特許第6969938号(P6969938)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エスケー イノベーション カンパニー リミテッドの特許一覧 ▶ エスケー グローバル ケミカル カンパニー リミテッドの特許一覧

<>
  • 特許6969938-カーボンナノチューブの精製方法 図000003
  • 特許6969938-カーボンナノチューブの精製方法 図000004
  • 特許6969938-カーボンナノチューブの精製方法 図000005
  • 特許6969938-カーボンナノチューブの精製方法 図000006
  • 特許6969938-カーボンナノチューブの精製方法 図000007
  • 特許6969938-カーボンナノチューブの精製方法 図000008
  • 特許6969938-カーボンナノチューブの精製方法 図000009
  • 特許6969938-カーボンナノチューブの精製方法 図000010
  • 特許6969938-カーボンナノチューブの精製方法 図000011
  • 特許6969938-カーボンナノチューブの精製方法 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6969938
(24)【登録日】2021年11月1日
(45)【発行日】2021年11月24日
(54)【発明の名称】カーボンナノチューブの精製方法
(51)【国際特許分類】
   C01B 32/17 20170101AFI20211111BHJP
   C01B 32/158 20170101ALI20211111BHJP
【FI】
   C01B32/17
   C01B32/158
【請求項の数】8
【全頁数】12
(21)【出願番号】特願2017-170769(P2017-170769)
(22)【出願日】2017年9月6日
(65)【公開番号】特開2018-39721(P2018-39721A)
(43)【公開日】2018年3月15日
【審査請求日】2020年4月20日
(31)【優先権主張番号】10-2016-0114409
(32)【優先日】2016年9月6日
(33)【優先権主張国】KR
(73)【特許権者】
【識別番号】514020459
【氏名又は名称】エスケー イノベーション カンパニー リミテッド
【氏名又は名称原語表記】SK INNOVATION CO., LTD.
(73)【特許権者】
【識別番号】514020460
【氏名又は名称】エスケー グローバル ケミカル カンパニー リミテッド
【氏名又は名称原語表記】SK GLOBAL CHEMICAL CO., LTD.
(74)【代理人】
【識別番号】110000084
【氏名又は名称】特許業務法人アルガ特許事務所
(72)【発明者】
【氏名】ラ・イェン ファ
(72)【発明者】
【氏名】キム・ジ ミン
(72)【発明者】
【氏名】ション・ミン ジ
(72)【発明者】
【氏名】シン・ウン チョル
【審査官】 山本 吾一
(56)【参考文献】
【文献】 特開2011−063458(JP,A)
【文献】 特開2005−097024(JP,A)
【文献】 特開2006−124225(JP,A)
【文献】 特開2005−132701(JP,A)
【文献】 特開2015−017029(JP,A)
【文献】 中国特許出願公開第1571941(CN,A)
【文献】 米国特許出願公開第2005/0214198(US,A1)
【文献】 ANDREWS, R. et al.,Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures,Carbon,2001年,39,1681-1687
【文献】 HUANG, W. et al.,99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing,Carbon,2003年,41,2585-2590
【文献】 ANTUNES, E. F. et al.,Thermal annealing and electrochemical purification of multi-walled carbon nanotubes Produced by camphor/ferrocene mixtures,Journal of Nanoscience and Nanotechnology,2010年,10,1296-1303
【文献】 CHEN, J. et al.,The structural evolution of thin multi-walled carbon nanotubes during isothemal annealing,Carbon,2007年,274-280
(58)【調査した分野】(Int.Cl.,DB名)
C01B 32/00
JSTPlus/JSTChina(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
(1)カーボンナノチューブを反応器で処理温度1800℃以下、反応圧0.1Torr以上の低真空条件下で、不活性ガスを用いて処理する段階と、
(2)超高純度のカーボンナノチューブを得る段階とを含み、
前記超高純度のカーボンナノチューブは、残存するそれぞれの金属の含有量が50ppm以下であることを特徴とする、カーボンナノチューブの精製方法。
【請求項2】
前記超高純度のカーボンナノチューブは、残存する金属がFeである場合にはその含有量が10ppm以下であることを特徴とする、請求項1に記載のカーボンナノチューブの精製方法。
【請求項3】
前記低真空条件は、反応圧が0.1Torr以上1Torr以下であることを特徴とする、請求項1に記載のカーボンナノチューブの精製方法。
【請求項4】
前記処理温度が1600〜1800℃であることを特徴とする、請求項1に記載のカーボンナノチューブの精製方法。
【請求項5】
前記不活性ガスの量は分あたりの反応器体積の0.0025〜0.25倍であることを特徴とする、請求項1に記載のカーボンナノチューブの精製方法。
【請求項6】
前記(1)段階での処理時間が15分〜120分であることを特徴とする、請求項1に記載のカーボンナノチューブの精製方法。
【請求項7】
前記残存する金属は、Fe、Co、Al23、Mgまたはこれらの組み合わせを含むことを特徴とする、請求項1に記載のカーボンナノチューブの精製方法。
【請求項8】
前記不活性ガスが窒素であることを特徴とする、請求項1に記載のカーボンナノチューブの精製方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カーボンナノチューブの精製方法に係り、より具体的には、不活性ガスを用いて高温低真空条件で処理することにより、カーボンナノチューブに残存する金属不純物を除去する方法に関する。
【背景技術】
【0002】
カーボンナノチューブ(Carbon nanotubes、CNTs)は、炭素からなる炭素同素体(allotrope)であって、一つの炭素原子が他の炭素原子と六角形のハニカム状に結合してチューブ状をなしている物質であり、チューブの直径がナノメートル(nm=10億分の1メートル)のレベルであって極めて小さい領域の物質である。
カーボンナノチューブは、優れた物性やチューブの直径、対称性、層構造、束構造、結合の変形、不純物の存在などによって特徴付けられる特異な構造のため、様々な分野、例えば、ナノテクノロジー、電気工学、光学および材料工学などで有用に使用できる。特に、カーボンナノチューブは、優れた電界放出特性、高効率の水素貯蔵媒体の特性などを持つ新素材として知られている。
【0003】
ナノチューブは、フラーレン系の構造を有し、グラフェンと呼ばれる炭素原子1層からなる膜を壁とし、長くて中空のチューブ状に作られたため、カーボンナノチューブという名前がついた。グラフェンを丸く巻く角度によって異なるナノチューブが作られ得るが、このように巻かれる角度と直径によって金属になることも、半導体になることもある。ナノチューブは、単一壁ナノチューブ(SWNTs)と多重壁ナノチューブ(MWNTs)の基本構造を持つ。
カーボンナノチューブ複合体は、伝導性材料、高強度軽量特性の構造材料、多機能複合材料などの応用においてその活用度が高まっており、カーボンナノチューブ分野ではカーボンナノチューブの製造方法、改質方法、カーボンナノチューブ複合体の様々な特性および応用分野に関する研究が盛んに行われている。その応用分野としては、例えば、各種装置の電子放出源、VFDs(vacuum fluorescent displays)、白色光源、FEDs(field emission displays)、リチウムイオン二次電池電極、水素貯蔵燃料電池、ナノワイヤー、ナノカプセル、ナノピンセット、AFM/STM tip、単電子素子、ガスセンサー、医学・光学用微細部品、高機能複合体などが挙げられる。カーボンナノチューブの産業的適用のためには、高度の合成技術で優れた物性を持つカーボンナノチューブの経済的な合成および精製が重要である。
【0004】
カーボンナノチューブの合成方法としては、一般に、アーク放電法(arc discharge)、レーザー蒸発法(laser ablation)、化学気相蒸着法(chemical vapor deposition、CVD)などがある。アーク放電法やレーザー蒸発法は、カーボンナノチューブの純度は高いものの、大量生産が難しく、装備が高価であるという欠点がある。しかし、化学気相蒸着法の中でも、触媒CVD法は、カーボンナノチューブの直径、長さ、密度、構造、結晶性などを制御することが容易であり、高純度の製品を量産することができるという利点があり、注目を集めている。金属触媒は、主に、Fe、Co、Ni、Moなどが担持されたアルミナまたはシリカ触媒を使用する。
触媒方法によって合成されたカーボンナノチューブは、様々なナノカーボン物質、非晶質炭素、および成長のために触媒として作用する遷移金属などが含まれている。これらの不純物によりカーボンナノチューブが切断されて長さが短くなり或いは表面が酸化して、電気的、機械的特性が低下するという問題がある。その結果、このような不純物は、カーボンナノチューブのみの特性を損傷させて、カーボンナノチューブの応用面で最適な性能を制限させる。
特に、バッテリー電極材へのカーボンナノチューブ応用の場合、金属がバッテリー分離膜を破壊して爆発を引き起こすため、金属含有量をppm単位で管理している。
遷移金属と炭素含有物質を除去するために様々な精製方法が報告されており、主に化学的方法と物理的方法に大別される。
【0005】
化学的精製法には気相酸化法と液相酸化法があるが、気体酸化剤としては空気、Cl2、HCl、SF6、H2Sなどが挙げられ、液体酸化剤としては硝酸、過酸化水素、塩酸、硫酸、リン酸などが挙げられる。経済的な観点からは硝酸、硫酸、塩酸を使用することが効果的であるが、チューブ内に封入(Encapsule)された金属触媒は、除去し難いため、超高純度のカーボンナノチューブを得ることができないという欠点がある。また、特許文献1では、ハロゲンガスおよび/またはハロゲン化合物を用いて、熱処理してカーボンナノチューブを精製する方法を開示しており、特許文献2では、ハロゲン含有ガスを200〜500℃で熱処理する方法を開示しているが、ハロゲン含有化合物を使用する場合、ハロゲンガス取り扱いの問題、環境リスクの問題、および高い投資費の問題がある。
【0006】
物理的精製法には、超音波処理法、高温アニーリング(high temperature anneaing)、超臨界流体CO2抽出などがある。これらの中でも、高温アニーリング法は、黒鉛化(graphitization)が起こるため、表面の化学的欠陥を低減し、金属を効果的に除去することが知られている。Andrews等は、常圧よりも少し高い窒素ガス雰囲気中で、MWCNTを3000℃で45分間処理してFe含有量を100ppm以下に精製し(非特許文献1)、Chen等は、アルゴンガス雰囲気中で、MWCNTを2000℃以上で処理してFe含有量を100ppm以下に精製した(非特許文献2)。Huang等の研究結果によれば、10-3Pa〜10Paおよび2000℃以上でMWCNTを5時間処理してAl23およびFe−Moを除去したと報告された(非特許文献3)。前記Huang等の反応圧は非常に低い圧力を要求するという問題がある。特許文献3によれば、86%のMWCNTを20Paの真空および2300℃で5時間処理して純度99.93%、遷移金属含有量0.05%以下の高純度カーボンナノチューブを得たと報告された。特許文献3によれば、非常に低い反応圧および非常に高い反応温度を要求するという問題がある。前述したように、これまでに報告された高温アニーリング法のほとんどは、2000℃以上の高温や非常に低い圧力、すなわち高真空である極限条件で処理することにより製造コストが高いという欠点がある。
【0007】
また、従来技術として、金属不純物の除去にハロゲンガス、酸素ガスなどを処理することが知られている。しかし、ハロゲンガスを用いた酸化工程は、カーボンナノチューブ精製効果には優れるものの、処理時間が長く、毒性ガスにより工程安定性の問題、ガス処理時の不純物の問題および副産物処理の問題がある。
また、金属不純物の中でも、Feが、最も除去し難い金属不純物として知られているが、Feを10ppm以下に除去する従来技術の場合、カーボンナノチューブの分散性は悪化することが知られている。
【0008】
カーボンナノチューブは、直径対比長さが長く、分子間力が大きいため、分散が非常に難しい。分散している程度に応じて、同じ投入量対比のカーボンナノチューブの全体表面積が増加するため、物理的、電気的、熱的特性などに大きな影響を与える。したがって、分散性は、応用分野において非常に重要な因子である。特にバッテリー応用分野において、分散度が低ければ電気伝導性に悪影響を及ぼす。
カーボンナノチューブの不純物精製方法について多くの研究が行われているが、不純物である金属、特にFe不純物を除去して数ppmレベルまで経済的に減少させながらもカーボンナノチューブの分散性を確保することができる技術は、まだ不十分なのが実情である。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許US8628748明細書
【特許文献2】米国特許US6752977明細書
【特許文献3】中国公開特許第1436722号明細書
【非特許文献】
【0010】
【非特許文献1】Carbon 39(2001)1681−1687
【非特許文献2】Carbon 45(2007)274−280
【非特許文献3】Carbon 41(2003)2585−2590
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明に係るある態様では、従来のカーボンナノチューブの精製方法とは異なり、ハロゲン含有ガスや高温高真空の極限条件などを使用することなく金属触媒または金属酸化物の除去効果が高い、カーボンナノチューブの精製方法を提供する。
本発明に係る他の態様では、前記カーボンナノチューブの精製方法によって製造された超高純度のカーボンナノチューブを提供する。
本発明に係る別の態様では、前記カーボンナノチューブ内のそれぞれの金属不純物の含有量が50ppm以下である超高純度のカーボンナノチューブを提供する。
本発明に係る別の態様では、前記カーボンナノチューブ内のFeの含有量が50ppm以下である超高純度のカーボンナノチューブを提供する。
【課題を解決するための手段】
【0012】
本発明の第1態様によれば、(1)カーボンナノチューブを、反応器で処理温度1800℃以下、反応圧0.1Torr以上の低真空条件下で、不活性ガスを用いて処理する段階と、(2)超高純度のカーボンナノチューブを得る段階とを含み、前記超高純度のカーボンナノチューブは、残存するそれぞれの金属の含有量が50ppm以下であることを特徴とする、カーボンナノチューブの精製方法が提供される。
第1態様の一実施形態によれば、前記超高純度のカーボンナノチューブは、残存する金属がFeである場合にはその含有量が10ppm以下である。
第1態様による実施形態によれば、前記低真空条件は、反応圧が0.1Torr以上1Torr以下である。
第1態様の一実施形態によれば、前記処理温度は1600〜1800℃である。
第1態様の一実施形態によれば、前記不活性ガスの量は分あたりの反応器体積の0.0025〜0.25倍である。
第1態様の一実施形態によれば、前記(1)段階での処理時間は15分〜120分である。
第1態様の一実施形態によれば、前記残存する金属は、Fe、Co、Al23、Mg又はこれらの組み合わせを含む。
また、前記カーボンナノチューブの精製方法によって製造された超高純度のカーボンナノチューブは、カーボンナノチューブに残存するそれぞれの金属の含有量が50ppm以下である。
前記超高純度のカーボンナノチューブは、残存する金属がFeである場合にはその含有量が10ppm以下である。
前記カーボンナノチューブの電気抵抗は1.0×102〜5.0×102Ω/sqである。
【発明の効果】
【0013】
本発明によれば、不活性ガスを用いた高温低真空処理のみでも、カーボンナノチューブに残存する金属不純物を効果的に除去することができるうえ、それぞれの金属不純物の含有量が50ppm以下であり、分散度にも優れる超高純度のカーボンナノチューブを提供する。
【図面の簡単な説明】
【0014】
図1】CNTの精製工程を示す。
図2】処理温度別のCNTsの純度(%)を示す。
図3】処理温度別のCNTsに残存する金属の含有量(ppm)を示す。
図4】処理時間別のCNTsの純度(%)を示す。
図5】処理時間別のCNTsに残存する金属の含有量(ppm)を示す。
図6】N2流量別のCNTsの純度(%)を示す。
図7】N2流量別の金属の含有量(ppm)を示す。
図8】処理温度別のCNTsの電気抵抗を示す。
図9】1800℃で処理したCNTsのTEM写真である。
図10】2500℃で処理したCNTsのTEM写真である。
【発明を実施するための形態】
【0015】
本発明は、以下の説明によってすべて達成できる。以下の説明は本発明の好適な実施形態を記述するものと理解されるべきである。本発明は必ずしもこれに限定されるものではない。また、添付図面は、理解を助けるためのもので、本発明を限定するものではない。個別構成に関する詳細は、後述する関連記載の具体的な趣旨によって適切に理解できる。
【0016】
本明細書で使用される用語は、次のとおり定義できる。
「超高純度のカーボンナノチューブ」は、カーボンナノチューブに残存するそれぞれの金属不純物の含有量が50ppm以下のものをいう。
「低真空条件」における低真空は1Torr以下の真空をいう。
「カーボンナノチューブに残存する金属」は、カーボンナノチューブの合成過程で混入された不純物をいい、主に触媒として使用される金属である。
「金属蒸気圧」における蒸気圧は、一定の圧力と温度で蒸気が固体または液体と動的平衡状態にあるときの蒸気の圧力をいう。
【0017】
本発明の一態様によるカーボンナノチューブの精製方法は、カーボンナノチューブを反応器で、高温低真空条件下で不活性ガスを用いて処理する段階と、超高純度のカーボンナノチューブを得る段階とを含み、前記超高純度のカーボンナノチューブは、残存する金属がそれぞれ50ppm以下の含有量で存在する。
本発明は、金属不純物を気化させて除去する金属不純物除去方法が、酸処理などのその他の精製方法よりも金属を除去して数ppmレベルまで減少させることができるという点で有利である。
金属不純物を気化させて除去する方法としては、従来の場合、ハロゲンガスを用いて金属を酸化させた後で気化させる方法と、高温高真空で気化させる高温アニーリング法を採用した。ハロゲンガスは、通常、900〜1400℃の条件で用いた。しかし、ハロゲンガスを用いる場合は、操業安全性の問題があり、製造コストが高く、処理時間が長いという欠点がある。高温高真空で気化させる高温アニーリング法は、極限処理条件であるため、製造コストが高い。
本発明では、ハロゲンガスおよび極限条件を使用することなく、金属不純物を効果的に除去することができた。
【0018】
図1は本発明のCNT精製工程を示す。
高温炉と真空ポンプから構成された真空加熱ユニット(vacuum heating unit)に原料のカーボンナノチューブをロードして窒素を流しながら高温低真空処理を行った後、超高純度のカーボンナノチューブを得る。除去された不純物はフィルターとスクラバー(scrubber)を介して捕集される。
本発明のCNT精製工程は、金属不純物を除去するために、金属が気体に気化するように処理した後、気化した金属不純物を除去する。
金属を気化させるためには高い温度および高い真空状態を必要とすることが知られている。しかし、温度を1800℃超過に増加させる場合には、金属蒸気圧の発生が増加するが、黒鉛化現象により、精製されたカーボンナノチューブの分散性が低下するという問題がある。また、高真空状態の要求は、設備の大型化や経済性の問題を引き起こす。
本発明者は、ハロゲン、酸素ガスなどの反応性ガスを使用することなく、また、超高温および超真空の極限条件を使用することなく金属不純物を気化させ、不活性ガスを用いて効果的に金属不純物が除去されるようにした。
【0019】
本発明によれば、カーボンナノチューブに存在する金属不純物がFe、Co、Al23、Mgである場合、反応圧は、好ましくは1Torr以下、より好ましくは0.1〜1Torrである。反応圧が増加する場合には、除去すべき金属の気化に影響を与えるため好ましくない。
【0020】
本発明は、カーボンナノチューブを反応器で、高温低真空条件下で不活性ガスを用いて処理する段階を含む。処理温度は、1400℃以上であり、好ましくは1600〜1800℃である。1400℃以下の温度では、金属の除去がうまく行われないという問題があり、1800℃超過の温度では、分散性が低下し、製造コストが高くなるという問題がある。不活性ガスは、特定の気体に限定されないが、好ましくは窒素である。
【0021】
本発明の一実施形態によれば、不活性ガスの量は反応圧と密接な関連があるため、本発明の低真空を損なわない範囲内で不活性ガスの量が処理されるべきである。一実施形態によれば、同じポンプの使用の際に不活性ガスを多く流せば真空度が低下し、不活性ガスを多く流せば、一定程度の真空を維持させるために大きなポンプ容量が必要であって製造コストに影響を与える。
【0022】
例示的な実施形態によれば、反応器の体積が22Lであり、不活性ガスを2L/minと4L/minでそれぞれ流した場合、不活性ガスの量はそれぞれ分あたりの反応器体積の0.09倍および0.18倍になる。不活性ガスの量は分あたりの反応器体積の0.0025〜0.25倍が好ましい。0.0025倍未満の場合には、金属の除去がうまく行われないという問題があり、0.25倍超過の場合には、ポンプの容量が大きくなる問題、およびカーボンナノチューブの損失可能性がある。
【0023】
本発明の一実施形態によれば、不活性ガス処理時間は15分以上であることが好ましい。15分以下であれば、金属の除去がうまく行われないという問題がある。
【0024】
本発明の金属不純物を処理する低真空条件は、カーボンナノチューブに残存する金属の蒸気圧よりも低い圧力であり得るが、これに限定されるものではない。カーボンナノチューブに残存する金属は、例えば、Fe、Co、Al23、Mgまたはこれらの組み合わせであるが、これらの金属不純物に限定されるものではない。
カーボンナノチューブに存在する金属不純物がFe、Co、Al23、Mgである場合には、反応圧は、好ましくは1Torr以下、さらに好ましくは0.1Torr〜1Torrである。
【0025】
本発明によって精製されたカーボンナノチューブの純度は99%以上の超高純度であり、より好ましくは、それぞれの金属不純物の含有量が50ppm以下である。
本発明によって精製された超高純度のカーボンナノチューブは、分散性が良く、バッテリー適用の際に寿命が長く、安全であるという利点がある。
【0026】
本発明によって精製されたカーボンナノチューブは、電気抵抗が1.0×102〜5.0×102Ω/sqであり、分散性にも優れる。カーボンナノチューブの電気抵抗は、カーボンナノチューブの5カ所(上、下、左、右、中央)を電気抵抗測定器で測定した後、平均値を用いて示す。電気抵抗値はカーボンナノチューブの分散度によって影響を受ける。カーボンナノチューブがうまく分散していない場合には、電気抵抗値が高く測定されるか或いは測定が不可能である。
【実施例】
【0027】
カーボンナノチューブの精製方法
実験に使用されたカーボンナノチューブは触媒CVD法で製造した。精製処理の後、カーボンナノチューブに残存する金属成分の含有量は、ICP−OES(Inductively Coupled Plasma−Optical Emission Spectroscopy、Agilent社)によって分析した。ICP前処理は、カーボンナノチューブを硫酸炭化させた後、ファーネスで800℃まで灰化した。
【0028】
カーボンナノチューブの精製方法は、次のとおりである。
(1)精製しようとするカーボンナノチューブをグラファイト坩堝に入れて高温真空焼成炉にロードする。
(2)真空が1Torr以下に維持されると、不活性ガスを一定量流す。
(3)処理温度まで昇温した後、15〜120分間処理する。
(4)温度を室温まで冷却した後、真空を解除してサンプルをアンロードする。
【0029】
[実施例1]
23gのカーボンナノチューブ(純度80〜85%)を1800℃、0.5〜1Torr、窒素2L/minで120分処理した。反応器の体積は22Lであった。精製されたカーボンナノチューブの金属成分検査結果をICPを用いて分析し、残存金属の含有量および金属除去率を下記表1に示した。
【0030】
[比較例1]
窒素処理を行わなかった以外は、実施例1と同様にして金属不純物の精製を行った。残存金属含有量および金属除去率を表1に示した。
【0031】
[比較例2]
反応圧を0.5〜1Torrの代わりに2Torrで処理した以外は、実施例1と同様にして、金属不純物の精製を行った。残存金属含有量および金属除去率を表1に示した。
【0032】
[比較例3]
反応圧を0.5〜1Torrの代わりに3Torrで処理した以外は、実施例1と同様にして金属不純物の精製を行った。残存金属含有量および金属除去率を表1に示した。
実施例1および比較例1〜3による金属不純物除去率をみると、下記表1のとおりである。
【0033】
【表1】
【0034】
表1の結果からも分かるように、Al23やMgは、窒素ガス処理または無処理の両方とも完全に除去されたが、FeやCoは、窒素無処理の場合には窒素処理の場合ほど効果的に除去されなかった。
また、反応圧の場合、1Torrを超える比較例2および比較例3では、純度がそれぞれ99.7%および99.6%であって、1Torr以下よりも不純物除去効果が低かった。特に反応圧が高い場合には、Al23やFeが完全に除去されずに残存することが分かった。
【0035】
[実施例2]
原料のカーボンナノチューブを、窒素2L/min、反応圧0.5〜1Torrで温度別に90分処理した。原料のカーボンナノチューブの純度を処理温度別に測定し、その結果を図2に示した。処理温度別の金属不純物(Al23、Fe、Co、およびMg)の含有量を測定し、図3に示した。
【0036】
処理温度別のカーボンナノチューブは、図2に示すように、温度が高くなるにつれて純度が高くなるが、1300℃〜1400℃では急激に純度が高くなり、1600℃以上では純度が緩やかに高くなることを確認することができた。
また、処理温度別のカーボンナノチューブに残存する金属不純物の含有量は、図3に示すように、1400℃までは急激に減少した。Al23の場合は、Fe、CoおよびMgに比べて、より高い温度である1600℃でほぼ完全に除去された。
【0037】
[実施例3]
原料のカーボンナノチューブを窒素2L/min、反応圧0.5〜1Torr、1700℃で時間別に処理した。原料カーボンナノチューブの純度を処理時間別に測定し、その結果を図4に示した。処理時間別に金属不純物、すなわちAl23、Fe、CoおよびMgの含有量を測定し、図5に示した。
【0038】
処理時間別のカーボンナノチューブの純度は、図4に示すように、処理時間が長くなるにつれて増加した。また、処理時間別のカーボンナノチューブに残存する金属不純物の含有量は、図5に示すように著しく減少することを確認した。
【0039】
[実施例4]
原料のカーボンナノチューブを1700℃で窒素流量別に15分間処理した。原料カーボンナノチューブの純度を窒素流量別に測定し、その結果を図6に示した。処理流量別に金属不純物、すなわちAl23、Fe、Co、およびMgの含有量を測定し、図7に示した。
窒素処理流量別のカーボンナノチューブは、図6および図7に示すように、窒素流量が2L/minである場合(反応器の体積は22L)には、純度が99.3%であり、全体金属含有量が180ppmであり、窒素流量が4L/minである場合(反応器の体積は22L)には、純度が99.9%であり、全体金属含有量が10ppm以下に減少することを確認した。
【0040】
[実施例5]カーボンナノチューブの電気抵抗および分散度
前述したように、処理温度1600℃、1700℃、1800℃および2500℃でそれぞれ処理されたカーボンナノチューブ10mgを、SDS(Sodium Dodacyl Sulfate)2wt%水溶液10gに超音波ソニケーター(sonicator)を用いて5分間分散させ、孔径16mmの濾紙で濾別した後、常温で2時間乾燥させ、電気抵抗測定器でカーボンナノチューブ5カ所(上、下、左、右、中央)を測定した後、その平均値を用いて示した。処理温度別のカーボンナノチューブの電気抵抗値を図8に示した。
【0041】
図8を参照すると、1600℃と1700℃でそれぞれ処理したカーボンナノチューブは、電気抵抗がほぼ同じであり、分散性が良いが、2500℃で処理したカーボンナノチューブは、電気抵抗が急激に高くなって分散がうまく行われなかった。電気抵抗が1.0×102〜5.0×102Ω/sqの範囲であれば、分散度が良好であると考えられる。
また、1800℃および2500℃でそれぞれ処理したカーボンナノチューブのTEM写真をそれぞれ図9および図10に示した。
【0042】
カーボンナノチューブは、常圧よりも若干高いアルゴンガス環境で1800℃〜2200℃のアニーリングで黒鉛化(Graphitization)が盛んに起こることが報告(Chen et al., 2007)されている。従来技術では、黒鉛化が表面の化学欠陥を低減することが知られているが、分散性に関する研究結果は未だなかった。
図9および図10のTEM分析結果によれば、2500℃で処理したカーボンナノチューブは、折れた構造が多く発見され、1800℃で処理したカーボンナノチューブは、相対的に緩やかであることが分かった。本発明者は、高温処理の際に黒鉛化がよりうまく起こるが、カーボンナノチューブの成長層が折れることにより互いに絡み合って分散性に悪影響を与えることを確認した。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10