【実施例】
【0009】
図1は、本発明による実施例の面発光レーザの一部を示す概略断面図を示す。
図2は、
図1の点線部の断面構造を示す概略拡大図である。
【0010】
図1、
図2に示すように、面発光レーザ10は、たとえば、GaN(窒化ガリウム)から成る導電性の基板11上に順に形成された、導電性の第1反射器13と、n型半導体層15(第1半導体層)、量子井戸層(例えばInGaN/GaNの複数ペア)を含む活性層17、電子ブロック層18(第2半導体層)及びp型半導体のメサ状構造体19A(第3半導体層)から成る積層構造を有する。積層構造における第1反射器13並びにn型半導体層15、活性層17、電子ブロック層18及びp型半導体のメサ状構造体19Aからなる半導体構造層SMCは、GaN系半導体からエピタキシー成長法により構成されている。電子ブロック層18にはGaNよりもバンドギャップエネルギーが大きい材料、たとえばAlGaN等の窒化アルミニウムガリウム系半導体層を用いることができる。
【0011】
p型半導体のメサ状構造体19Aは電子ブロック層18上に突出するように形成されたp型半導体のメサ状構造体である。
【0012】
面発光レーザ10は、さらに、電子ブロック層18上にp型半導体のメサ状構造体19Aを包囲しつつ密着して開口縁部OP2を画定するように形成された絶縁膜20を有する。
【0013】
面発光レーザ10は、またさらに、絶縁膜20上においてp型半導体のメサ状構造体19Aを包囲して貫通開口部OP1を画定するように形成された絶縁層21を有する。
【0014】
面発光レーザ10は、また、半導体構造層SMCのp型半導体のメサ状構造体19Aと、絶縁膜20と、絶縁層21との上に順に形成された導電性の透明電極23と、第2反射器25と、を有している。
【0015】
[p型半導体のメサ状構造体]
図3は、本発明の実施例の垂直共振器面発光レーザの製造途中の構成の一部を説明する概略部分断面図である。なお、図において基板11と第1反射器13と省略して、形成された半導体構造層SMC上に絶縁層21が形成されるまでの工程を説明する。
【0016】
図3Aに示されるように、半導体構造層SMCは、p型半導体層19まで有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)等を用いて形成される。
【0017】
図3Bに示されるように、p型半導体層19をドライエッチングによって選択的に除去してp型半導体のメサ状構造体19Aを形成する。ここで、p型半導体のメサ状構造体19Aの側壁は徐々に薄くなるようにテーパー状断面形状を有するように形成されてもよい。後工程で成膜される透明電極の断線を防止するためである。
【0018】
その後、
図3Cに示されるように、アニール工程(たとえばO
2雰囲気、450℃)を実施して、AlGaN等の電子ブロック層18の露出した部分(p型半導体のメサ状構造体19Aの周囲)を酸化させ、Al酸化膜の絶縁膜20(Al
xO
yGa
zN
1-x-y-z)を電流狭窄層として形成する。絶縁膜20はAlGaN電子ブロック層18のAl成分由来の酸化物からなる絶縁膜である。
【0019】
その後、Al酸化膜の絶縁膜20上に絶縁層21のSiO
2を一様に形成して、メサ状構造体19Aとその一部周囲以外の絶縁層21上に所定のレジストパターンを設け、メサ状構造体19Aとその一部周囲の絶縁層21を除去する。そして
図3Dに示されるように、絶縁膜20上においてp型半導体のメサ状構造体19Aを包囲する貫通開口部OP1が形成される。
【0020】
以上の工程により、p型半導体のメサ状構造体19Aの直径が絶縁層21の貫通開口部OP1の直径より小となっても、Al酸化膜の絶縁膜20が電流狭窄層(開口縁部OP2)となるため電子ブロック層18における静電破壊を防ぐことができる。本構造により、p型半導体のメサ状構造体19A内だけで電流拡散を抑制しつつ、生産性の高いVCSEL素子を実現できる。
【0021】
図4は、面発光レーザ10における絶縁層21の貫通開口部OP1内の絶縁膜20の開口縁部OP2を説明するための第2反射器25の側から第2反射器25を省略して眺めた概略上面透視図である。p型半導体のメサ状構造体19Aは円錐台形状を有し、透明電極23と絶縁膜20の接触部が円環状である
開口縁部OP2の形状としては、
図4に示すように、ビーム中心までの距離を等距離とすることでガウシアンビームを得るために、直径が1〜15μm、好ましくは3〜10μmの円形であることが好ましい。これにより、活性層17に均一に電流を注入し且つ光ビームの均一な閉じ込めを可能とする。なお、開口縁部OP2の形状は、円形以外の楕円形、多角形等、円形に近似する形状であってもよい。
【0022】
図4に示すように、メサ状構造体19Aと絶縁膜20の開口縁部OP2との間の幅dだけ両者のアライメントの余裕を維持することができる。たとえばd=1〜2μmのとき、出射開口径(p型半導体のメサ状構造体19Aの直径)を8μmとすると、絶縁層21の貫通開口部OP1の直径を10〜12μmとすることができる。Al酸化膜の絶縁膜20のみでも電流狭窄は可能であるが、Al酸化膜の絶縁膜20は厚さ数nm程であるため広域にわたって安定的に形成することが難しく、Al酸化膜の絶縁膜20に加えSiO
2の絶縁層21(100nm厚程度)による2層構成の電流狭窄構造のほうが製造歩留りの低下を防止できるため好ましい。
【0023】
透明電極23は、絶縁層21の貫通開口部OP1を覆い、p型半導体のメサ状構造体19Aに接するように、絶縁膜20と絶縁層21とp型半導体のメサ状構造体19Aに亘って形成されている。絶縁膜20は、その開口縁部OP2(p型半導体のメサ状構造体19Aと絶縁膜20との境界)の外側でp型半導体のメサ状構造体19Aへの電流注入を阻害する。開口縁部OP2内部では透明電極23からp型半導体のメサ状構造体19Aを介して活性層17に電流を注入する。
【0024】
[電子ブロック層]
図5は、本実施例の垂直共振器面発光レーザのMQW活性層17、電子ブロック層18及びp型半導体のメサ状構造体19Aの部分における伝導帯のエネルギーバンド図である。
【0025】
活性層17からp型半導体のメサ状構造体19Aへの電子オーバーフローの抑制には、電子ブロック層18のAl組成を増大させ、バンドギャップエネルギーを増大させることが好ましい。よって、
図5に示すように、電子ブロック層18は、活性層17側からp型半導体のメサ状構造体19Aへ近づくにつれてAl組成が増大するようなAl組成傾斜CGを有する。Al酸化膜の絶縁膜20を形成する際は、露出されるp−GaN側の電子ブロック層18のAl組成が高いほうが好ましいからである。
【0026】
図6は、本実施例の垂直共振器面発光レーザの変形例のMQW活性層17、電子ブロック層18及びp型半導体のメサ状構造体19Aの部分における伝導帯のエネルギーバンド図である。
【0027】
電子注入効率の改善は、電子ブロック層18に多重量子障壁(MQB:Multiquantum Barrier)を用いることでも可能である。
図6に(AlGaN(4nm厚)/GaN(4nm厚))×2.5によるMQBを用いた電子ブロック層18付近の伝導帯のエネルギーバンド図を示す。本変形例で示すのはMQBである。AlGaNが薄すぎると、所望のAl組成が得られず、電子ブロック層18として機能しなくなるため注意が必要である。Al酸化膜の絶縁膜20を形成する際、
図6のようにMQBの最終層(p−GaN側のAlGaNバリアBRのAl組成を増大させておくことが好ましい。Al酸化膜の絶縁膜20を形成する際は、露出されるp−GaN側の電子ブロック層18のAl組成が高いほうが好ましいからである。
【0028】
[他の構成要素]
図1に示すように、電流を注入するP電極27Pは、p型半導体のメサ状構造体19Aの周囲において透明電極23と電気的に接続されるように形成されている。また、Pパッド電極29Pは、半導体構造層SMCを含む大きなメサ構造の周囲においてP電極27Pと電気的に、接続されるように絶縁性の第2反射器25を貫通するように形成され、透明電極23を、P電極27Pを介して外部に電気的に接続できるようにしてある。
【0029】
図1に示すように、N電極29Nは、基板11の裏面に形成されているが、図示しないが、Pパッド電極29P側のPパッド電極29Pの周囲においてと電気的に接続されるように、N電極29Nが絶縁性の第2反射器25を貫通するように形成され、n型半導体層15を外部に電気的に接続できるようにしてもよい。
【0030】
開口縁部OP2と活性層17を挟んで互いに対向する第1反射器13及び第2反射器25の部分は、共振器を構成している。共振器の間における、透明電極23の直下に形成された開口縁部OP2がレーザビームの出射口に対応する。レーザビームは、第1反射器13と第2反射器25のいずれか側から放射される。
【0031】
本実施例では、第1反射器13は、GaN系半導体の多層膜からなる分布ブラッグ反射器(DBR:Distributed Bragg Reflector)として形成されている。第1反射器13として、例えば、GaN/InAlNを40ペア積層して構成することができる。第2反射器25は、誘電体膜の多層からなる分布ブラッグ反射器として形成されている。第2反射器25と第1反射器13とが半導体構造層SMCを挟み、共振構造を画定する。第1反射器13及び第2反射器25は、それらの所望の導電性、絶縁性、反射率を得るために、屈折率が異なる2つの薄膜を交互に複数回積層する多層膜のペア数や、材料、膜厚等を適宜調整して構成される。絶縁性の反射器であれば、例えば、誘電体薄膜材料としては、金属、半金属等の酸化物や、AlN、AlGaN、GaN、BN、SiN等の窒化物がある。屈折率が異なる少なくとも2つの誘電体薄膜、例えば、SiO
2/Nb
2O
5、SiO
2/ZrO
2、SiO
2/AlN、又はAl
2O
3/Nb
2O
5のペアを周期的に積層することにより絶縁性の反射器を得ることができる。
【0032】
半導体構造層SMCは、第1反射器13上に順に形成された、n型半導体層15、量子井戸層を含む活性層17及びp型半導体のメサ状構造体19Aからなる。本実施例においては、第1反射器13及び半導体構造層SMCの各層は、Al
xIn
yGa
1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)の組成を有する。例えば、第1反射器13は、AlInNの組成を有する低屈折率半導体層及びGaNの組成を有する高屈折率半導体層の組(ペア)が交互に複数回積層された構造を有する。また、本実施例においては、活性層17は、InGaNの組成を有する井戸層(図示せず)及びGaNの組成を有する障壁層(図示せず)の組(ペア)が交互に積層された量子井戸構造を有する。また、n型半導体層13は、GaNの組成を有し、n型不純物としてSiを含む。p型半導体のメサ状構造体19Aは、GaNの組成を有し、Mg等のp型不純物を含む。これにより、n型半導体層13とp型半導体のメサ状構造体19Aは、互いに反対の導電型となる。また、発光波長が400〜450nmとなるように半導体構造層SMCを設計できる。
【0033】
また、第1反射器13は、有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)等を用いて形成されている。なお、基板11と第1反射器13との間にバッファ層(図示せず)が形成されていてもよい。
【0034】
絶縁層21の組成材料としては例えば、SiO
2、Ga
2O
3、Al
2O
3、ZrO
2等の酸化物、SiN、AlN及びAlGaN等の窒化物等が用いられる。好ましくは、SiO
2が絶縁層21に用いられる。絶縁層21の膜厚は、5〜1000nm、好ましくは、10〜300nmである。
【0035】
電導性の透明電極23の透光性の組成材料としては例えば、ITO(Indium Tin Oxide)、IZO(In-doped ZnO)、AZO(Al-doped ZnO)、GZO(Ga-doped ZnO)、ATO(Sb-doped SnO
2)、FTO(F-doped SnO
2)、NTO(Nb-doped TiO
2)、ZnO等が用いられる。好ましくは、ITOが透明電極23に用いられる。透明電極23の膜厚は、3〜100nm、また、好ましくは、20nm以下である。透明電極23は電子ビーム蒸着法や、スパッタ法等によって成膜できる。
【0036】
以上の本発明の面発光レーザによれば、横方向電流拡散の抑制による閾値電流の低減と発光部への電流注入の均一化による透明電極の劣化抑制とを達成でき、面発光レーザ自体の閾値電流(消費電力)が低減されるだけでなく、Al酸化膜の絶縁膜とSiO
2絶縁層との電流狭窄2層構造により、歩留りの改善面発光レーザの製造歩留まりが向上する。特に、面発光レーザのアレイ化で複数の面発光レーザの発光部間の閾値電流のバラつきの低減に効果がある。該面発光レーザは自動車前照灯や灯光器に有用である。
【0037】
なお、本発明の何れの実施例においても、半導体構造層SMCがGaN(窒化ガリウム)系半導体からなる場合について説明したが、結晶系はこれに限定されない。また、上記した実施例を適宜、改変及び組合せてもよい。
【0038】
また、実施例において第1反射器13は基板11上に形成された半導体であったが、これに限らず、基板11の半導体構造層SMCとは反対の面に形成してもよい。その場合、第2反射器同様に誘電体薄膜材料で設けてもよい。第1反射器13とともに半導体構造層SMCを挟み共振構造を画定していればよい。