(58)【調査した分野】(Int.Cl.,DB名)
前記制御部は、前記第1バイパス部上の前記第1貫通遮光膜に対応する位置に設けられた制御電極を制御して前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する、請求項1に記載の固体撮像素子。
前記制御部は、前記第1バイパス部上の前記第1貫通遮光膜に対応しない位置に設けられた制御電極を制御して前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する、請求項1に記載の固体撮像素子。
【発明を実施するための形態】
【0017】
以下、下記の順序に従って本技術を説明する。
(A)第1の実施形態:
(B)第2の実施形態:
(C)第3の実施形態:
(D)第4の実施形態:
(E)第5の実施形態:
(F)第6の実施形態:
(G)第7の実施形態:
【0018】
(A)第1の実施形態:
図1は、本実施形態に係る固体撮像素子100の概略構成を説明する図である。
【0019】
固体撮像素子100は、CMOS型固体撮像素子であり、画素アレイ部121、垂直駆動部122、カラム処理部123、水平駆動部125、出力部127、および駆動制御部124を備える。
【0020】
画素アレイ部121は、アレイ状に配置された複数の画素10を有しており、画素10は、画素10の行数に応じた複数の水平信号線HSLnを介して垂直駆動部122に接続され、画素10の列数に応じた複数の垂直信号線VSLmを介してカラム処理部123に接続されている。即ち、画素アレイ部121が有する複数の画素10は、水平信号線HSLnおよび垂直信号線VSLmが交差する点にそれぞれ配置されている。
【0021】
垂直駆動部122は、画素アレイ部121が有する複数の画素10の行ごとに、それぞれの画素10を駆動するための駆動信号(転送信号や、選択信号、リセット信号など)を、水平信号線HSLnを介して順次供給する。
【0022】
カラム処理部123は、垂直信号線VSLmを介して、それぞれの画素10から出力される画素信号に対してCDS(Correlated Double Sampling:相関2重サンプリング)処理を施すことで画素信号の信号レベルを抽出し、画素10の受光量に応じた画素データを取得する。
【0023】
水平駆動部125は、画素アレイ部121が有する複数の画素10の列ごとに、それぞれの画素10から取得された画素データをカラム処理部123から出力させるための駆動信号を、カラム処理部123に順次供給する。
【0024】
出力部127には、水平駆動部125の駆動信号に従ったタイミングでカラム処理部123から画素データが供給され、出力部127は、例えば、その画素データを増幅して、後段の画像処理回路に出力する。
【0025】
駆動制御部124は、固体撮像素子100の内部の各ブロックの駆動を制御する。例えば、駆動制御部124は、各ブロックの駆動周期に従ったクロック信号を生成して、それぞれのブロックに供給する。
【0026】
図2は、画素10の構成例を示す回路図である。
【0027】
図2に示すように、画素10は、PD11、第1の転送トランジスタ12、第2の転送トランジスタ13、電荷保持部14、フローティングディフュージョン(FD)15、増幅トランジスタ16、選択トランジスタ17、およびリセットトランジスタ18を備えて構成される。以下、第1の転送トランジスタ12、第2の転送トランジスタ13、電荷保持部14、増幅トランジスタ16、選択トランジスタ17、およびリセットトランジスタ18をまとめて画素トランジスタと記載する場合がある。
【0028】
PD11は、画素10に照射される光を受光して、その光の光量に応じた電荷を発生して蓄積する。
【0029】
第1の転送トランジスタ12は、垂直駆動部122から供給される転送信号に従って駆動し、第1の転送トランジスタ12がオンになると、PD11に蓄積されている電荷が電荷保持部14に転送される。
【0030】
第2の転送トランジスタ13は、垂直駆動部122から供給される転送信号に従って駆動し、第2の転送トランジスタ13がオンになると、電荷保持部14に蓄積されている電荷がFD15に転送される。
【0031】
電荷保持部14は、第1の転送トランジスタ12を介してPD11から転送される電荷を蓄積するキャパシタである。
【0032】
FD15は、第2の転送トランジスタ13と増幅トランジスタ16の制御電極としてのゲート電極との接続点に形成された所定の容量を有する浮遊拡散領域であり、第2の転送トランジスタ13を介して電荷保持部14から転送される電荷を蓄積する。
【0033】
増幅トランジスタ16は、電源VDDに接続されており、FD15に蓄積されている電荷に応じたレベルの画素信号を出力する。
【0034】
選択トランジスタ17は、垂直駆動部122から供給される選択信号に従って駆動し、選択トランジスタ17がオンになると、増幅トランジスタ16から出力される画素信号が選択トランジスタ17を介して垂直信号線VSLmに読み出し可能な状態となる。
【0035】
リセットトランジスタ18は、垂直駆動部122から供給されるリセット信号に従って駆動し、リセットトランジスタ18がオンになると、FD15に蓄積されている電荷が、リセットトランジスタ18を介して電源VDDに排出され、FD15がリセットされる。
【0036】
このように構成された画素10を有する固体撮像素子100では、グローバルシャッター方式が採用され、全ての画素10に対して同時に、PD11から電荷保持部14に電荷を転送することができ、全ての画素10の露光タイミングを同一にすることができる。これにより、画像に歪みが発生することを回避することができる。
【0037】
図3は、画素10の平面的な構成例を示す図、
図4は、
図3のA−A断面における画素10の断面的な構成例を示す図である。画素10は、裏面照射型の構成である。
【0038】
図3に示す画素10では、半導体基板20の裏面からの入射光を光電変換する光電変換部としてのPD11、PD11が生成する電荷を一時的に保持する電荷保持部14、およびFD15が平面的に配置されている。以下では、画素10において、半導体基板20のPD11が形成されている領域をPD領域、半導体基板20に電荷保持部14が形成されている領域を電荷保持領域と呼ぶ場合がある。
【0039】
画素10は、
図4の下側から順に、配線層21、半導体基板20、遮光層22、平坦化層23、カラーフィルタ層24、およびオンチップレンズ25が積層された構成である。なお、平坦化層23を設けず、半導体基板20や遮光層22の上に直接カラーフィルタ層24を積層形成してもよい。
【0040】
固体撮像素子100は、半導体基板20の配線層21を積層される表面20Fに対して反対側となる裏面20Rに対して入射光が照射される、いわゆる裏面照射型CMOSイメージセンサの構造である。
【0041】
配線層21は、半導体基板20のPD11の電荷読み出し等を行う複数の配線21aが層間絶縁膜21bに埋設されている。配線層21の下側には、例えば、基板支持材(不図示)が設けられる。
【0042】
配線層21には、半導体基板20に対して絶縁酸化膜(不図示)を介して、第1の転送トランジスタ12を構成するゲート電極32が配置されている。ゲート電極32に所定の電圧が印加されることにより、PD11に蓄積されている電荷が電荷保持部14へ転送される。
【0043】
半導体基板20には、PD11を構成するN型領域と、電荷保持部14を構成するN型領域とが形成されている。PD11を構成するN型領域と電荷保持部14を構成するN型領域は、半導体基板20の表面20F寄りの位置に形成されている。PD11および電荷保持部14の裏面側および電荷保持部14の表面側にはP型領域の表面ピニング層を設けてもよい。
【0044】
半導体基板20には、画素10と、隣接する他の画素10とを分離する画素間分離領域34が、画素10の外周を囲うように形成されている。
【0045】
遮光層22は、遮光性を有する材料により形成される裏面遮光膜35が、高誘電率材料膜36に埋め込まれた状態で形成されている。例えば、裏面遮光膜35は、タングステン(W)や、アルミ(Al)、銅(Cu)などの材料により形成され、図示しないGNDに接続されている。高誘電率材料膜36は、二酸化ケイ素(SiO
2)や、酸化ハフニウム(HfO
2)、五酸化タンタル(Ta
2O
5)、二酸化ジルコニウム(ZrO
2)などの材料により形成される。
【0046】
半導体基板20において、画素10のPD11と電荷保持部14との間に第1貫通遮光膜としての貫通遮光膜37が設けられている。貫通遮光膜37は、半導体基板20に形成した貫通孔の内面全体に高誘電率材料膜を形成し、その中に遮光性を有する材料を充填して形成される。高誘電率材料膜と遮光性を有する材料は、上述した裏面遮光膜35と同様である。貫通遮光膜37は、半導体基板20の表裏を貫通して形成され、PD11と電荷保持部14との間を仕切る構造である。貫通遮光膜37の表側の端部は、半導体基板20の厚さ方向において、電荷保持部14の表側端部と同程度又は電荷保持部14の表側端部よりも表側方向に長く形成されている。貫通遮光膜37を設けることにより、半導体基板20の裏面20R側からPD11への入射光が電荷保持部14へ斜め入射することがない。
【0047】
図3において、貫通遮光膜37を挟んでPD11の反対側には、少なくとも電荷保持部14の一部が位置しており、貫通遮光膜37の延びる方向においてPD11の形成範囲と電荷保持部14の形成範囲の少なくとも一部が重複している。この重複部分にバイパス部38を形成することで、PD11と電荷保持部14との接続長を可及的に短く形成することができる。
【0048】
半導体基板20において、画素10と隣接する他の画素との間の画素間分離領域34の中には貫通遮光膜39が設けられている。貫通遮光膜39の構造や材料は上述した貫通遮光膜37と同様である。貫通遮光膜39は、半導体基板20の表裏を貫通して形成され、画素10と他の画素の間を仕切っている。これにより、画素10のPD11へ半導体基板20の裏面20R側から入射した入射光が隣接する他の画素10へ斜め入射することがない。
【0049】
遮光層22には、電荷保持部14の裏面側を覆蓋する裏面遮光膜35が設けられている。裏面遮光膜35は、電荷保持部14を設けた部位の半導体基板20の裏面20R側において裏面20Rに沿って形成されており、裏面遮光膜35のPD11側の縁部は貫通遮光膜37の裏面側端部に連接され、裏面遮光膜35の他の縁部は貫通遮光膜39の裏面側端部に連接されている。すなわち、半導体基板20の表面20Fに面する側を除いて、電荷保持部14は、裏面遮光膜35と貫通遮光膜37、39とによって光学的に閉塞された状態である。なお、高誘電率材料膜は半導体基板20中に形成された貫通遮光膜37,39を薄く包み込むように設けられており、また裏面遮光膜35と半導体基板20の間にも高誘電率材料膜が設けられており、これらの高誘電率材料膜は貫通遮光膜37,39の外側を覆う高誘電率膜と連続的に形成されている。
【0050】
バイパス部38は、半導体基板20の表面20Fの外側においてPD11と電荷保持部14の間を接続する。バイパス部38は、N型不純物を添加した半導体材料で形成されており、貫通遮光膜37を設けた部位の半導体基板20の表面20Fを跨ぐように形成されている。バイパス部38を構成する半導体材料は、シリコンの他、SiGe、InGaAs等を用いることができる。すなわち、バイパス部38は、貫通遮光膜37、PD11及び電荷保持部14の形成範囲をそれぞれ含む位置・範囲で形成されている。バイパス部38は、ゲート電極32に接する表面に沿ってP型不純物が添加されたP型領域38b(
図5参照)を有し、このP型領域38bは、N型不純物が添加されたN型領域38a(
図5参照)とゲート電極32との間でチャネル領域として機能し、PD11から電荷保持部14へ電荷を転送する電荷転送路となる。
【0051】
図5は、A−A断面に沿うバイパス部38の形状の具体的な例を示す図である。
図5(a)に示す具体例では、バイパス部38は、半導体基板20の表面20Fと略直交する方向に延びる側面にテーパーが付いており、長辺を半導体基板20側に向けた断面台形状になっている。
図5(b)に示す具体例では、バイパス部38の基本的な形状は
図5(a)に示す具体例と同様であるが、バイパス部38の両側において半導体基板20の表面20Fに凹みが付いたレンチング形状となっている。
図5(c)に示す具体例では、バイパス部38の基本的な形状は
図5(a)に示す具体例と同様であるが、バイパス部38の断面台形の短辺側の角部が取れた形状となっている。これら具体例に示すように角部を鈍角とすると、電界の集中が回避され、転送効率が良好になる。
【0052】
半導体基板20の表面20Fの外側には、バイパス部38を介したPD11から電荷保持部14への電荷転送を制御する制御部としてのゲート電極32が形成されている。ゲート電極32は、ポリシリコンゲート、High−k絶縁膜を用いたメタルゲート等を採用できる。ゲート電極32は、バイパス部38の表側及び側面に沿って形成されており、貫通遮光膜37を跨ぐ位置及び形状で設けられている。ゲート電極32に所定の電圧が印加されることにより、PD11に蓄積されている電荷が電荷保持部14へ転送される。
【0053】
電荷保持部14に対応する半導体基板20の表面20Fには、メモリーゲート40が設けられている。メモリーゲート40に電圧を印加すると、電荷保持部14のポテンシャルが変化し、PD11から電荷保持部14への電荷転送効率が向上する。これにより、電荷転送時のノイズ、残像を抑制することが可能となる。
【0054】
以上のように構成した固体撮像素子100は、電荷保持部14への光の漏れ込みが抑制され、転送時のノイズ成分についても減少する事が可能であり、従来構造に対して、著しく良い特性を得る事ができる。
【0055】
次に、固体撮像素子100の製造方法の一例について説明する。
図6〜
図10は、固体撮像素子100の製造方法の一例に係る流れを示す図である。
【0056】
まず、半導体基板20の表面20Fのバイパス部38が設けられる部位の上にリソグラフィ技術でレジストRをパターニングし(
図6(a))、レジストRで覆われていない半導体基板20の表面20Fをドライエッチングで一様に掘削する(
図6(b))。掘削深さはバイパス部38に必要な厚みが確保できさえすればよい。具体的には、50〜300nmの範囲が例示される。半導体基板20の表面20Fの掘削終了後、レジストRは剥離除去される。これにより、半導体基板20の表面20Fに盛土状に残存させた突起上のバイパス部38が形成される。なお、上述した
図5(b)に示すトレンチング形状は、このドライエッチングを適用した場合に、加工条件次第で加工端が局所的に深くなることで形成される。なお、ドライエッチングのプラズマダメージは、加工後に1000℃以上の高温熱処理を行うことで回復させることができる。
【0057】
次に、バイパス部38、PD11、電荷保持部14に必要なイオン注入を行う(
図6(c))。バイパス部38、PD11、電荷保持部14が第1導電型(本実施形態ではN
+型)となる様にイオン注入を行う。また、図示はしないが、画素トランジスタについても必要なイオン注入を実施する。なお、電荷保持部14やPD11の形成領域に対応する半導体基板20の表面20F及び裏面20Rについては、イオン注入で第2導電型(本実施形態ではP
+型)のピニング層を形成して半導体基板20の表面20F及び裏面20Rにおいて電荷の湧き出しを抑制してもよい。
【0058】
次に、半導体基板20の表面20Fに絶縁酸化膜を積層し(不図示)、その上の所定の位置に画素トランジスタのゲート電極を形成し、その上に配線層21の複数の配線21a及び層間絶縁膜21bを順次に積層形成する(
図7(d))。その後、図示しないが、基板支持材(支持基板等)を配線層21の表面側に貼り合せ、全体を表裏反転し、半導体基板20の裏面20R側からPD11の裏側近くまで研磨・研削して半導体基板20を薄肉化してもよい。なお、基板支持材は、論理回路や記憶素子等を形成したものであってもよく、この場合、半導体基板20から基板支持材へ貫通する貫通電極を形成して配線層21の所定の配線21aと論理回路や記憶素子等とを電気的に接続する。
【0059】
次に、半導体基板20の裏面20Rの上に、リソグラフィ技術でレジストRをパターニングし(
図7(e))、ドライエッチングで半導体基板20を裏面20R側から表面20F側へ貫通する貫通孔Hを形成する(
図7(f))。貫通孔Hの形成後、レジストRは剥離除去する。その後、貫通孔Hの内側面H1及び半導体基板20の裏面20Rの平坦部20aに高誘電率材料を成膜する(
図8(g))。高誘電率材料は、例えば、酸化膜(SiO
2)、酸化ハフニウム(HfOx)、酸化タンタル(TaOx)、酸化ジルコニウム(ZrOx)の単膜、或いは、その積層膜を適用する事が可能である。その後、貫通孔Hの内部に金属材料を充填して貫通遮光膜37,39を形成するとともに、半導体基板20の裏面20Rの平坦部20aの上に金属材料を積層して裏面遮光膜35を形成する(
図8(h))。金属材料は、例えば、タングステン(W)、アルミニウム(Al)、銅(Cu)、チタン(Ti)、窒化チタン(TiN)、窒化タングステン(WN)の単膜、或いは、その積層膜を適用する事が可能である。
【0060】
次に、裏面遮光膜35の上に、リソグラフィ技術でレジストRをパターニングし、ドライエッチングで裏面遮光膜35の必要な個所を除去して開口を形成する(
図8(i))。本実施形態ではPD11のPD領域に対応する部位に開口を形成する。
【0061】
次に、裏面遮光膜35の凹凸を平坦化する平坦化層23を形成し、その上に、カラーフィルタ層24、オンチップレンズ25を順次に形成する((
図9(j)))。平坦化層23は、例えば、裏面遮光膜35の上に熱可塑性樹脂をスピンコート法で成膜した後、熱硬化処理を行うことで形成される。カラーフィルタ層24は、例えば、顔料や染料などの色材と感光性樹脂とを含む塗布液を、スピンコート法などのコーティング方法によって塗布して塗膜を形成し、その塗膜をリソグラフィ技術でパターン加工することにより形成される。オンチップレンズ25は、例えば、ポジ型のフォトレジスト膜をカラーフィルタ層24上に成膜後、加工することによって形成される。
【0062】
以上の工程により、グローバルシャッター機能を有する第1の実施形態に係る固体撮像素子100を作成することができる。
【0063】
なお、上述した製造方法では、バイパス部38をリソグラフィ技術とドライエッチングによって形成したが、バイパス部38はエピタキシャル気相成長法で形成することもできる。
図10(a)〜(c)は、バイパス部38をエピタキシャル気相成長法で形成する場合の製造方法を説明する図である。
【0064】
この場合、半導体基板20の表面20Fの上に絶縁膜Fを形成し、この絶縁膜Fのバイパス部38が設けられる部位が開口したレジストRをリソグラフィ技術でパターニングし、レジストRで覆われていない絶縁膜Fをドライエッチングで掘削除去して開口する(
図10(a))。絶縁膜Fは、例えば、SiO、SiNを用いる事が一般的であるが、エピタキシャル気相成長法による成膜時に選択性を確保できれば、限定される訳ではない。続いて、Wet処理や水素還元で半導体基板20の表面20F上の自然酸化膜を除去し、シリコン等の半導体材料をエピタキシャル成膜する(
図10(b))。Siエピタキシャル成膜は、例えばSi−H−Cl系ガスを用いて行い、H/Cl比率を調整する事により成長レートや形状をコントロールする事が可能である。上述した
図5(c)に示すファセット形状は、このエピタキシャル気相成長法を適用した場合に、加工条件次第で複数のSi面が現れ、ファセットが形成される。その後、絶縁膜Fを除去することで、半導体基板20の表面20Fの所定の位置にバイパス部38が形成された状態となる(
図10(c))。これにより、半導体基板20の表面20Fに選択エピタキシャル成長で盛土状に積層形成した突起部としてのバイパス部38が形成される。
【0065】
(B)第2の実施形態:
本実施形態に係る固体撮像素子200は、画素におけるPD、電荷保持部、バイパス部等の位置関係や形状が異なる点を除くと、上述した固体撮像素子100と同様の構成である。
【0066】
そこで、以下では主に、固体撮像素子200の画素210のPD211、電荷保持部214、バイパス部238等の位置関係や形状について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に2を付けた符号を示す。なお、PD211、電荷保持部214、バイパス部238等の基本的な機能は、PD11、電荷保持部14、バイパス部38等と同様である。
【0067】
図11は、画素210の平面的な構成例を示す図、
図12は、
図11のA−A断面における画素210の断面的な構成例を示す図である。
【0068】
図11において、第1の転送トランジスタ212のゲート電極232は、その全体が、貫通遮光膜237を挟んでPD211と同じ側に、PD211の形成と一部重複しつつPD211と隣り合う位置関係で設けられている。ゲート電極232は、PD211に隣接せず貫通遮光膜237に面する側の角部を一部切欠き状に凹ませた凹部232aを有する。このように、ゲート電極232はバイパス部238上の貫通遮光膜237に対応しない位置に設けられている。
【0069】
バイパス部238は、半導体基板220の表面220Fの外側において、貫通遮光膜237を跨ぐようにゲート電極232と電荷保持部214の間を接続するものであり、凹部232aの縁部を含み貫通遮光膜237を跨いで電荷保持部214側に延びる範囲に形成されている。
【0070】
電荷保持部214は、
図11において、貫通遮光膜237を挟んでゲート電極232の反対側に、少なくとも一部が位置しており、貫通遮光膜237の延びる方向においてゲート電極232の形成範囲と電荷保持部214の形成範囲の少なくとも一部が重複している。
【0071】
これにより、バイパス部238は、ゲート電極232下に形成されるチャネルを介して、PD211から電荷保持部214へ電荷を転送する電荷転送路となる。
【0072】
(C)第3の実施形態:
本実施形態に係る固体撮像素子300は、画素におけるゲート電極の形状が異なる点を除くと、上述した固体撮像素子100と同様の構成である。
【0073】
そこで、以下では主に固体撮像素子300の画素310のゲート電極332の形状について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に3を付けた符号を示す。なお、ゲート電極332の基本的な機能は、ゲート電極32と同様である。
【0074】
図13は、画素310の平面的な構成例を示す図、
図14は、
図13のA−A断面における画素310の断面的な構成例を示す図である。
【0075】
ゲート電極332は、ゲート電極32と同様、バイパス部338の表側及び側面に沿って形成されており、貫通遮光膜337を跨ぐ位置及び形状で設けられている。従って、ゲート電極332に所定の電圧が印加されることにより、PD311に蓄積されている電荷が電荷保持部314へ転送される。
【0076】
ゲート電極332は、貫通遮光膜337のPD311側の側面に沿って、半導体基板320の厚み方向に延設された貫入部332aを有する。この貫入部332aに接するバイパス部338やPD311の面を含む領域にもP型不純物を添加したP型領域が形成されている。従って、貫入部332aを設けることで、ゲート電極332への所定の電圧印加により形成されるチャネル範囲が拡大し、電荷転送効率が向上する。また、貫入部332aの形成するチャネルによって、PD311の深い位置の電荷を効率良く転送可能となる。
【0077】
貫入部332aは、ゲート電極332本体から平板状部材が延設された形状としてもよいし、ゲート電極332本体から複数の柱状部材が櫛歯状に延設された形状としてもよい。貫入部332aの長さは、PD311のポテンシャル設計に応じて適宜設定される。
【0078】
貫入部332aと半導体基板320の間にはゲート絶縁膜が設けられるため、光を透過しにくく、電荷保持部314への光学的ノイズ減少に寄与する。また、ゲート電極332の材料をメタル材料としたメタルゲートとすることで、PD311と電荷保持部314の間の遮光性を向上し、電荷保持部への光学的ノイズをより減少することも可能である。メタル電極の材料としては、例えば、タングステン(W)、アルミニウム(Al)、チタン(Ti)、窒化チタン(TiN)、コバルト(Co)の単体、或いは その積層構造を用いる事ができる。むろん、ゲート電極332の材料のうち、貫入部332aのみをメタルゲートとし、他の部分はシリコンゲートとしてもよい。
【0079】
(D)第4の実施形態:
本実施形態に係る固体撮像素子400は、電荷保持部とフローティングディフュージョンの間の構造を除くと、上述した固体撮像素子100と同様の構成である。
【0080】
そこで、以下では主に固体撮像素子400の画素410の電荷保持部414とフローティングディフュージョン415の間の構造について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に4を付けた符号を示す。なお、電荷保持部414とフローティングディフュージョン415の基本的な機能は、電荷保持部14とフローティングディフュージョン15と同様である。
【0081】
図15は、画素410の平面的な構成例を示す図、
図16は、
図15のA−A断面における画素410の断面的な構成例を示す図である。
【0082】
電荷保持部414とフローティングディフュージョン415の間には、第2貫通遮光膜としての貫通遮光膜441が設けられている。貫通遮光膜441は、貫通遮光膜437等と同様に、半導体基板420に形成した貫通孔の内面全体に高誘電率材料膜を形成し、その中に遮光性を有する材料を充填して形成される。
【0083】
貫通遮光膜441は、半導体基板420の表裏を貫通して形成され、電荷保持部414とフローティングディフュージョン415の間を仕切る構造である。貫通遮光膜441の表側の端部は、半導体基板420の厚さ方向において、電荷保持部414の表側端部と同程度又は電荷保持部414の表側端部よりも表側方向に長く形成されている。
【0084】
貫通遮光膜441を設けることにより、電荷保持部414とフローティングディフュージョン415の間の遮光性が向上し、フローティングディフュージョン415側から電荷保持部414へのノイズの影響を抑制できる。
【0085】
なお、電荷保持部414は、電荷保持部414のフローティングディフュージョン415と反対側にも貫通遮光膜441と同様の貫通遮光膜を設けて、その周囲全体を貫通遮光膜で囲われた構造としてもよい。このように電荷保持部414の周囲を貫通遮光膜で囲うことで、電荷保持部414の遮光性を更に向上し、光学的ノイズの影響を更に抑制することもできる。
【0086】
電荷保持部414とフローティングディフュージョン415の間は、半導体基板420の表面420Fの外側に貫通遮光膜441を跨ぐように形成される第2バイパス部としてのバイパス部442によって接続される。バイパス部442は、貫通遮光膜441、電荷保持部414及びフローティングディフュージョン415の形成範囲をそれぞれ含む位置・範囲で形成されている。バイパス部442は、N型不純物を添加した半導体材料で形成されている。バイパス部442の表面側には、第2の転送トランジスタ13のゲート電極が積層形成されており、このゲート電極に所定の電圧が印加されることにより、PD411に蓄積されている電荷が電荷保持部414へ転送される。すなわち、バイパス部442は、電荷保持部414からフローティングディフュージョン415へ電荷を転送する電荷転送路となる。
【0087】
(E)第5の実施形態:
本実施形態に係る固体撮像素子500は、電荷保持部の表面側に遮光膜を設けた点を除くと、上述した固体撮像素子100と同様の構成である。
【0088】
そこで、以下では主に固体撮像素子500の表面遮光膜543の形状について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に5を付けた符号を示す。
【0089】
図17は、画素510の平面的な構成例を示す図、
図18は、
図17のA−A断面における画素510の断面的な構成例を示す図である。
【0090】
表面遮光膜543は、電荷保持部514の表側を覆って遮光する部材である。表面遮光膜543を貫通遮光膜539に連接して形成すると、貫通遮光膜539側からの光入射を抑制できる。表面遮光膜543は、電荷保持部514の表側において、半導体基板520と配線層521の間に形成される部材(メモリーゲート540、バイパス部538、転送電極532等)を含めて覆うように形成される。この表面遮光膜543で覆う範囲は、半導体基板520を配線521aに接続するコンタクト部との間で電気的に干渉しない範囲で拡縮可能である。表面遮光膜543と電荷保持部514や各種部材(メモリーゲート540、バイパス部538、転送電極532等)との間には、高誘電率材料膜が設けられる。これにより、電荷保持部514の遮光性を更に向上できる。
【0091】
(F)第6の実施形態:
本実施形態に係る固体撮像素子600は、盛上状に形成するバイパス部の形成範囲を除くと、上述した固体撮像素子100と同様の構成である。
【0092】
そこで、以下では主に固体撮像素子600のバイパス部638の形成範囲について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に6を付けた符号を示す。
【0093】
図19は、
図3のA−A断面に相当する断面における画素610の断面的な構成例を示す図である。
【0094】
バイパス部638は、貫通遮光膜637を跨ぐ部位のみならず、半導体基板620の表面620FにおいてPD611の形成範囲内に延設された形状となっている。例えば、PD611の表面全体をバイパス部638の表面と略同程度の盛上げ形状とする。これにより、PD611の体積が増大し、PD611の飽和電荷量を増大するメリットがある。
【0095】
(G)第7の実施形態:
本実施形態に係る固体撮像素子700は、電荷保持部を設けず、PDの電荷を直接フローティングディフュージョンへ転送するFD蓄積型の構成とした点を除くと、上述した固体撮像素子100と同様の構成である。
【0096】
そこで、以下では主に固体撮像素子700のPD711からフローティングディフュージョン715への電荷転送に関する構成について説明し、その他の構成については詳細な説明を省略し、必要に応じて固体撮像素子100の構成の符号先頭に7を付けた符号を示す。
【0097】
図20は、画素710の平面的な構成例を示す図、
図21は、
図20のA−A断面における画素710の断面的な構成例を示す図である。
【0098】
本実施形態では、PD711からバイパス部738を介して転送された電荷を受け取って保持する構成としてフローティングディフュージョン715を設けてある。すなわち、貫通遮光膜737を挟んでPD711の反対側には、少なくともフローティングディフュージョン715の一部が位置しており、貫通遮光膜737の延びる方向においてPD711の形成範囲とフローティングディフュージョン715の形成範囲の少なくとも一部が重複している。この重複部分に形成されるバイパス部738が、PD711からフローティングディフュージョン715への電荷転送路となる。フローティングディフュージョン715に蓄積された電荷は、コンタクト744、配線745を介して、画素信号として出力される。
【0099】
このように構成した固体撮像素子700によれば、一般に、大面積を要する電荷保持部を無くせるため、チップサイズの観点のメリットがある。
【0100】
(C)第8の実施形態:
図22は、固体撮像素子100を備える撮像装置800の構成を示すブロック図である。同図に示す撮像装置800は、電子機器の一例である。
【0101】
なお、本明細書において、撮像装置とは、デジタルスチルカメラやデジタルビデオカメラ等の撮像装置や、撮像機能を有する携帯電話機などの携帯端末装置など、画像取込部(光電変換部)に固体撮像素子を用いる電子機器全般を指す。むろん、画像取込部に固体撮像素子を用いる電子機器には、画像読取部に固体撮像素子を用いる複写機も含まれる。また、撮像装置は、上述した電子機器に搭載するために固体撮像素子を含めてモジュール化されていてもよい。
【0102】
図22において、撮像装置800は、レンズ群を含む光学系811、固体撮像素子100、固体撮像素子100の出力信号を処理する信号処理回路としてのDSP813(Digital Signal Processor)、フレームメモリ814、表示部815、記録部816、操作系817、電源系818及び制御部819を備えている。
【0103】
DSP813、フレームメモリ814、表示部815、記録部816、操作系817、電源系818及び制御部819は、通信バスを介して、互いにデータや信号を送受信できるように接続されている。
【0104】
光学系811は、被写体からの入射光(像光)を取り込んで固体撮像素子100の撮像面上に結像する。固体撮像素子100は、光学系811によって撮像面上に結像された入射光の受光量に応じた電気信号を画素単位で生成し、画素信号として出力する。この画素信号はDSP813に入力され、適宜に各種の画像処理を行って生成された画像データは、フレームメモリ814に記憶されたり、記録部816の記録媒体に記録されたり、表示部815に出力されたりする。
【0105】
表示部815は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置からなり、固体撮像素子100によって撮像された動画や静止画、その他の情報を表示する。記録部816は、固体撮像素子100によって撮像された動画や静止画を、DVD(Digital Versatile Disk)やHD(Hard Disk)、半導体メモリ等の記録媒体に記録する。
【0106】
操作系817は、ユーザから各種の操作を受け付けるものであり、ユーザの操作に応じた操作命令を通信バスを介して各部813,814,815,816,818,819へ送信する。電源系818は、駆動電源となる各種の電源電圧を生成して供給対象(各部813,814,815,816,817,819)へ適宜に供給する。
【0107】
制御部819は、演算処理を行うCPUや撮像装置800の制御プログラムを記憶するROM、CPUのワークエリアとして機能するRAM、等を備えている。制御部819は、RAMをワークエアリアとして利用しつつROMに記憶されている制御プログラムをCPUが実行することにより、通信バスを介して各部813,814,815,816,817,818を制御する。また、制御部819は、不図示のタイミングジェネレータを制御して各種のタイミング信号を生成させ、各部へ供給する制御を行ったりする。
【0108】
なお、本技術は上述した各実施形態に限られず、上述した各実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した各実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。また,本技術の技術的範囲は上述した実施形態に限定されず,
請求の範囲に記載された事項とその均等物まで及ぶものである。
【0109】
そして、本技術は、以下のような構成を取ることができる。
【0110】
(1)
半導体基板と、
前記半導体基板の裏面からの入射光を光電変換する光電変換部と、
前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、
前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、
前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、
前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、
を備え、
前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている固体撮像素子。
【0111】
(2)
前記制御部は、前記第1バイパス部上の前記第1貫通遮光膜に対応する位置に設けられた制御電極を制御して前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する、前記(1)に記載の固体撮像素子。
【0112】
(3)
前記制御部は、前記第1バイパス部上の前記第1貫通遮光膜に対応しない位置に設けられた制御電極を制御して前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する、前記(1)に記載の固体撮像素子。
【0113】
(4)
前記制御電極は、前記光電変換部側を前記第1貫通遮光膜の側面に沿って前記半導体基板の厚み方向に延設された貫入部を有する、前記(2)又は前記(3)に記載の固体撮像素子。
【0114】
(5)
前記貫入部は、金属材料で形成されている、前記(4)に記載の固体撮像素子。
【0115】
(6)
前記第1バイパス部は、前記半導体基板の表面をエッチングして盛土状に残存させた突起部である、前記(1)〜前記(5)の何れか1つに記載の固体撮像素子。
【0116】
(7)
前記第1バイパス部は、前記半導体基板の表面に選択エピタキシャル成長で盛土状に積層形成した突起部である、前記(1)〜前記(5)の何れか1つに記載の固体撮像素子。
【0117】
(8)
前記光電変換部の表面を前記第1バイパス部の表面と略同程度の盛上げ形状とした、前記(7)に記載の固体撮像素子。
【0118】
(9)
前記第1バイパス部の前記第1貫通遮光膜を跨ぐ部位と前記電荷保持部との表側を覆う遮光膜を更に備える、前記(1)〜前記(8)の何れか1つに記載の固体撮像素子。
【0119】
(10)
前記電荷保持部は貫通遮光膜で囲われている、前記(1)〜前記(9)の何れか1つに記載の固体撮像素子。
【0120】
(11)
前記電荷保持部から転送される電荷を保持するフローティングディフュージョンと、
前記半導体基板の表裏を貫通して前記電荷保持部と前記フローティングディフュージョンの間を仕切る第2貫通遮光膜と、
前記半導体基板の表面外側に半導体材料で形成され前記第2貫通遮光膜を跨いで前記電荷保持部と前記フローティングディフュージョンとを接続する第2バイパス部と、
を更に備える、前記(1)〜前記(1)0の何れか1つに記載の固体撮像素子。
【0121】
(12)
前記電荷保持部は、キャパシタである、前記(1)〜前記(1)0の何れか1つに記載の固体撮像素子。
【0122】
(13)
前記電荷保持部は、フローティングディフュージョンである、前記(1)〜請求項10の何れか1つに記載の固体撮像素子。
【0123】
(14)
半導体基板に裏面からの入射光を光電変換する光電変換部を形成する工程と、
前記光電変換部が生成する電荷を一時的に保持する電荷保持部を形成する工程と、
前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜を形成する工程と、
前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部を形成する工程と、
前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御電極を形成する工程と、
を含んで構成され、
前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている、固体撮像素子の製造方法。
【0124】
(15)
固体撮像素子と、前記固体撮像素子からの信号を処理する信号処理回路と、を備える撮像装置であって、
前記固体撮像素子は、半導体基板と、前記半導体基板の裏面からの入射光を光電変換する光電変換部と、前記光電変換部が生成する電荷を一時的に保持する電荷保持部と、前記半導体基板の表裏を貫通して前記光電変換部と前記電荷保持部との間を仕切る第1貫通遮光膜と、前記半導体基板の表面外側に半導体材料で形成され前記第1貫通遮光膜を跨いで前記光電変換部と前記電荷保持部を接続する第1バイパス部と、前記第1バイパス部を介した前記光電変換部から前記電荷保持部への電荷転送を制御する制御部と、を備え、
前記第1貫通遮光膜の表側の端部は、前記半導体基板の厚さ方向において、前記電荷保持部の表側端と同程度又は前記電荷保持部の表側端よりも表側方向に長く形成されている、撮像装置。