】
図5は検査装置10の機器構成を示し、同図(a)は、検査装置10の筐体10aの前面カバー10bが閉じられた状態、同図(b)は、電源スイッチ25および昇降スイッチ26が操作されて前面カバー10bが開けられた状態を表す。光学機器11並びに映像処理基板19および制御基板20は、筐体10aの底面に配置される。この際、光学機器11は、カメラ13aの撮影方向が筐体10aの天井に向けられるように取り付ける。筐体10aの底面にはUSB−I2Cコンバータ22およびUSBハブ27も配置される。映像処理基板19および制御基板20は、このUSBハブ27を介するUSBケーブルによって上位システム21のPCに接続される。
【0044】
筐体10aの天井には同図(c)に示す3つの穴29a,29b,29cが1直線上に並んで開けられている。これらの穴29a,29b,29cから光学機器11に向けてLED装置28によって点状の光が照射される。中央の穴29aは、筐体10aの底面に配置された光学機器11が備えるカメラ13aの光軸Lと一致する位置に位置する。また、穴29a,29bと穴29cの径は異なり、穴29cは穴29a,29bよりも大きな径を有する。中央の穴29aは、ピッチ方向およびヨー方向の振れ補正特性、並びに、カメラ13aの光軸Lの後述する軸振れを評価する際に使用される。この際には両端の穴29b,29cは不図示のシャッタにより覆われ、中央の穴29aから光学機器11に向けてLED装置28によって点状の光が1つの発光点として照射される。また、大きさの異なる両端の穴29b,29cは、ロール方向の振れ補正特性を評価する際に使用される。この際には中央の穴29aは不図示のシャッタにより覆われ、両端の穴29b,29cから光学機器11に向けてLED装置28によって大きさの異なる点状の光が2つの発光点として照射される。
【0045】
この検査装置10による検査は前面カバー10bが閉じられて、光学機器11が暗所に配置された状態で実施される。筐体10aおよび前面カバー10bは光が筐体内に入り込まないように、黒色の帯電防止アクリル樹脂によって形成される。
【0046】
検査装置10による光学機器11の検査は、LED装置28によって照射される1つの発光点または2つの発光点を固定されたサンプル体として、カメラ13aで撮影することで、行われる。すなわち、制御手段を構成する制御IC20aの制御により、ピッチ方向およびヨー方向の振れ補正特性の評価時には、穴29aによって形成される固定された1つの発光点の画像をカメラ13aによって撮影しながら、揺動アクチュエータ13cを駆動して可動モジュール13を動かして、1つの発光点の画像を複数撮影する。また、ロール方向の振れ補正特性の評価時には、カメラ13aの光軸Lを回転軸として収容体12を回転させて、穴29b,29cによって形成される固定された2つの発光点の画像をカメラ13aによって複数撮影する。制御IC20aによるこれらの制御は、上位システム21から制御IC20aのレジスタ値が設定されることで、行われる。このレジスタ値は、揺動アクチュエータ13cまたは回転アクチュエータ12cに与えられるPWM駆動信号のデューティ比を決定する。
【0047】
図6(a)は、ピッチ方向およびヨー方向の振れ補正特性の評価時における光学機器11による撮影のイメージを表す図である。可動モジュール13は、LED装置28によって生成される、黒地の画像31に発光点32として写されるサンプル体をカメラ13aで撮影しながら、揺動アクチュエータ13cによって矢印のように揺動される。この撮影により、同図(b)に示すように、発光点32が撮影された複数の画像31が得られる。可動モジュール13の揺動は、Y軸方向およびX軸方向にそれぞれ約±10deg.の振れ角で行われる。
【0048】
図7(a)は、上記の撮影を、PWM駆動信号のデューティ比を変えて揺動アクチュエータ13cに与える入力電圧を一定電圧毎に変化させ、可動モジュール13をY軸方向に揺動させながら、画像31を撮影して得られる各発光点32の位置を示すグラフである。同グラフの横軸はX軸方向、縦軸はY軸方向の位置を表す。また、同図(b)は、発光点32の動いた軌跡から、各入力電圧に対する可動モジュール13の振れ角を算出した結果を示すグラフである。同グラフの横軸は揺動アクチュエータ13cに与える入力電圧、縦軸は可動モジュール13の振れ角を表す。また、黒塗りの菱形のプロット33はY軸方向の振れ角、白抜きの正方形のプロット34は意図しない(駆動信号を与えていない)X軸方向の振れ角を表す。
【0049】
図8は、この振れ角の算出原理を説明する図である。レンズ15の焦点距離をf[mm]、カメラ13aの撮像素子35の画素ピッチをd[mm]、1画素当たりの単位振れ角をθ[deg.]とすると、θは同図に示す式(1)によって表される。このため、可動モジュール13の振れ角は、カメラ13aを構成する撮像素子35の画素ピッチd、およびカメラ13aを構成する光学系であるレンズ15の焦点距離fから求まる、1画素当たりの単位振れ角θに、撮像素子35上において発光点32が移動した画素数を乗算(=θ×移動画素数)することで、算出される。
【0050】
これらの演算は上位システム21によって行われる。上位システム21は、制御IC20aの制御によって撮影された複数の画像31によって描かれる発光点32の軌跡に基づいて、可動モジュール13の振れ補正特性を評価する評価手段を構成する。本実施形態では、上位システム21は、揺動アクチュエータ13cによって可動モジュール13が揺動した振れ角を発光点32の軌跡に基づいて算出し、算出した振れ角から揺動アクチュエータ13cの駆動特性を振れ補正特性として評価する。
【0051】
図9は、可動モジュール13のY軸方向における可動範囲を可動モジュール13が往復するPWM駆動信号を揺動アクチュエータ13cに与えて、制御IC20aが揺動アクチュエータ13cを駆動制御した際における、PWM駆動信号と可動モジュール13の振れ角との関係を示すグラフである。同グラフの横軸はPWM駆動信号のデューティ(PWM Duty)設定値[%]、縦軸は可動モジュール13の振れ角[deg.]である。また、特性線41は可動モジュール13のY軸方向の振れ角特性、特性線42はX軸方向の振れ角特性を表す。また、特性線41に囲まれる一点鎖線41aは特性線41の平均値を表す。
【0052】
PWM駆動信号は、例えば、0からプラス側へ増加させ、振れ角が可動範囲の最大端に達したときにマイナス側へ減少させ、振れ角が可動範囲の最小端に達したときにプラス側へ反転させて、揺動アクチュエータ13cに与えることで、可動範囲を可動モジュール13が往復する。各特性線41,42はヒステリシス特性を示す。
【0053】
上位システム21は、同グラフに示される、Y軸方向における可動範囲を可動モジュール13が往復して撮影する発光点32の複数の画像31から得られる振れ角と、駆動信号との関係に基づいて、揺動アクチュエータ13cのピッチング駆動特性を評価する。また、X軸方向における可動範囲を可動モジュール13が往復して撮影する発光点32の複数の画像31から得られる振れ角と、駆動信号との関係に基づいて、揺動アクチュエータ13cのヨーイング駆動特性をピッチング駆動特性と同様に評価する。
【0054】
揺動アクチュエータ13cの駆動特性を測定する際に、可動モジュール13を揺動させる可動範囲は、揺動アクチュエータ13cに与えられるPWM駆動信号の大きさが、制御IC20aにより制御されて、可動モジュール13のY軸方向およびX軸方向における揺動が他の部品に干渉しない可動範囲内に制限される。光学機器11の製品としての可動範囲の動作保証範囲は±6deg.に設定されるが、設計時における可動範囲の動作保証は、デューティ設定値がグラフに示す値Aでの振れ角に設定される。
【0055】
揺動アクチュエータ13cの駆動特性の評価は、次の第1〜第9の項目を測定し、検査することで行われる。第1の項目は、デューティ設定値の値Aでの振れ角、第2の項目は、振れ角が1deg.のときのデューティ設定値の値Bから求まる可動モジュール13の動作感度、第3の項目は、振れ角が3deg.のときのデューティ設定値の値Cから求まる可動モジュール13の動作感度、第4の項目は、振れ角が6deg.のときのデューティ設定値の値Dから求まる可動モジュール13の動作感度、第5の項目は、振れ角が1deg.と6deg.とにおける各動作感度の比、第6の項目は、振れ角が指定の4deg.のときにおけるデューティ設定値の値E、第7の項目は、振れ角が指定の7deg.のときにおけるデューティ設定値の値F、第8の項目は、駆動信号を往復させて戻ってきたときの原点におけるズレ幅(ヒステリシス)G、第9の項目は、駆動信号を与えていないX軸方向における振れ角の最大値と最小値間の幅(クロストーク)Hである。
【0056】
なお、ここではグラフにおけるプラス側の値について説明するが、マイナス側の値についても同様に測定されて評価される。
【0057】
上位システム21は、第1の項目のデューティ設定値Aでの振れ角に基づき、検査対象の光学機器11における揺動アクチュエータ13cが、設計時における可動範囲の動作保証要件を満たすか否かについて、評価する。
【0058】
また、可動モジュール13の動作感度は、可動モジュール13を単位振れ角だけ揺動させるのに必要とされるPWM駆動信号の信号量を算出することで、求めることができる。上位システム21は、可動モジュール13の振れ角が1deg.、3deg.および6deg.のときにおける、デューティ設定値B、CおよびDの各駆動信号について、単位振れ角当たりの信号量をそれぞれ算出することで、各振れ角における可動モジュール13の、第2、第3および第4の項目の動作感度を求める。そして、求めた各動作感度が規定の動作感度要件を満たすか否かの観点から、揺動アクチュエータ13cの駆動特性を評価する。
【0059】
また、上位システム21は、第5の項目の、振れ角が1deg.と6deg.とにおける各動作感度の比に基づいて、動作感度のリニアリティの観点から、揺動アクチュエータ13cの駆動特性を評価する。また、上位システム21は、第6および第7の項目の、振れ角が指定の4deg.および7deg.のときにおけるデューティ設定値EおよびFについては、揺動アクチュエータ13cを使った実際の振れ補正におけるパラメータとして使用する。
【0060】
また、上位システム21は、第8の項目の、原点におけるズレ幅(ヒステリシス)Gが規定の値に収まっているか否かの観点から、揺動アクチュエータ13cの駆動特性を評価する。また、上位システム21は、可動モジュール13がY軸方向における可動範囲を往復する駆動信号を揺動アクチュエータ13cに与えた際に、Y軸方向に直交する駆動信号を与えていないX軸方向に揺動して生じる、可動モジュール13のX軸方向における振れ角を、第9の項目の、振れ角の最大値と最小値間の幅(クロストーク)Hに基づいて判断し、揺動アクチュエータ13cの駆動特性を評価する。
【0061】
図10(a)は、ロール方向の振れ補正特性の評価時における光学機器11による撮影のイメージを表す図である。収容体12は、カメラ13aの光軸Lを回転軸として矢印のように回転させられ、カメラ13aは、黒地の画像36に発光点37,38として写されるサンプル体の画像を複数撮影する。この撮影により、同図(b)に示すように、画像36には、異なる大きさの発光点37,38の組み合わせが複数撮影される。収容体12の回転は、カメラ13aの光軸Lを中心に約±10deg.の回転振れ角で行われる。
【0062】
評価手段を構成する上位システム21は、制御IC20aの制御によって撮影される各画像36におけるサンプル体像の各傾きに基づいて、カメラ13aの光軸Lの周りについての光学機器11の回転振れ補正特性を評価する。本実施形態では、上位システム21は、収容体12が回転した回転振れ角をサンプル体像の各傾きに基づいて算出し、算出した回転振れ角から回転アクチュエータ12cの駆動特性を回転振れ補正特性として評価する。サンプル体像の各傾きは、大きさの異なる2つの発光点37,38間を結ぶ直線39から算出される。収容体12が回転した回転振れ角は、今回の撮影によって得られた画像36における直線39の傾きと、前回の撮影によって得られた画像36における直線39の傾きとの差から、算出される。
【0063】
図11は、カメラ13aの光軸Lを回転軸とする収容体12の可動回転範囲を収容体12が往復するPWM駆動信号を回転アクチュエータ12cに与えて、制御IC20aが回転アクチュエータ12cを駆動制御した際における、PWM駆動信号と収容体12の回転振れ角との関係を示すグラフである。同グラフの横軸はPWM駆動信号のデューティ(PWM Duty)設定値[%]、縦軸は収容体12の回転振れ角[deg.]である。また、特性線43は収容体12の回転振れ角特性、特性線43に囲まれる一点鎖線43aは特性線43の平均値を表す。
【0064】
PWM駆動信号は、例えば、0からプラス側へ増加させ、回転振れ角が可動回転範囲の最大端に達したときにマイナス側へ減少させ、回転振れ角が可動回転範囲の最小端に達したときにプラス側へ反転させて、回転アクチュエータ12cに与えることで、可動回転範囲を収容体12が往復する。特性線43はヒステリシス特性を示す。
【0065】
上位システム21は、同グラフに示される、可動回転範囲を収容体12が往復してカメラ13aが撮影する発光点37,38間を結ぶ直線39から得られる回転振れ角と、駆動信号との関係に基づいて、回転アクチュエータ12cのローリング駆動特性を評価する。
【0066】
回転アクチュエータ12cのローリング駆動特性を測定する際に、収容体12を回転させる可動回転範囲は、回転アクチュエータ12cに与えられるPWM駆動信号の大きさが、制御IC20aにより制御される収容体12の光軸L周りの回転が他の部品に干渉しない可動回転範囲内に制限される。ロール方向における光学機器11の製品としての可動回転範囲の動作保証範囲は、ピッチ方向およびヨー方向と同様に概ね±6deg.に設定され、設計時における可動回転範囲の動作保証は、デューティ設定値がグラフに示す値Aでの回転振れ角に設定される。
【0067】
回転アクチュエータ12cのローリング駆動特性の評価は、次の第1〜第8の項目を測定し、検査することで行われる。第1の項目は、デューティ設定値の値Aでの回転振れ角、第2の項目は、回転振れ角が1deg.のときのデューティ設定値の値Bから求まる収容体12の動作感度、第3の項目は、振れ角が3deg.のときのデューティ設定値の値Cから求まる収容体12の動作感度、第4の項目は、振れ角が6deg.のときのデューティ設定値の値Dから求まる収容体12の動作感度、第5の項目は、振れ角が1deg.と6deg.とにおける各動作感度の比、第6の項目は、振れ角が指定の4deg.のときにおけるデューティ設定値の値E、第7の項目は、振れ角が指定の7deg.のときにおけるデューティ設定値の値F、第8の項目は、駆動信号を往復させて戻ってきたときの原点におけるズレ幅(ヒステリシス)Gである。
【0068】
なお、ここではグラフにおけるプラス側の値について説明するが、マイナス側の値についても同様に測定されて評価される。
【0069】
上位システム21は、第1の項目のデューティ設定値Aでの回転振れ角に基づき、検査対象の光学機器11における回転アクチュエータ12cが、設計時における可動回転範囲の動作保証要件を満たすか否かについて、評価する。
【0070】
また、収容体12の動作感度は、収容体12を単位回転振れ角だけ揺動させるのに必要とされるPWM駆動信号の信号量を算出することで、求めることができる。上位システム21は、収容体12の回転振れ角が1deg.、3deg.および6deg.のときにおける、デューティ設定値B、CおよびDの各駆動信号について、単位回転振れ角当たりの信号量をそれぞれ算出することで、各回転振れ角における収容体12の、第2、第3および第4の項目の動作感度を求める。そして、求めた各動作感度が規定の動作感度要件を満たすか否かの観点から、回転アクチュエータ12cの駆動特性を評価する。
【0071】
また、上位システム21は、第5の項目の、振れ角が1deg.と6deg.とにおける各動作感度の比に基づいて、動作感度のリニアリティの観点から、回転アクチュエータ12cの駆動特性を評価する。また、上位システム21は、第6および第7の項目の、振れ角が指定の4deg.および7deg.のときにおけるデューティ設定値EおよびFについては、回転アクチュエータ12cを使った実際の振れ補正におけるパラメータとして使用する。また、上位システム21は、第8の項目の、原点におけるズレ幅(ヒステリシス)Gが規定の値に収まっているか否かの観点から、回転アクチュエータ12cの駆動特性を評価する。
【0072】
図12(a)は、検査装置10による揺動アクチュエータ13cおよび回転アクチュエータ12cの検査処理手順を示すゼネラルフローチャートである。
【0073】
まず、検査装置10の図示しないスイッチが操作されることで、検査装置10を構成する各装置の電源がオンにされる(ステップ(以下、Sと記載する)1参照)。次に、前面カバー10bを昇降スイッチ26により上方へ開き、検査対象となる光学機器11がワークとして筐体10aに取り付けられる(S2参照)。次に、USBハブ27の個別スイッチを操作することで、LED装置28、USB−I2Cコンバータ22、映像処理基板19へUSB給電され(S3参照)、上位システム21のPCに発光点の映像が表示される(S4参照)。次に、可動モジュール13がX軸方向に揺動されてY軸周りのヨーイングの測定が行われ(S5参照)、引き続いて、可動モジュール13がY軸方向に揺動されてX軸周りのピッチングの測定が行われる(S6参照)。続いて、収容体12がカメラ13aの光軸L(Z軸)の周りに回転されてローリングの測定が行われる(S7参照)。その後、映像処理基板19への給電がオフにされ(S8参照)、ワークが筐体10aから取り外されて(S9参照)、1製品の検査が終了する。
【0074】
同図(b)は、S5において行われるヨーイング測定のフローチャートである。なお、S6において行われるピッチング測定もヨーイング測定と同様に行われる。
【0075】
ヨーイング測定に際して、まず、上位システム21によって制御IC20aの揺動アクチュエータ13c駆動用レジスタに対するパラメータ設定がI2C通信によって行われる(S11参照)。次に、制御IC20aが揺動アクチュエータ13cへ出力するPWM駆動信号のデューティ比を決める値が、上位システム21によって制御IC20aの揺動アクチュエータ13c駆動用レジスタに設定される(S12参照)。次に、レジスタに設定されたデューティ比に相当する振れ角に、揺動アクチュエータ13cが
図6(a)に示すように駆動されて、カメラ13aに
図6(b)に示すように撮影される画像31が上位システム21に取り込まれる(S13参照)。その後、上位システム21において、画像31における発光点32の位置が
図7(a)に示すように検出される(S14参照)。次に、上位システム21により、可動モジュール13の入力電圧に対する振れ角が、
図7(b)に示すように、発光点32の位置から換算される(S15参照)。
【0076】
その後、撮影される画像31の全ての発光点32についての、入力電圧に対する振れ角の測定が終了したか否かが判断される(S16参照)。測定が終了していない場合には、S16の判断はNoとなって処理はS12に戻り、S12〜S15の処理が繰り返される。全ての発光点32についての、入力電圧に対する振れ角の測定が終了すると、S16の判断はYesとなり、次に、ヨー方向の振れ補正特性に関する前述した第1〜第9の各検査項目についての計算が上位システム21によって行われる(S17参照)。次に、各検査項目についての揺動アクチュエータ13cの駆動特性の評価が前述したように判定され(S18参照)、ヨーイング測定が終了する。
【0077】
同図(a)のS7において行われるローリング測定も、同図(b)に示されるフローチャートに沿って実施される。
【0078】
つまり、ローリング測定に際して、まず、上位システム21によって制御IC20aの回転アクチュエータ12c駆動用レジスタに対するパラメータ設定がI2C通信によって行われる(S11参照)。次に、制御IC20aが回転アクチュエータ12cへ出力するPWM駆動信号のデューティ比を決める値が、上位システム21によって制御IC20aの回転アクチュエータ12c駆動用レジスタに設定される(S12参照)。次に、レジスタに設定されたデューティ比に相当する回転振れ角に、回転アクチュエータ12cが
図10(a)に示すように駆動されて、カメラ13aに
図10(b)に示すように撮影される画像36が上位システム21に取り込まれる(S13参照)。その後、上位システム21において、画像36における各発光点37,38の位置が検出され、各発光点37,38間を結ぶ直線39の傾きが算出される(S14参照)。次に、上位システム21により、収容体12の入力電圧に対する回転振れ角が各直線39の傾きの差から換算される(S15参照)。
【0079】
その後、撮影される画像36の全ての直線39についての、入力電圧に対する回転振れ角の測定が終了したか否かが判断される(S16参照)。測定が終了していない場合には、S16の判断はNoとなって処理はS12に戻り、S12〜S15の処理が繰り返される。全ての直線39についての、入力電圧に対する回転振れ角の測定が終了すると、S16の判断はYesとなり、次に、ロール方向の振れ補正特性に関する前述した第1〜第8の各検査項目についての計算が上位システム21によって行われる(S17参照)。次に、各検査項目についての回転アクチュエータ12cの駆動特性の評価が前述したように判定され(S18参照)、ローリング測定が終了する。
【0080】
(本形態の主な作用効果)
このような本実施形態による光学機器11の検査装置10によれば、制御IC20aの制御により、カメラ13aの光軸Lを回転軸として収容体12を回転させて、発光点37,38が固定されたサンプル体として写った画像36をカメラ13aによって複数撮影する。これら各画像36における発光点37,38の各傾きの変化から、カメラ13aの光軸L周りの像振れを知ることができる。したがって、複数の画像36における発光点37,38の各傾きに基づいて、カメラ13aの光軸L周りの被写体像の像振れを補正する際における回転アクチュエータ12cの駆動特性を知ることができ、さらに、回転アクチュエータ12cのこの駆動特性から、光学機器11の回転振れ補正特性を上位システム21によって評価することが可能になる。
【0081】
このため、光学機器11の製品に搭載されているカメラ13aや回転アクチュエータ12cといった構成要素を用いて、その回転振れ補正特性を評価することができ、レーザーオートコリメータ7や回転ステージ9を用いた従来の高価な検査装置5を使用する必要は無くなる。よって、ロール方向の可動部角度特性を測定する際、レーザーオートコリメータ7を使用するために、製品自体を加工して製品の表面に鏡面を形成したり、鏡面を測定用部品として製品に搭載した上で測定を行うことなく、光学機器11の回転振れ補正特性を評価することができる。また、回転ステージ9を使用するために必要になる、光学機器11の可動部角度特性の測定方向と回転ステージ9の回転方向を連動させる処置も不要になり、制御IC20aの回転アクチュエータ12c駆動用レジスタに設定する値を書き換えるだけで、測定方向の変更を簡単に行えるようになる。
【0082】
また、本実施形態による光学機器11の検査装置10によれば、回転アクチュエータ12cによって収容体12が回転して振れた回転振れ角を、発光点37,38間を結ぶ直線39の各傾きに基づいて上位システム21によって算出することで、回転アクチュエータ12cに対する駆動信号と、この駆動信号による収容体12の回転振れ角との関係を可動部角度特性として測定することができる。そして、この可動部角度特性に基づき、測定した回転振れ補正機能が正常であるか否かを判断することができる。
【0083】
また、本実施形態による光学機器11の検査装置10によれば、制御IC20aの回転アクチュエータ12cに対する制御により収容体12がその可動回転範囲を往復させられることで、収容体12の回転振れ角の駆動信号に対する変化が、
図11のグラフにおけるズレ幅Gとして上位システム21により把握される。したがって、上位システム21は、このズレ幅Gが示すヒステリシス特性に基づいて、光学機器11の回転振れ補正機能が正常であるか否かを判断することができる。
【0084】
また、本実施形態による光学機器11の検査装置10によれば、収容体12の回転が制御IC20aによって他の部品に干渉しない可動回転範囲内に制限されることで、収容体12とその周囲の他の部品との衝突に起因する故障を防止することができる。また、収容体12の回転が一定の可動回転範囲内に制限されることで、必要以上の回転振れ角まで広範囲にわたって無駄に測定が行われるのが防止され、回転振れ補正特性の測定時間の短縮化を図ることができる。
【0085】
また、本実施形態による光学機器11の検査装置10によれば、収容体12を1deg.だけ揺動させるときの動作感度と、収容体12を6deg.だけ揺動させるときの動作感度との比を上位システム21が算出することで、収容体12の動作感度について、その直線性を評価することができる。上位システム21は、収容体12の動作感度の直線性に基づいて、すなわち、基準角となる0deg.から6deg.にわたる可動回転範囲において収容体12の動作感度が一定に保たれているか否かに基づいて、光学機器11の回転振れ補正機能が正常であるか否かを判断することができる。
【0086】
また、本実施形態による光学機器11の検査装置10によれば、大きさの異なる2つの発光点37,38をサンプル体として撮影することで、2つの発光点37,38間を結ぶ直線39からサンプル体像の傾きを容易に把握することができる。この際、2つの各発光点37,38の大きさが異なるため、各発光点37,38を明確に区別して認識でき、各発光点37,38間を結んで得られる直線39の傾きの変化を誤ることなく確実に検出することができる。
【0087】
また、本実施形態による光学機器11の検査装置10によれば、制御IC20aの制御により、固定された発光点32が写った画像31をカメラ13aによって
図6(a)に示すように撮影しながら、揺動アクチュエータ13cによって可動モジュール13を動かすことで、複数の発光点32の画像31が
図6(b)に示すように得られる。そして、これら複数の発光点32の画像31から、発光点32の軌跡を得ることができる。この発光点32の軌跡は、可動モジュール13の動きに応じて描かれる。したがって、この発光点32の軌跡に基づいて、ピッチ方向およびヨー方向の被写体像の像振れを補正する際における可動モジュール13の動きの特性を知ることができ、さらに、可動モジュール13のこの動特性から、光学機器11のピッチ方向およびヨー方向の振れ補正特性を上位システム21によって評価することが可能になる。
【0088】
したがって、カメラ13aの光軸L周りの被写体像の像振れを補正する際における回転アクチュエータ12cの駆動特性と共に、カメラ12の光軸に直交するX方向およびY方向の各周りに生じる被写体像の像振れを補正する際における揺動アクチュエータ13cの駆動特性を知ることができる。このため、これらの駆動特性から、光学機器11のロール方向の回転振れ補正特性に加えて、ピッチ方向およびヨー方向の揺動振れ補正特性を上位システム21によって評価することが可能になる。
【0089】
また、本実施形態による光学機器11の検査装置10によれば、光学機器11の製品に搭載されているカメラ13aや揺動アクチュエータ13cといった構成要素を用いて、その揺動振れ補正特性を評価することができ、レーザーオートコリメータ6やゴニオステージ8を用いた従来の高価な検査装置5を使用する必要は無くなる。よって、レーザーオートコリメータ6を使用するために、製品自体を加工して製品の表面に鏡面を形成したり、鏡面を測定用部品として製品に搭載した上で測定を行うことなく、光学機器11の揺動振れ補正特性を評価することができる。また、ゴニオステージ8を使用するために必要になる、光学機器11の可動部角度特性の測定方向とゴニオステージ8の傾斜方向を連動させる処置も不要になり、制御IC20aの揺動アクチュエータ13c駆動用レジスタに設定する値を書き換えるだけで、測定方向の変更を簡単に行えるようになる。
【0090】
また、本実施形態による光学機器11の検査装置10によれば、揺動アクチュエータ13cによって可動モジュール13が揺動して振れた振れ角を上位システム21によって発光点32の軌跡に基づいて算出することで、可動モジュール13を動かす揺動アクチュエータ13cに対する駆動信号と、この駆動信号による可動モジュール13の振れ角との関係を可動部角度特性として測定することができる。そして、この可動部角度特性に基づき、測定した光学機器11の揺動振れ補正機能が正常であるか否かを判断することができる。
【0091】
また、本実施形態による光学機器11の検査装置10によれば、制御IC20aの揺動アクチュエータ13cに対する制御により可動モジュール13がY軸方向およびX軸方向の各可動範囲を往復させられることで、可動モジュール13の振れ角の駆動信号に対する変化が、
図9のグラフにおけるズレ幅Gとして上位システム21に把握される。したがって、上位システム21は、このズレ幅Gが示すヒステリシス特性に基づいて、光学機器11の振れ補正機能が正常であるか否かを判断することができる。
【0092】
また、本実施形態による光学機器11の検査装置10によれば、可動モジュール13の、Y軸方向に直交する意図しないX軸方向における振れ角の駆動信号に対するヒステリシス特性が、
図9のグラフにおけるクロストークHとして上位システム21に把握される。したがって、上位システム21は、このヒステリシス特性に基づいて、Y軸方向に直交する意図しないX軸方向における可動モジュール13の振れ角、および、X軸方向に直交する意図しないY軸方向における可動モジュール13の振れ角を評価して、光学機器11の振れ補正機能が正常であるか否かを判断することができる。
【0093】
また、本実施形態による光学機器11の検査装置10によれば、可動モジュール13のY軸方向およびX軸方向における揺動が制御IC20aによって他の部品に干渉しない可動範囲内に制限されることで、可動モジュール13とその周囲の他の部品との衝突に起因する故障を防止することができる。また、可動モジュール13の揺動が一定の可動範囲内に制限されることで、必要以上の振れ角まで広範囲にわたって無駄に測定が行われるのが防止され、揺動振れ補正特性の測定時間の短縮化を図ることができる。
【0094】
また、本実施形態による光学機器11の検査装置10によれば、可動モジュール13を1deg.だけ揺動させるときの動作感度と、可動モジュール13を6deg.だけ揺動させるときの動作感度との比を上位システム21が算出することで、可動モジュール13の動作感度について、その直線性を評価することができる。上位システム21は、可動モジュール13の動作感度の直線性に基づいて、すなわち、基準角となる0deg.から6deg.にわたる可動範囲において可動モジュール13の動作感度が一定に保たれているか否かに基づいて、光学機器11の揺動振れ補正機能が正常であるか否かを判断することができる。
【0095】
また、本実施形態による光学機器11の検査装置10は、カメラ13aが可動モジュール13内に収容された完成品状態の光学機器11に対して、振れ補正特性を評価する。このため、カメラ13aが可動モジュール13内に収容された完成品状態の振れ補正機能付き光学機器11個々の振れ補正特性を、評価することができる。
【0096】
また、本実施形態による光学機器11の検査装置10は、カメラ13aが可動モジュール13内に収容されていない半完成品状態の振れ補正機能付き光学機器11に対しては、可動モジュール13内にカメラ13aのダミーをセットして揺動振れ補正特性を評価する。このため、カメラ13aが可動モジュール13内に後で収容されるタイプの、半完成品状態の振れ補正機能付き光学機器11に対しても、可動モジュール13内に測定用としてカメラ13aのダミーをセットすることで、その揺動振れ補正特性を評価することができる。
【0097】
(変形例)
なお、上記の実施形態においては、被写体像の光軸L周りに生じる像振れを矯正することができる矯正体を、カメラ13aの撮像素子35を含む収容体12とした場合について、説明した。しかし、矯正体は収容体12に限定されることはなく、例えば、撮像素子35を含む可動モジュール13や、撮像素子35そのものなどを矯正体とし、これらを光軸Lを中心に回転することで、被写体像の光軸L周りに生じる像振れを補正することもできる。
【0098】
また、上記の実施形態においては、ロール方向の振れ補正特性を評価する際に、サンプル体を発光点37,38とした場合について、説明した。しかし、筐体10aの天井に設ける穴29b,29cを使って形成する発光点37,38の代わりに、筐体10aの天井に設けるスリット等を使って形成する1本の輝線をサンプル体としてもよい。また、ピッチ方向およびヨー方向の振れ補正特性を評価する際に、サンプル体を点状の1つの発光点32とした場合について、説明した。しかし、このサンプル体も必要に応じて、直線や、十字線、特殊画像などに変更してもよい。また、上記の実施形態においては、筐体10aの天井に設ける穴29a,29b,29cを使って形成する発光点32,37,38をサンプル体としたが、穴29a,29b,29cの位置にそれらの大きさに応じた発光径のLED等で点光源をLED装置28に代えて設けて、サンプル体を形成するようにしてもよい。このような各サンプル体によっても、上記の実施形態と同様な作用効果が奏される。
【0099】
また、本実施形態による光学機器11の検査装置10においては、
図3(b)に示すように、収容体12の底部に形成される凸部12aおよびボールベアリング16から構成される回転支持機構は、カメラ13aの光軸Lがカメラ13aの結像側で固定体14と交わる箇所を支点50に、収容体12を回転自在に支持する。このため、収容体12の頭部が支点50を基点に円を描くことに起因して、カメラ13aの光軸Lの被写体側端部がすりこぎを擦るように首を振ることで、支点50を通るカメラ13aの光軸Lの被写体側端部にすりこぎ振れが起きる。
【0100】
本実施形態による光学機器11の検査装置10では、カメラ13aの光軸Lと一致する位置にある中央の穴29aから出射されて、
図13(a)に示すように画像51に撮影される発光点52をカメラ13aで撮影することで、カメラ13aの光軸Lのすりこぎ振れを上位システム21によって評価することができる。なお、カメラ13aの光軸Lのすりこぎ振れを評価する際には、揺動アクチュエータ13cを駆動させず、可動モジュール13が収容体12に対して揺動していない状態にさせられる。
【0101】
画像51は、制御IC20aの制御によってカメラ13aの光軸Lを回転軸として収容体12を矢印に示すように回転させることで、複数撮影される。上位システム21は、撮影される複数の各画像51における1つの発光点52が例えば同図(b)に示すように描く軌跡53に基づいて、支点50を通るカメラ13aの光軸Lの被写体側におけるすりこぎ振れを評価する。上位システム21は、認識した軌跡53が範囲54に収まっていれば、すりこぎ振れが許容範囲内にあると判定し、光学機器11の回転振れ補正機能が正常であると判断する。また、発光点52に代えて、カメラ13aの光軸L上にある1つの点光源をサンプル体として同様に撮影し、点光源像の軌跡を認識することによっても、光軸Lの被写体側におけるすりこぎ振れを評価することができる。
【0102】
また、上記のすりこぎ振れは、大きさの異なる両端の穴29b,29cから出射されて、
図14(a)に示すように画像36に撮影される発光点37,38を、収容体12を回転させてカメラ13aで複数回撮影することによっても、評価することができる。この場合、上位システム21は、複数の各画像36における2つの発光点37,38を結ぶ直線39の交点55が描く軌跡に基づいて、支点50を通るカメラ13aの光軸Lの被写体側におけるすりこぎ振れを評価する。上位システム21は、認識した軌跡が範囲56に収まっていれば、すりこぎ振れが許容範囲内にあると判定し、光学機器11の回転振れ補正機能が正常であると判断する。また、発光点37,38に代えて、1本の輝線をサンプル体として同様に撮影し、各輝線像の交点が描く軌跡を認識することによっても、光軸Lの被写体側におけるすりこぎ振れを評価することができる。
【0103】
また、上記のすりこぎ振れは、収容体12を回転させて
図14(b)に示すように画像36に撮影される、発光点37,38を結ぶ直線39上に有り、カメラ13aの光軸Lと一致する位置に位置する1点57が描く軌跡に基づいても、評価することができる。この場合、上位システム21は、認識した軌跡が範囲58に収まっていれば、すりこぎ振れが許容範囲内にあると判定し、光学機器11の回転振れ補正機能が正常であると判断する。また、直線39上の1点57に代えて、カメラ13aの光軸Lと一致する位置に位置する1本の輝線上の1点が描く軌跡を同様に認識することによっても、光軸Lの被写体側におけるすりこぎ振れを評価することができる。