(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
以下、本実施形態について、図面を参照しながら説明する。
【0012】
図1Aは中空平板形のセル10の横断面を示し、
図1Bは一部を破断したセルの斜視図である。なお、両図面において、セル10の各部材を一部拡大等して示している。また、
図2は、
図1に示すセル10の発電部を、一部抜き出して拡大した断面図である。なお、第1電極層を空気極層とし、第2電極層を燃料極層として説明する。
【0013】
セル10は、全体的に見て楕円柱状の導電性支持基板3を備えている。導電性支持基板3の内部には、所定の間隔で複数の燃料ガス流路5が長手方向に形成されており、セル10は、この導電性支持基板3上に各種の部材が設けられた構造を有している。
【0014】
導電性支持基板3は、
図1Aに示されている形状から理解されるように、平坦部nと、平坦部nの両端の弧状部mとからなっている。平坦部nの両面は互いにほぼ平行であり、平坦部nの一方の表面(下面)と両側の弧状部mを覆うように燃料極層7が設けられており、さらに、この燃料極層7を覆うように、緻密質な固体電解質層9が積層されている。また、固体電解質層9の上には、中間層4を介して、燃料極層7と対面するように空気極層1が積層されている。また、燃料極層7および固体電解質層9が積層されていない平坦部nの他方の表面には、インターコネクタ2が設けられている。
図1Aおよび
図1Bから明らかな通り、燃料極層7および固体電解質層9は、両端の弧状部mを経由してインターコネクタ2の両サイドにまで延びており、導電性支持基板3の表面が外部に露出しないように構成されている。
【0015】
ここで、セル10は、燃料極層7の空気極層1と対面(対向)している部分が燃料極として機能して発電する。即ち、空気極層1の外側に空気等の酸素含有ガスを流し、かつ導電性支持基板3内のガス通路5に燃料ガス(水素含有ガス)を流し、所定の作動温度まで加熱することにより発電する。そして、かかる発電によって生成した電流は、導電性支持基板3に取り付けられているインターコネクタ2を介して集電される。以下に、セル10を構成する各部材について順に説明する。
【0016】
導電性支持基板3は、燃料ガスを燃料極層7まで透過させるためにガス透過性であること、インターコネクタ2を介して集電を行うために導電性であることが要求される。それゆえ、例えば、鉄族金属成分と希土類元素酸化物とにより設けることができる。
【0017】
鉄族金属成分としては、鉄族金属単体、鉄族金属酸化物、鉄族金属の合金もしくは合金酸化物等が挙げられる。より詳細には、例えば、鉄族金属としてはFe、Ni(ニッケル)およびCoがある。本実施形態においては、何れも使用することができるが、安価であることおよび燃料ガス中で安定であることから、鉄族成分としてNiおよび/またはNiOを含有することができる。なお、複数の鉄族金属成分を含有することもできる。
【0018】
また、希土類元素酸化物とは、導電性支持基板3の熱膨張係数を固体電解質層9の熱膨張係数に近づけるために使用される。例えば、Y、Lu(ルテチウム)、Yb、Tm(ツリウム)、Er(エルビウム)、Ho(ホルミウム)、Dy(ジスプロシウム)、Gd、Sm、Pr(プラセオジム)からなる群より選択される少なくとも1種の元素を含む希土類元素酸化物が、上記鉄族成分との組合せで使用される。このような希土類元素酸化物の具体例としては、Y
2O
3、Lu
2O
3、Yb
2O
3、Tm
2O
3、Er
2O
3、Ho
2O
3、Dy
2O
3、Gd
2O
3、Sm
2O
3、Pr
2O
3を例示することができる。特に、鉄族金属の酸化物との固溶、反応が殆どなく、また、熱膨張係数が固体電解質層9と殆ど同程度であり、かつ安価であるという点から、Y
2O
3、Yb
2O
3を用いることができる。
【0019】
また、導電性支持基板3の良好な導電率を維持し、かつ熱膨張係数を固体電解質層9と近似させるという点で、焼成−還元後における体積比率が、鉄族金属成分:希土類元素酸化物(例えば、Ni:Y
2O
3)が、体積比で35:65〜65:35(例えば、鉄族金属成分/(鉄族金属成分+Y)がモル比で65〜86モル%)の範囲とすることができる。なお、導電性支持基板3中には、要求される特性が損なわれない限りの範囲で、他の金属成分や酸化物成分を含有していてもよい。
【0020】
また、導電性支持基板3は、燃料ガス透過性を有していることが必要であるため、通常、開気孔率が20%以上、特に25〜50%の範囲とすることができる。また、導電性支持基板3の導電率は、50S/cm以上、さらには300S/cm以上、特にさらには440S/cm以上とすることがよい。
【0021】
図1に示す中空平板型のセル10において、導電性支持基板3の平坦部nの長さ(導電性支持基板3の幅方向の長さ)を15〜35mm、弧状部mの長さ(弧の長さ)を2〜8mmとした場合、導電性支持基板3の厚み(平坦部nの両面間の厚み)は1.5〜5mmとすることができる。
【0022】
燃料極層7は、電極反応を生じさせるものであり、それ自体公知の多孔質の導電性セラミックスにより設けることができる。例えば、希土類元素(Zrを除く)が固溶したZrO
2または希土類元素(Ceを除く)が固溶したCeO
2と、Niおよび/またはNiOとから設けられる。
【0023】
燃料極層7中の希土類元素(Zrを除く)が固溶したZrO
2または希土類元素(Ceを除く)が固溶したCeO
2の含有量と、NiあるいはNiOとの含有量は、焼成−還元後における体積比率が、Ni:希土類元素(Zrを除く)が固溶したZrO
2(Ni:YSZ)または希土類元素(Ceを除く)が固溶したCeO
2が、体積比で35:65〜65:35の範囲とすることができる。さらに、この燃料極層7の開気孔率は、15%以上、特に20〜40%の範囲とすることができ、その厚みは、1〜30μmとすることができる。例えば、燃料極層7の厚みを上記範囲とすることで、発電性能を高めることができ、また厚みを上記範囲とすることで、固体電解質層9と燃料極層7との間の熱膨張差による剥離等を抑制することができる。
【0024】
また、
図1Aおよび
図1Bの例では、燃料極層7は、インターコネクタ2の両側面にまで延びているが、空気極層1に対面する位置に存在して燃料極層7がもうけられていればよい。例えば空気極層1が設けられている側の平坦部nにのみ燃料極層7が設けられていてもよい。また、インターコネクタ2は、固体電解質層9が設けられていない側の導電性支持基板3の平坦部分n上に直接設けることもでき、この場合にはインターコネクタ2と導電性支持基板3との間の電位降下を抑制できる。
【0025】
燃料極層7上に設けられている固体電解質層9は、3〜15モル%のY(イットリウム)、Sc(スカンジウム)、Yb(イッテルビウム)等の希土類元素を含有した部分安定化あるいは安定化ZrO
2からなる緻密質なセラミックスを用いることができる。また、希土類元素としては、安価であるという点からYを用いることができる。さらに、固体電解質層9は、ガス透過を防止するという点から、相対密度(アルキメデス法による)が93%以上、特に95%以上の緻密質とすることができ、かつその厚みが3〜50μmとすることができる。
【0026】
空気極層1は、いわゆるABO
3型のペロブスカイト型複合酸化物からなる導電性セラミックスにより設けることができる。かかるペロブスカイト型複合酸化物としては、遷移金属ペロブスカイト型酸化物、特にAサイトにSrとLa(ランタン)が共存するLaMnO
3系酸化物、LaFeO
3系酸化物、LaCoO
3系酸化物の少なくとも1種を用いることができる。特に、600〜1000℃程度の作動温度での電気伝導性が高いという点からLaCoO
3系酸化物を用いてもよい。なお、上記AサイトにSrとLaが共存するペロブスカイト型複合酸化物においては、Bサイトに、CoとともにFe(鉄)やMn(マンガン)が存在しても良い。
【0027】
また、空気極層1はガス透過性を有する必要があり空気極層1となる導電性セラミックス(ペロブスカイト型酸化物)は、開気孔率が20%以上、特に30〜50%の範囲とすることができる。さらに、空気極層1の厚みは、集電性という点から30〜100μmとすることができる。
【0028】
インターコネクタ2は、導電性セラミックスにより設けることができるが、燃料ガス(水素ガス)および酸素含有ガス(空気)と接触するため、耐還元性、耐酸化性を有していることが必要である。このため、耐還元性、耐酸化性を有する導電性セラミックスとしては、一般に、ランタンクロマイト系のペロブスカイト型複合酸化物(LaCrO
3系酸化物)が使用される。また、導電性支持基板3の内部を通る燃料ガスおよび導電性支持基板3の外部を通る酸素含有ガスのリークを防止するため、かかる導電性セラミックスは緻密質でなければならず、例えば93%以上、特に95%以上の相対密度を有している。
【0029】
また、インターコネクタ2の厚みは、ガスのリーク防止と電気抵抗が大きくなりすぎないという点から、3〜200μmとすることができる。この範囲の厚みとすることで、ガスのリークが生じ難く、また電気抵抗が高くなりすぎないため、集電機能を高めることができる。
【0030】
なお、インターコネクタ2と導電性支持基板3との間に、インターコネクタ2と導電性支持基板3との間の熱膨張係数差を軽減するために、燃料極層7と類似する組成の密着層8を形成しても良い。
図1Aおよび
図1Bでは、インターコネクタ2と導電性支持基板3との間に、燃料極層7と類似する組成の密着層8を設けた状態を示している。
【0031】
また、インターコネクタ2の外面(上面)には、P型半導体層6を設けることができる。集電部材を、P型半導体層6を介してインターコネクタ2に接続させることにより、両者の接触がオーム接触となり、電位降下を少なくでき、集電性能の低下を有効に回避することが可能となる。
【0032】
このようなP型半導体層6としては、遷移金属ペロブスカイト型酸化物からなる層を例示することができる。具体的には、インターコネクタ2を構成するLaCrO
3系酸化物よりも電子伝導性が大きいもの、例えば、BサイトにMn、Fe、Coなどが存在するLaMnO
3系酸化物、LaFeO
3系酸化物、LaCoO
3系酸化物などの少なくとも一種からなるP型半導体セラミックスを使用することができる。このようなP型半導体6層の厚みは、30〜100μmの範囲とすることができる。
【0033】
図2に示すように、本実施形態のセル10においては、固体電解質層9の表面に、希土類元素(Ceを除く)が固溶したCeO
2を含んでなる中間層4を備える。ここで、中間層4は、固体電解質層9側に位置する第1の層4aと、第1の層4a上に設けられて空気極層1側に位置する第2の層4bとを備えている。第1の層4aは、第2の層4bよりも希土類元素の濃度が高い層である。
【0034】
図3は中間層4構成する希土類元素としてGdを用いているセルを示す。
図3Aは、本実施形態のセルの一例において、固体電解質層9と空気極層1との間に中間層4を設けたセルの断面SEM写真である。
図3Bは、
図3Aを希土類元素GdでEPMA法でマッピングして面分析した面分析写真である。EPMA法とは、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)を用いた分析手法である。
【0035】
図3Aに示すように、本実施形態のセル10は、固体電解質層9の表面に第1の層4aが設けられ、該第1の層4aの表面に第2の層4bが設けられ、該第2の層4bの表面に空気極層1が設けられている。また、
図3Bに示すように、中間層4のうち、固体電解質層9側に設けられた第1の層4aは、濃い色を呈している。このことは希土類元素であるGdが濃集して、第2の層4bよりもGdの濃度が高くなっていることを示す。つまり、中間層4は、固体電解質層9側に位置する第1の層4aと、該第1の層4a上に設けられて空気極層1側に位置する第2の層4bとから構成されており、第1の層4aは、第2の層4bよりも希土類元素のGdの濃度が高くなっている。
【0036】
従前に提案されている燃料電池セルでは、中間層中のCeが固体電解質層に拡散し、固体電解質層のZrと反応して、高抵抗の反応生成物が形成され、それにより長時間の発電における燃料電池セルの発電性能が劣化するおそれがあった。
【0037】
これに対し、本実施形態のセル10では、中間層4はその第2の層4bよりも希土類元素の濃度が高い第1の層4aを固体電解質層9側に有している。それにより、中間層4中のCeが固体電解質層9へ拡散することを抑制することができる。これにより、固体電界質層9の成分のZrと、中間層4の成分のCeとが反応することで電気抵抗の高い反応生成物(反応層)が生成されることが抑制でき、長時間の発電においてセル10の発電性能が劣化することを抑制することができる。
【0038】
中間層4(第1の層4a、第2の層4b)における希土類元素(Ceを除く)の濃度は、上記したEPMA法による定量分析により求めることができる。
【0039】
第1の層4aおよび第2の層4bからなる中間層4は、以下のような方法で作製することができる。
【0040】
中間層4のうち第1の層4aは、例えば、原料粉末に溶剤等を添加してスラリーを作製し、該スラリーを印刷塗布する印刷法、またはノズルより液滴を連続的に滴下させ塗布するインクジェット法等の方法、パルスレーザー蒸着(PLD:Pulesd Laser Deposition)や、イオンアシスト蒸着(IAD:Ion Assist Deposition)等の蒸着方法を用いて製膜することができる。
【0041】
また、中間層4のうち第2の層4bは、例えば、上記したようなスラリーを作製して印刷塗布する印刷法を用いて製膜することができる。
【0042】
第1の層4aおよび第2の層4bを印刷法を用いて作製する場合、その原料粉末は、例えば、(CeO
2)
1-x(REO
1.5)
x(REはSm、Y、Yb、Gdの少なくとも1種であり、xは0<x≦0.3を満足する数である。)で表される組成を有していることができる。
【0043】
特には、GdやSmが固溶したCeO
2とすることができ、その原料粉末は、(CeO
2)
1-x(SmO
1.5)
xまたは(CeO
2)
1-x(GdO
1.5)
x(xは0<x≦0.3を満足する数である)で表される組成を有することができる。またさらには、電気抵抗を低減するという点から、10〜20モル%のGdO
1.5またはSmO
1.5が固溶したCeO
2とすることができる。
【0044】
また、第1の層4aおよび第2の層4bがそれぞれCeO
2を含有することから、第1の層4aと第2の層4bとの接合強度を向上することができるとともに、第1の層4aおよび第2の層4bの熱膨脹係数を小さくすることができる。それにより、中間層4の熱膨張係数を、固体電解質層9の熱膨張係数に近づけることができるため、熱膨張差に起因するクラックの発生や剥離を抑制することができる。
【0045】
なお、第1の層4aおよび第2の層4bは、上述した原料粉末に、固体電解質層9のZrと中間層4中のCeとの反応生成物の形成を抑制する効果を高くするために、他の希土類元素の酸化物(例えば、Y
2O
3、Yb
2O
3等)を含有しても良い。
【0046】
また、中間層4において、第1の層4aを第2の層4bよりも緻密質とすることができる。
【0047】
それにより、緻密質な第1の層4aによりCeの拡散をより効果的に抑制することができ、固体電解質層9中において、固体電解質層9中のZrと中間層4中のCeとの反応による電気抵抗の高い反応層の生成を抑制することができる。
【0048】
また、中間層4の作製方法の一例として、固体電解質層9の表面に第1の層4aとなるスラリーを塗布し、固体電解質層9と第1の層4aとを同時焼成(同時焼結)にて設ける。次に、第1の層4aの表面に第2の層4bとなるスラリーを塗布し、その後、第2の層4bを焼き付けて焼結させる。すなわち、第2の層4bは、固体電解質層9と第1の層4aとが同時焼成にて設けた後、別工程にて設ける。このように、固体電解質層9と第1の層4aとが高温で同時焼成にて設けられることから、第1の層4aを緻密質とすることができるので、第1の層4aを第2の層4bよりも緻密質とすることができる。
【0049】
また、中間層4の他の作製方法として、第1の層4aを、上記したような蒸着方法を用いて固体電解質層9の表面に設け、次に第1の層4aの表面に第2の層4bとなるスラリーを塗布し、その後、第1の層4aおよび第2の層4bを同時に焼き付けて焼結させることにより、中間層4を固体電解質層9の表面に設けることもできる。蒸着方法を用いると緻密な膜を設けることができるので、第1の層4aを第2の層4bよりも緻密質とすることができる。
【0050】
第1の層4aが第2の層4bよりも緻密質であることを言い換えると、第2の層4bは第1の層4aよりも密度が低いということである。それゆえ、例えば、第2の層4bが設けられた後に、空気極層1を設ける場合においては、アンカー効果により、接合強度を向上することができる。それにより、第2の層4bから空気極層1が剥離することを抑制でき、長時間の発電におけるセル10の発電性能の劣化を抑制することができる。なお、第2の層4bと空気極層1との接触面積を増やすことができることから、反応抵抗を下げることもできる。
【0051】
第2の層4bの密度を低くすることにより、第2の層4bの剛性を下げることができ、空気極層1との熱膨張差により熱応力が生じた場合においても、熱応力を緩和することができ、第2の層4bから空気極層1が剥離することを抑制でき、長時間の発電におけるセル10の発電性能の劣化を抑制することができる。
【0052】
第1の層4aの希土類元素の濃度は、第2の層4bの希土類元素の濃度の1.05倍〜3倍とすることができる。
【0053】
第1の層4aにおける希土類元素の濃度が1.05倍未満であると、第1の層4aにおける希土類元素の濃度が低すぎて、中間層4中のCeが固体電解質層9に拡散することを有効に抑制し難くなり、セルの発電性能の劣化を抑制することが困難となる。また、第1の層4aの希土類元素の濃度が3倍より大きいと、第1の層4aにおける希土類元素の濃度が高すぎて、導電率が低下するおそれがあり、セルの発電性能が劣化するおそれがある。例えば、第1の層4aの希土類元素の濃度は、3mass%以上8mass%以下である。
【0054】
第1の層4aの厚みは、中間層4全体の厚みの1/50以上1/2以下とすることができる。
【0055】
第1の層4aの厚みが1/50未満であると、第1の層4aの厚みが薄すぎて、中間層4中のCeが固体電解質層9に拡散することを有効に抑制し難くなり、セルの発電性能の劣化を抑制することが困難となる。また、第1の層4aの厚みが1/2より大きいと、第1の層4aの厚みが厚すぎて、固体電解質層9と第1の層4aとの間の熱膨張差が大きくなり、セルの発電性能が劣化するおそれがある。
【0056】
例えば、中間層4全体の厚みは3μm〜5μmで、第1の層4aの厚みは0.06μm〜2.5μmである。
【0057】
以上、説明した中空平板型のセル10の製造方法について説明する。
【0058】
まず、Ni等の鉄族金属あるいはその酸化物粉末と、Y
2O
3などの希土類元素酸化物の粉末と、有機バインダーと、溶媒とを混合して坏土を調製し、この坏土を用いて押出成形により導電性支持基板成形体を作製し、これを乾燥する。なお、導電性支持基板成形体として、導電性支持基板成形体を900〜1000℃にて2〜6時間仮焼した仮焼体を用いてもよい。
【0059】
次に、例えば所定の調合組成に従いNiO、Y
2O
3が固溶したZrO
2(YSZ)の素原料を秤量、混合する。この後、混合した粉体に、有機バインダーおよび溶媒を混合して燃料極層用スラリーを調製する。
【0060】
次に、希土類元素(Zrを除く)が固溶したZrO
2粉末に、トルエン、バインダー、市販の分散剤等を加えてスラリー化したものをドクターブレード等の方法により、7〜75μmの厚さに成形してシート状の固体電解質層成形体を作製する。得られたシート状の固体電解質層成形体上に燃料極層用スラリーを塗布して燃料極層成形体を形成し、この燃料極層成形体側の面を導電性支持基板成形体に積層する。なお、燃料極層用スラリーを導電性支持基板成形体の所定位置に塗布して乾燥させた後、燃料極層用スラリーを塗布した固体電解質層成形体を導電性支持基板成形体に積層しても良い。
【0061】
次に、インターコネクタ用材料(例えば、LaCrO
3系酸化物粉末)、有機バインダーおよび溶媒を混合してスラリーを調製し、このスラリーをシート状に成形して、インターコネクタ用シートを作製し、固体電解質層成形体が形成されていない導電性支持基板成形体の露出面に積層し積層成形体を作製する。
【0063】
中間層4の作製方法の一例として、第1の層4a用のスラリーおよび第2の層4b用のスラリーを調合して塗布し焼成することで中間層4を固体電解質9の表面に形成する方法について説明する。
【0064】
例えば、GdO
1.5やSmO
1.5が固溶したCeO
2粉末を湿式解砕して、中間層成形体のうち第1の層成形体用の原料粉末および第2の層成形体用の原料粉末を調製する。
この際、第1の層成形体用の原料粉末は、第2の層成形体用の原料粉末よりも、希土類元素であるGdO
1.5やSmO
1.5の量が多くなるように調製する。湿式解砕は溶媒を用いて例えばボールミルにて10〜20時間解砕する。
【0065】
次に、凝集度が調整された第1の層成形体用の原料粉末に、溶媒としてトルエンを添加し、第1の層4a用スラリーを作製し、このスラリーを固体電解質層成形体上に塗布して第1の層成形体を作製する。なお、シート状の第1の層成形体を作製し、これを固体電解質層成形体上に積層してもよい。
【0066】
次に、上記の第1の層成形体を脱バインダー処理し、酸素含有雰囲気中、1500〜1600℃にて2〜6時間、焼成する。
【0067】
次に、凝集度が調整された上記の第2の層成形体用の原料粉末に、溶媒としてトルエンを添加し、第2の層用スラリーを作製し、焼成によって形成された第1の層4aの表面に第2の層4b用スラリーを塗布して第2の層成形体を作製して焼成する。なお、第2の層成形体を焼成するにあたって、固体電解質層9と第1の層4aとの焼成温度より、100℃以上低いことが好ましく、例えば1100℃〜1400℃で行うことが好ましい。
【0068】
なお、第2の層4bを複数の層から設ける場合にあっては、第2の層4bを構成する各層を上記のように、原料粉末を調整し、原料粉末にトルエンを添加してスラリーを作製した後、塗布して順に積層し、それぞれの層ごとに焼成する等、作製方法を適宜調整して作製することができる。
【0069】
中間層4の他の作製方法として、第1の層4aを蒸着方法を用いて形成し、第2の層4bをスラリーを調合して塗布し焼成することによって形成することで、中間層4を固体電解質9の表面に形成する方法について説明する。
【0070】
上記した積層成形体を作製する工程までを経た後、この積層成形体を脱バインダー処理し、酸素含有雰囲気中、1500〜1600℃にて2〜6時間、焼成する。
【0071】
次いで、中間層4の第1の層4aとなるGdを含む膜を上記した蒸着方法を用いて、固体電界質層9の表面に複数層形成して製膜する。具体的には、真空蒸着中にイオン銃で、数100eV程度のガスイオン(Ar
+イオン、O
2-イオン)を基板に照射し、その運動エネルギーを用いて樹林状に成長する第1の層4aを壊し、圧縮することで緻密な膜を形成する。
【0072】
次に、第1の層4aとなるGdを含む複数の膜の表面に、中間層4の第2の層4bとなる第2の層用スラリーを塗布して第2の層成形体を作製する。具体的には、例えば、GdO
1.5やSmO
1.5が固溶したCeO
2粉末を800〜900℃にて2〜6時間、熱処理を行い、その後、湿式解砕して凝集度を5〜35に調整し、中間層4のうち第2の層成形体用の原料粉末を調製する。湿式解砕は溶媒を用いて例えばボールミルにて10〜20時間解砕することが望ましい。なお、第2の層をSmO
1.5が固溶したCeO
2粉末より形成する場合も同様である。
【0073】
凝集度が調整された第2の層成形体用の原料粉末に、溶媒としてトルエンを添加し、第2の層用スラリーを作製し、蒸着方法によって形成された第1の層4aの表面に第2の層用スラリーを塗布して第2の層成形体を作製する。
【0074】
その後、第2の層成形体を1100〜1400℃の温度で4〜6時間で焼き付けることにより、第1の層4aが緻密な単層の層となる。
【0075】
なお、第2の層4bを複数の層から形成する場合にあっては、第2の層4bを構成する各層を上記のように、原料粉末を調整し、原料粉末にトルエンを添加してスラリーを作製した後、塗布して順に積層し、それぞれの層ごとに焼成する等、作製方法を適宜調整して作製することができる。
【0076】
次に、空気極層用材料(例えば、LaCoO
3系酸化物粉末)、溶媒および増孔剤を含有するスラリーをディッピング等により第2の層4b上に塗布する。また、インターコネクタ2の所定の位置に、必要によりP型半導体層用材料(例えば、LaCoO
3系酸化物粉末)と溶媒を含むスラリーを、ディッピング等により塗布し、1000〜1300℃で、2〜6時間焼き付けることにより、
図1Aおよび
図1Bに示す構造の中空平板型のセル10を製造できる。なお、セル10は、その後、内部に水素ガスを流し、導電性支持基板3および燃料極層7の還元処理を行なう。その際、例えば750〜1000℃にて5〜20時間還元処理を行なうことができる。
【0077】
このようにして作製されたセル10は、中間層4が、固体電解質層9側に位置する第1の層4aと、該第1の層4a上に設けられて第1電極層(空気極層)1側に位置する第2の層4bとから構成されており、第1の層4aは、第2の層4bよりも希土類元素Gdの濃度が高い層とすることができる。
【0078】
また本実施形態のセル10においては、第1の層4を構成するGdが固溶したCeO
2粒子が、中間層4の厚み方向と直交する方向の長さ(長軸)/中間層4の厚み方向の長さ(短軸)が1.0より大きい扁平状の粒子(以下、扁平状粒子という場合がある。)を含んでいてもよい。言い換えれば、第1の層4は、アスペクト比が1.0より大きい粒子を含んでいてもよい。
【0079】
それにより、固体電解質層9に対して、第1の層4aの粒界面が接する割合を低減することができる。したがって、酸素イオンが伝導する際の抵抗を抑制することができ、第1の層4aのイオン導電率を向上させることができる。
【0080】
また第1の層4を構成する扁平状粒子は、断面を示す任意のSEM写真において、Gdが固溶したCeO
2粒子の個数に対して、少なくとも1%以上、さらには10%以上、よりさらには30%以上、特には70%以上とすることができる。それにより、より効率的に高抵抗の反応生成物が形成されることを抑制することができるほか、第1の層4aのイオン導電率を向上させることができる。
【0081】
なお扁平状粒子のアスペクト比は、1.2以上とすることができる。アスペクト比が1.2未満であると、第1の層4aのイオン導電率の向上効果が低減するおそれがある。なお第1の層4の製造工程を考慮すると、アスペクト比は5以下とすることができる。なお、本説明におけるアスペクト比とは、アスペクト比が1.0より大きい粒子の平均値とすることができる。
【0082】
図4は、本実施形態のセル10の複数個を集電部材(図示せず)を介して電気的に直列に接続して構成されるセルスタック13を備えてなるセルタック装置15を収納容器12内に収納してなるモジュール11の一例を示す外観斜視図である。
【0083】
なお、セル10にて使用する燃料ガスを得るために、天然ガスや灯油等の原燃料を改質して燃料ガスを生成するための改質器16をセルスタック13の上方に配置している。そして、改質器16で生成された燃料ガスは、ガス流通管17を介してマニホールド14に供給され、マニホールド14を介してセル10の内部に設けられた燃料ガス流路5に供給される。
【0084】
このようなセルスタック13においては、低温時での発電性能が向上したセル10の複数個を電気的に直列に接続してなることから、低温時での発電性能の向上したセルスタック13とすることができる。
【0085】
なお、
図4においては、収納容器12の一部(前後壁)を取り外し、内部に収納されているセルスタック装置15および改質器16を後方に取り出した状態を示している。ここで、
図4に示したモジュール11においては、セルスタック装置15を、収納容器12内にスライドして収納することが可能である。なお、セルスタック装置15は、改質器16を含むものとしても良い。
【0086】
また収納容器12の内部に設けられた酸素含有ガス導入部材18は、
図4においてはマニホールド14に並置されたセルスタック13の間に配置されるとともに、酸素含有ガスが燃料ガスの流れに合わせて、セル10の側方を下端部から上端部に向けて流れるように、セル10の下端部に酸素含有ガスを供給する。そして、セル10の燃料ガス流路5より排出される燃料ガスと酸素含有ガスとをセル10の上端部側で燃焼させることにより、セル10の温度を上昇させることができ、セルスタック装置15の起動を早めることができる。また、セル10の上端部側にて、セル10の燃料ガス流路5から排出される燃料ガスと酸素含有ガスとを燃焼させることにより、セル10(セルスタック13)の上方に配置された改質器16を温めることができる。それにより、改質器16で効率よく改質反応を行うことができる。
【0087】
さらに、本実施形態のモジュール11においても、低温時での発電性能が向上したセル10を用いて構成されるセルスタック13を備えてなるセルスタック装置15を収納容器12内に収納してなることから、低温時での発電性能の向上したモジュール11とすることができる。
【0088】
図5は、外装ケース内に
図4で示したモジュール11と、セルスタック13(セルスタック装置15)を動作させるための補機(図示せず)とを収納してなる本実施形態の燃料電池装置の一例を示す分解斜視図である。なお、
図5においては一部構成を省略して示している。
【0089】
図5に示すモジュール収納装置19は、支柱20と外装板21から構成される外装ケース内を仕切板22により上下に区画し、その上方側を上述したモジュール11を収納するモジュール収納室23とし、下方側をモジュール11を動作させるための補機類を収納する補機収納室24として構成されている。なお、補機収納室24に収納する補機類としては、モジュール11に水を供給するための水供給装置、燃料ガス、空気を供給するための供給装置等があるが、これらの補機類は省略して示している。
【0090】
また、仕切板22には、補機収納室24の空気をモジュール収納室23側に流すための空気流通口25が設けられており、モジュール収納室23を構成する外装板21の一部に、モジュール収納室23内の空気を排気するための排気口26が設けられている。
【0091】
このようなモジュール収納装置19においては、上述したように、低温時での発電性能が向上したモジュール11をモジュール収納室23に収納して構成されることにより、低温時での発電性能が向上したモジュール収納装置19とすることができる。
【0092】
以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
【0093】
例えば、上記において、本実施形態のセル10として導電性支持基板3を有する中空平板型の燃料電池セルを用いて説明したが、導電性支持基板3を有さない平板型のセルとすることや、円筒型のセルとすることもできる。また、例えば、上記形態ではいわゆる縦縞型と呼ばれるセルを用いて説明したが、一般に横縞型と呼ばれる複数の発電素子部を支持基板上に設けてなる横縞型のセルを用いることもできる。また、各セルの構成にあわせて、導電性支持基板3上に、空気極層1、中間層4、固体電解質層9、燃料極層7をこの順に積層したセルとすることもできる。
【実施例】
【0094】
(実施例1)
まず、平均粒径0.5μmのNiO粉末と、平均粒径2.0μmのY
2O
3粉末を混合し、有機バインダーと溶媒にて作製した坏土を押出成形法にて成形し、乾燥、脱脂して導電性の支持体成形体を作製した。支持体成形体は、還元後における体積比率が、NiOが48体積%、Y
2O
3が52体積%であった。
【0095】
次に、8mol%のY
2O
3が固溶したマイクロトラック法による粒径が0.8μmのZrO
2粉末に、バインダー粉末と溶媒とを混合して得られたスラリーを用いて、ドクターブレード法にて固体電解質層用シートを作製した。
【0096】
次に平均粒径0.5μmのNiO粉末とY
2O
3が固溶したZrO
2粉末と有機バインダーと溶媒とを混合した燃料極層用スラリーを作製し、固体電解質層用シート上にスクリーン印刷法にて塗布し乾燥して燃料極層成形体を形成した。
【0097】
固体電解質層用シートに燃料極層成形体を形成したシート状の積層成形体を、その燃料極層成形体側の面を内側にして支持体成形体の所定位置に積層した。
【0098】
続いて、上記のような成形体を積層した積層成形体を1000℃にて3時間仮焼処理して、仮焼体を作製した。
【0099】
続いて、平均粒径0.7μmのLa(Mg
0.3Cr
0.7)
0.96O
3と、有機バインダーと溶媒とを混合したインターコネクタ層用スラリーを作製した。調整したインターコネクタ層用スラリーを、支持体の燃料極層(および固体電解質層)が形成されていない部位(支持体が露出した部位)に、固体電解質の仮焼体の両端部を除いた中央部に塗布した。
【0100】
次に、中間層を形成した。
【0101】
まず、平均粒径0.5μmのNiO粉末と、平均粒径0.9μmのY
2O
3粉末を焼成−還元後における体積比率が、Niが48体積%、Y
2O
3が52体積%になるように混合し、有機バインダーと溶媒にて作製した坏土を押出成形法にて成形し、乾燥、脱脂して導電性支持基板成形体を作製した。
【0102】
次に、平均粒径0.5μmのNiO粉末とY
2O
3が固溶したZrO
2粉末と有機バインダーと溶媒とを混合した燃料極層用スラリーを作製し、導電性支持基板成形体上に、スクリーン印刷法にて塗布、乾燥して、燃料極層用のコーティング層を形成した。次に、8モル%のイットリア(Y
2O
3)が固溶したマイクロトラック法による粒径が0.8μmのZrO
2粉末(固体電解質層原料粉末)と有機バインダーと溶媒とを混合して得られたスラリーを用いて、ドクターブレード法にて厚み30μmの固体電解質層用シートを作製した。この固体電解質層用シートを、燃料極層用のコーティング層上に貼り付け、乾燥し積層成形体を作製した。
【0103】
次に、CeO
2を、溶媒としてイソプロピルアルコール(IPA)を用いて振動ミル又はボールミルにて解砕し、第1の層成形体用の原料粉末を得た。また、CeO
2を85モル%、他の希土類元素の酸化物(GdO
1.5)を15モル%含む複合酸化物を、溶媒としてイソプロピルアルコール(IPA)を用いて振動ミル又はボールミルにて解砕し、900℃にて4時間仮焼を行い、再度ボールミルにて解砕処理し、凝集度を調整して、第1の層成形体原料粉末を得た。
【0104】
続いて、各第1の層成形体用の原料粉末にアクリル系バインダーとトルエンとを添加し、混合して作製した第1の層用スラリーを、得られた積層仮焼体の固体電解質層仮焼体または積層成形体の固体電解質層成形体上に、スクリーン印刷法にて塗布し、第1の層成形体を作製した。
【0105】
次に、第1の層成形体を、大気中1500℃にて3時間焼成した。
【0106】
次に、CeO
2を90モル%、他の希土類元素の酸化物(GdO
1.5)を10モル%含む複合酸化物を、溶媒としてイソプロピルアルコール(IPA)を用いて振動ミル又はボールミルにて解砕し、900℃にて4時間仮焼を行い、再度ボールミルにて解砕処理し、凝集度を調整し、第2の層成形体用の原料粉末を得た。この第2の層成形体用の原料粉末にアクリル系バインダーとトルエンとを添加し、混合して作製した第2の層用スラリーを、焼成して形成された第1の層の表面にスクリーン印刷法にて塗布して第2の層成形体膜を形成し、1300℃にて5時間焼成することにより、固体電解質層の表面に第1の層および第2の層からなる中間層を形成した。
【0107】
次に、空気極層となる空気極層用材料(例えば、LaCoO
3系酸化物粉末)、溶媒および増孔剤を含有するスラリーをディッピング等により中間層上に塗布する。また、空気極層の反対側にインターコネクタを形成し、該インターコネクタの表面にP型半導体層となるP型半導体層用材料(例えば、LaCoO
3系酸化物粉末)と溶媒を含むスラリーを、ディッピング等により塗布し、1200℃にて4時間焼成することにより、セルを作製した。
(実施例2)
実施例1に示した方法と同じ方法にて作製された積層成形体を準備した。
【0108】
次に、中間層の第1の層となるGdを含む膜を上記した蒸着方法(IAD法)を用いて、固体電界質層の表面に複数層形成して製膜した。具体的には、真空蒸着中にイオン銃で、数100ev程度のガスイオン(Ar
+イオン、O
2-イオン)を基板に照射し、その運動エネルギーを用いて樹林状に成長する膜を壊して圧縮することで、緻密な膜の第1の層を形成した。
【0109】
次に、CeO
2を90モル%、他の希土類元素の酸化物(GdO
1.5)を10モル%含む複合酸化物を、溶媒としてイソプロピルアルコール(IPA)を用いて振動ミル又はボールミルにて解砕し、900℃にて4時間仮焼を行い、再度ボールミルにて解砕処理し、凝集度を調整し、第2の層成形体用の原料粉末を得た。この第2の層成形体用の原料粉末にアクリル系バインダーとトルエンとを添加し、混合して作製した第2の層用スラリーを、蒸着によって形成された第1の層の表面にスクリーン印刷法にて塗布して第2の層成形体膜を形成し、1300℃にて5時間焼成することにより、固体電解質層の表面に第1の層および第2の層からなる中間層を形成した。
【0110】
次に、空気極層となる空気極層用材料(例えば、LaCoO
3系酸化物粉末)、溶媒および増孔剤を含有するスラリーをディッピング等により中間層上に塗布する。また、空気極層の反対側にインターコネクタを形成し、該インターコネクタの表面にP型半導体層となるP型半導体層用材料(例えば、LaCoO
3系酸化物粉末)と溶媒を含むスラリーを、ディッピング等により塗布し、1200℃にて4時間焼成することにより、セルを作製した。
(実施例3)
実施例1に示した方法と同じ方法にてセルを作製した。その際、第1の層の厚みが中間層全体の厚みの1/60、1/50、1/10、1/2、2/3としたセルをそれぞれ1つずつ準備した。
(比較例)
比較例1として、実施例1に示した方法と同じ方法にてセルを作製した。その際、固体電解質層の表面に、第1の層を設けずに、第2の層を直接形成した。それ以外は実施例1と同様に作製した。
【0111】
比較例2として、実施例1に示した方法と同じ方法にてセルを作製した。その際、第1の層が第2の層よりもGd濃度が低くなるようにしたセルを作製し、さらに第1の層と第2の層とのGd濃度が同じになるようにしたセルを作製した。それ以外は実施例1と同様に作製した。
(評価方法)
実施例1のセル、実施例2のセル、実施例3のセルをそれぞれ5本用意し、試料No1〜5を実施例1とし、試料No6〜10を実施例2とし、試料No11〜15を実施例3とした。また、比較例1のセルを2本用意し、試料No16、17とした。さらに比較例2のセルを3本用意し、試料No18〜20とした。
【0112】
試料No1〜20のそれぞれのセルにおいて、空気極層およびP型半導体層にそれぞれ白金のリード線を取り付けた。その後、リード線を介してセルに所定の電流を流し、発生した電圧(セル電圧)を測定した。
【0113】
次に、試料No1〜20のそれぞれのセルにおいて、固体電解質層と空気極層との間に中間層が設けられた部位の断面を切り出した。その後、それら断面を、
図3Aに示すような断面SEM写真で撮影し、さらに、
図3Bに示すように、希土類元素GdをEPMA法でマッピングし面分析して、Gd濃度をEPMA法による定量分析により算出した。試料No11〜15については、これに加えて、断面SEM写真において、中間層全体の厚みおよび第1層の厚みを測定した。
【0114】
以下に結果を示す。
【0115】
表1において、中間層における第1の層および第2の層のそれぞれのGd濃度を示した。さらに、第1の層のGd濃度を第2の層のGd濃度で除した値をGd濃度の倍率として示した。また、中間層全体の厚みおよび第1の層の厚みのそれぞれを示した。さらに、第1の層の厚みを中間層全体の厚みで除した値を層厚みの比率として示した。
【0116】
また、試料No1〜20のそれぞれのセルにおいて、セル単体の電圧(セル電圧)を測定した結果を表1に示した。
【0117】
【表1】
【0118】
表1の結果を説明する。
【0119】
第2の層よりGd濃度が高い第1の層を固体電界質側に有する実施例の試料No1〜15は、第1の層を有さない比較例1の試料No16、17、および第2の層よりGd濃度が低い第1の層を固体電界質側に有する比較例2の試料No18、19、さらに第1の層と第2の層とにおいてGd濃度が同じである比較例2の試料No20に比べて、セル電圧が800mV以上と高くなっており、実施例の試料No1〜15において発電性能が向上していることが確認できた。
【0120】
また、実施例において、試料No2〜4、試料No7〜9、試料No12〜14は、第1の層のGd濃度が、第2の層のGd濃度の1.05倍〜3倍である。また、試料No1、6、11は、第1の層のGd濃度が、第2の層のGd濃度の1.05倍より小さくなっている。また、試料No5、10、15は、第1の層のGd濃度が、第2の層のGd濃度の3倍より大きくなっている。表1のセル電圧の結果より、これらの試料No2〜4、試料No7〜9、試料No12〜14は、試料No1、6、11および試料No5、10、15よりもセル電圧が830mV以上と高くなっており、発電性能が向上していることが確認できた。
【0121】
また、実施例において、試料No12〜14は、第1の層の厚みが、中間層全体の厚みの1/50以上1/2以下である。また、試料No11は、第1の層の厚みが、中間層全体の厚みの1/50より小さくなっている。また、試料No15は、第1の層の厚みが、中間層全体の厚みの1/2より大きくなっている。表1のセル電圧の結果より、これらの試料No12〜14は、試料No11、15よりもセル電圧が830mV以上と高くなっており、発電性能が向上していることが確認できた。