(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6970118
(24)【登録日】2021年11月1日
(45)【発行日】2021年11月24日
(54)【発明の名称】コンデンサアレンジメント
(51)【国際特許分類】
H01G 4/30 20060101AFI20211111BHJP
H01G 2/02 20060101ALI20211111BHJP
H01G 2/06 20060101ALI20211111BHJP
H01G 4/38 20060101ALI20211111BHJP
【FI】
H01G4/30 201H
H01G4/30 201F
H01G4/30 513
H01G2/02 101C
H01G2/06 C
H01G2/06 500
H01G4/38 A
【請求項の数】13
【全頁数】14
(21)【出願番号】特願2018-551789(P2018-551789)
(86)(22)【出願日】2017年2月23日
(65)【公表番号】特表2019-514209(P2019-514209A)
(43)【公表日】2019年5月30日
(86)【国際出願番号】EP2017054214
(87)【国際公開番号】WO2017167507
(87)【国際公開日】20171005
【審査請求日】2018年11月20日
【審判番号】不服2020-16081(P2020-16081/J1)
【審判請求日】2020年11月20日
(31)【優先権主張番号】102016105910.2
(32)【優先日】2016年3月31日
(33)【優先権主張国】DE
(73)【特許権者】
【識別番号】300002160
【氏名又は名称】ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト
【氏名又は名称原語表記】TDK ELECTRONICS AG
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】コンラッド, ユルゲン
(72)【発明者】
【氏名】コイニー, マルクス
(72)【発明者】
【氏名】リナー, フランツ
【合議体】
【審判長】
清水 稔
【審判官】
井上 信一
【審判官】
須原 宏光
(56)【参考文献】
【文献】
特開2014−187322(JP,A)
【文献】
特開2014−179512(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01G 2/06
H01G 4/30
(57)【特許請求の範囲】
【請求項1】
コンデンサアレンジメントであって、
- 複数のセラミック層と、その間に配置された第1電極及び第2電極とを有する少なくとも1つのセラミック多層コンデンサ、及び
- 基板と配線路とを有する台座、を備え、
前記配線路は、前記セラミック多層コンデンサに面する方を向いた前記基板の上面から、前記セラミック多層コンデンサから離れる方を向いた前記基板の下面へと導かれ、
前記セラミック多層コンデンサは、前記台座上に機械的に固定されており、
前記セラミック多層コンデンサは外部コンタクトを有し、
前記セラミック多層コンデンサは、全ての前記外部コンタクトが前記台座に向いた外面に配置される片面接続のために配設されており、
前記第1電極及び前記第2電極は、前記外部コンタクトを介して前記配線路と電気的に接続されており、
複数のセラミック層とその間に配置された電極とを有する第2セラミック多層コンデンサが、前記台座上に配置されており、
前記第2セラミック多層コンデンサの前記電極は前記配線路と電気的に接続されており、
前記台座は、前記セラミック多層コンデンサと第2セラミック多層コンデンサとの間に延在する少なくとも1つのスリットを有し、
前記少なくとも1つのスリットは、前記セラミック多層コンデンサ及び前記第2セラミック多層コンデンサの熱膨張係数と前記台座の熱膨張係数との間の差の結果として生じる機械的応力を低減するように構成されている、
コンデンサアレンジメント。
【請求項2】
前記セラミック多層コンデンサの前記第1電極及び前記第2電極はそれぞれ、前記セラミック多層コンデンサの、前記台座に向いた前記外面に接している、
請求項1記載のコンデンサアレンジメント。
【請求項3】
前記セラミック多層コンデンサは、前記セラミック多層コンデンサの同一の外面上に配置された、第1外部コンタクト及び第2外部コンタクトを備え、
前記第1電極は前記第1外部コンタクトを介して複数の前記配線路のうちの1つと接続されており、
前記第2電極は前記第2外部コンタクトを介して複数の前記配線路のうちの1つと接続されている、
請求項1又は2記載のコンデンサアレンジメント。
【請求項4】
前記セラミック多層コンデンサは、前記外面の少なくとも半分で、前記台座の直接上に載置されている、
請求項1乃至3いずれか1項記載のコンデンサアレンジメント。
【請求項5】
前記セラミック多層コンデンサは、銀含有層を介して前記台座と接続されている、
請求項1乃至4いずれか1項記載のコンデンサアレンジメント。
【請求項6】
前記セラミック多層コンデンサは、ペーストを塗布した後に焼結させて形成される層を介して前記台座と接続されている、
請求項1乃至5いずれか1項記載のコンデンサアレンジメント。
【請求項7】
前記セラミック多層コンデンサ及び前記第2セラミック多層コンデンサは相互に並列に接続されている、
請求項1乃至6いずれか1項記載のコンデンサアレンジメント。
【請求項8】
前記コンデンサアレンジメントはSMD素子である、
請求項1乃至7いずれか1項記載のコンデンサアレンジメント。
【請求項9】
前記基板の材料と厚さ及び前記配線路の材料と厚さは、前記セラミック多層コンデンサ及び前記第2セラミック多層コンデンサの熱膨張係数と適合する熱膨張係数を前記台座が有するように選択される、
請求項1乃至8いずれか1項記載のコンデンサアレンジメント。
【請求項10】
前記台座及び前記セラミック多層コンデンサ及び前記第2セラミック多層コンデンサは同一の幅を有している、
請求項1乃至9いずれか1項記載のコンデンサアレンジメント。
【請求項11】
前記基板は、窒化ケイ素、酸化アルミニウム又は窒化アルミニウムを含む、
請求項1乃至10いずれか1項記載のコンデンサアレンジメント。
【請求項12】
前記配線路は銅を含む、
請求項1乃至11いずれか1項記載のコンデンサアレンジメント。
【請求項13】
前記配線路は0.05mm乃至1.0mmの厚さを有する、
請求項1乃至12いずれか1項記載のコンデンサアレンジメント。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンデンサアレンジメントに関する。以下では、コンデンサアレンジメントとは、多層コンデンサ、及び多層コンデンサを配線基板上に実装する手段であって、特に配線基板の表面上における多層コンデンサの表面実装を可能にする手段、を有するアレンジメントであると解される。
【背景技術】
【0002】
セラミック多層コンデンサは、複数の異なる要求を満たすことを可能にし、それにより、例えば電気回路における中間回路コンデンサ又はスナバコンデンサとしての使用に適している。かかる回路において、それは電圧安定化素子として役立つことができる。その際、多層コンデンサは、過剰又は不足の電荷に対するキャッシュ(Zwischenspeicher)として役立ち、所定の直流電圧レベルにおいて必要とされる電荷量を可能な限り迅速に吸収し又は放出しなければならない。コンデンサの電荷吸収能力(Ladungsaufnahmefaehigkeit)はその静電容量によって特定される。高速で繰り返される充電過程のために、特に高い周波数における、コンデンサの高い電流搬送容量(Stromtragfaehigkeit)が必要である。さらに、半導体の効率的なスイッチングの際に過電圧スパイクを回避するために、コンデンサの転流回路(Kommutierungskreises)の可能な限り低いインダクタンスが達成されるべきである。
【0003】
さらに、多層コンデンサには、別の電気的要求がなされる。特に、多層コンデンサは、低い等価直列抵抗ESR(Equivalent Serious Resistance)や低い寄生インダクタンスESL(Equivalent Serious Inductance)等の、低い寄生要素を有するべきである。さらに、コンデンサ及び配線基板へのその接続は、高い熱伝導率及び高い熱機械的要求を満たすべきである。例えばコンデンサは、例えば熱衝撃の結果として、大きい温度変化の際にも機能できるように保たれるべきである。
【発明の概要】
【0004】
本発明は、特に、セラミック多層コンデンサと配線基板との間の接続技術に関する。この場合、可能な限り低いインダクタンスを有し、良好な電気的及び熱的伝導性を提供する接続が可能にされるべきである。これらの要求を満たすために、コンデンサアレンジメントは可能な限り大きな面積で配線基板上に実装可能であることが有利である。しかしながら、さらに、コンデンサによって占められる配線基板上の設置スペース(Bauraum)は、可能な限り小さくすべきである。
【0005】
そこで、本発明の課題は、配線基板との特に良好な接続を可能にするコンデンサアレンジメントを提供することにある。
【0006】
この課題は、現請求項1によるコンデンサアレンジメントによって解決される。
【0007】
複数のセラミック層と、その間に配置された第1電極及び第2電極と、を有する少なくとも1つのセラミック多層コンデンサ、及び、基板と複数の配線路とを有する台座を備え、配線路はコンデンサに面す方を向いたる基板の上面からコンデンサから離れる方を向いた基板の下面へと導かれ、多層コンデンサは台座上に機械的に固定されており、第1電極及び第2電極は配線路と電気的に接続されている、コンデンサアレンジメントが提案される。
【0008】
多層コンデンサは外部電極を有する。多層コンデンサは、片面接続のために(fuer einen einseitigen Anschluss)配設されている。相応に、全ての外部コンタクトは、多層コンデンサの台座に向いた外面に配置されている。第1内部電極は第1外部コンタクトと電気的に接続され、第2内部電極は第2外部コンタクトと電気的に接続される。第1外部コンタクト及び第2外部コンタクトは、多層コンデンサの台座に向いた外面上にのみ(ausschliesslich)配置される。
【0009】
ここで提案される、台座上への多層コンデンサの配置は、多層コンデンサと台座との間の高い電気的かつ熱的伝導性を保証することと、同時に、低いインダクタンスを有する接続を形成することを可能にする。接続のこの特性は、特に、台座との多層コンデンサの機械的接続が電気的コンタクトのためにも使用されることができることによって可能にされることができる。その際、多層コンデンサは特に大面積で台座上に固定されることができる。
【0010】
さらに台座は、配線基板上に表面実装によって固定されることができる。その際、提案されたコンデンサアレンジメントは、台座を介して配線基板とセラミック多層コンデンサの接続を可能にし、接続は良好な電気的かつ熱的伝導性を提供し、低いインダクタンスを有し、必要な設置スペース(Bauraumbedarf)がわずかである。表面実装では、台座は大きい面積で配線基板上に載置され、従って台座と配線基板との間においても良好な熱伝導性が得られる。相応に、コンデンサにおいて動作時に発生する熱は、十分な量で台座を介して配線基板へと導出されることができる。
【0011】
配線基板と台座との間の接続及び台座と多層コンデンサとの間の接続は、接続が機械的に安定であり、確実な電気的コンタクトを可能にするように、さらに構成されることができる。これらの接続は、さらに、低いインダクタンスを有するように構成されることができるので、低損失へと導く。
【0012】
コンデンサアレンジメントの表面実装の際に台座が配線基板と多層コンデンサとの間に配置されるように、コンデンサアレンジメントは構成されることができる。台座は特に、銅配線路を有するセラミック基板を備える、DCB部品(DCB = Direct Copper Bonding)である。
【0013】
セラミック多層コンデンサのDCB台座との組み合わせは、セラミック多層コンデンサを台座上に容易に装着することができる、比較的容易な製造方法を可能にする。多層コンデンサと台座との間の接続は例えば銀焼結によって製造されることができる。大面積の接続は、製造の際の幾何学的公差に対する高い要求が無く、従って容易なプロセスシークエンスを可能にする。
【0014】
複数のセラミック層の間に配置される第1電極及び第2電極は、多層コンデンサの内部電極である。多層コンデンサは、電極と電気的にコンタクトする、外部コンタクトとも称される外部電極をさらに有することができる。多層コンデンサは、外部電極とコンタクトされておらず、浮遊電極とも称される第3電極をさらに有することができる。
【0015】
基板は特にセラミック又は誘電体材料を含む。配線路は伝導性材料から成る。配線路は基板上に印刷されることができる。多層コンデンサは、非破壊的に台座から分離することができないように、機械的に台座上に固定されることができる。
【0016】
多層コンデンサの第1電極及び第2電極は、それぞれ台座に向いた多層コンデンサの外面に接する。
【0017】
電極及びセラミック層は、積層方向Sにおいて互いに重なり合って配置されることができ、積層方向Sは、多層セラミックに向いた台座表面に対する面法線に垂直であることができる。
【0018】
多層コンデンサは、多層コンデンサの1つの同一の外面上に配置された、第1外部コンタクト及び第2外部コンタクトを有する。多層コンデンサの残りの外面は、外部コンタクトを有さない。第1電極は、第1外部コンタクトを介して、複数の配線路のうちの1つと接続され、第2電極は第2外部コンタクトを介して複数の配線路のうちの1つと接続される。
【0019】
相応に、多層コンデンサは、全ての外部コンタクトが唯一の外面に設けられた片面接続のために配設されることができる。この外面は、台座上に機械的に固定され、台座と電気的にコンタクトされる。片面接続のための多層コンデンサの設計は、多層コンデンサを台座上に配置するという、コンデンサアレンジメントの非常に簡単な製造方法を可能にする。
【0020】
多層コンデンサは第1外面の少なくとも半分で台座の直接上に載置することができる。台座上の多層コンデンサのそのように大きな載置面は、台座と多層コンデンサの接続部の高い熱的かつ電気的伝導性を保証し、機械的に安定した固定をもたらす。好ましくは、多層コンデンサは、第1外面の少なくとも75%で台座の直接上に載置される。
【0021】
セラミック多層コンデンサは銀含有層を介して台座と接続される。層は95重量%又は99重量%の純粋な銀を含むことができる。特に、セラミック多層コンデンサは層を介して台座と接続されることができ、層はペーストを塗布してその後焼結することによって形成される。そのような層は焼結銀層とも称される。焼結銀は、多層コンデンサを台座に非常に安定して機械的に固定することを可能にし、同時に高い電気的かつ熱的導電性を有する層を製造することを可能にする。さらに、焼結銀技術は、例えば5から50μmの厚さを有する非常に薄い層を製造することを可能にする。
【0022】
コンデンサアレンジメントはさらに少なくとも1つの第2セラミック多層コンデンサを有することができ、第2セラミック多層コンデンサも同様に、複数のセラミック層と、その間に配置された電極とを有し、台座の上に配置されており、第2多層コンデンサの電極は配線路と電気的にコンタクトしている。個別の台座は、従って、複数の多層コンデンサの機械的固定のためと、電気的コンタクトのために、用いられることができる。
【0023】
台座は、セラミック多層コンデンサと第2セラミック多層コンデンサとの間に延在する少なくとも1つのスリットを有する。スリットは、例えば異なる熱膨張係数に起因する機械的応力を緩和して、機械的負荷の軽減に作用することができる。
【0024】
セラミック多層コンデンサ及び第2セラミック多層コンデンサは相互に並列に接続されることができる。複数の多層コンデンサの並列接続によって、総静電容量が多層コンデンサの静電容量の合計に相応するコンデンサアレンジメントが得られる。並列接続は従って、非常に高い静電容量を有するコンデンサアレンジメントを構成することを可能にする。高い静電容量は例えば高い電荷吸収能力(Ladungsaufnahmefaehigkeit)のために重要である。
【0025】
コンデンサアレンジメントはSMD部品(SMD = Surface Mounted Device)であることができる。相応に、コンデンサアレンジメントは配線基板上での表面実装に好適であることができる。その際、コンデンサアレンジメントは例えばはんだ付け又は銀焼結によって配線基板上に固定されることができる。特にコンデンサアレンジメントは、配線基板上での表面実装のための複数の異なる方法に対して好適であることができる。
【0026】
コンデンサアレンジメントは、台座が少なくとも40mm
2の面積で配線基板の直接上に載置されるように、配線基板上に固定されるために構成されることができる。例えば、台座は配線基板上に51.7mm
2の面積で載置される。
【0027】
基板の材料及び厚さと、配線路の材料及び厚さとは、多層コンデンサの熱膨張係数に適合された熱膨張係数を台座が有するように選択されることができる。特に、台座の熱膨張係数は、多層コンデンサの熱膨張係数から、0.5ppm/Kだけ低く、好ましくは0.1ppm/Kだけ低く相違している。熱膨張係数を相互に適合させることによって、コンデンサアレンジメントが、温度変化の際に、さもなければ台座と多層コンデンサの異なる膨張によって生じるであろう高い機械適応力に、さらされないことが確実にされることができる。台座の熱膨張係数は配線路の材料量に対する基板の材料量の比によって特定される。この比を相応に選択することによって、熱膨張係数は所望の値に設定されることができる。
【0028】
多層コンデンサは例えば10ppm/Kの熱膨張係数を有することができる。多層コンデンサは実質的にセラミック材料と内部電極から成り、セラミック材料は例えば3ppm/Kの熱膨張係数を有し、内部電極は例えば銅から成り、明らかにより高い熱膨張係数を有する。多層コンデンサの熱膨張係数も、セラミック材料の材料量と内部電極の材料量との比を選択することによって、所望のように設定されることができる。
【0029】
台座の基板のための材料として、例えば、2.5ppm/Kの熱膨張係数を有する窒化ケイ素が選択されることができる。或いは、基板のための材料として、6.8ppm/Kの熱膨張係数を有する酸化アルミニウムが選択されることができる。台座の配線路を形成する銅層の厚さを設定することによって及び基板の厚さを設定することによって、台座の熱膨張係数はコンデンサに適合されることができるようになる。従って、例えば、酸化アルミニウム製の基板の場合、比較的薄い銅層が選択され、窒化ケイ素製の基板の場合、比較的厚い銅層が選択されるであろう。
【0030】
台座及び多層コンデンサは、同一の幅を有することができる。相応に、コンデンサアレンジメントの幅は多層コンデンサの幅に対応する。従って多層コンデンサを配線基板上に固定するために幅の増加は必要ではない。このようにして、コンデンサアレンジメントの必要な設置スペースは、多層コンデンサの広がりに制限されることができる。
【0031】
ここでは、同一の幅とは、台座の幅と多層コンデンサの幅とが通常の製造許容誤差の枠内でのみ異なることであると解されるべきである。相応に、台座の幅は、多層コンデンサの幅から0.1mm未満だけ偏差する。
【0032】
基板は、窒化ケイ素、酸化アルミニウム又は窒化アルミニウムを含む。窒化ケイ素は、特に30W/mKの高い熱伝導率によって傑出している。酸化アルミニウムは20W/mKの熱伝導率を有する。基板は0.1mmと2.0mmとの間の厚さを有することができる。
【0033】
配線路は銅から成ることができる。配線路は0.05mmと1.0mmとの間の厚さを有する。配線路の厚さは、良好な導電性を保証するために、0.05mmより小さく選択されるべきではない。
【0034】
以下では、本発明の有利な態様が挙げられる。態様を互いによりよく参照できるようにするために、態様は符号が付されている。
【0035】
1.コンデンサアレンジメントであって、
- 複数のセラミック層と、その間に配置された第1電極及び第2電極とを有する少なくとも1つのセラミック多層コンデンサ、及び
- 基板と配線路とを有する台座、を備え、
配線路は、多層コンデンサに面する方を向いた基板の上面から(von einer zum Vielschichtkondensator hinweisenden Oberseite des Substrats)、多層コンデンサから離れる方を向いた基板の下面へと(zu einer vom Vielschichtkondensator wegweisenden Unterseite des
Substrats)導かれ、
多層コンデンサは台座上に機械的に固定されており、
第1電極及び第2電極は、配線路と電気的に接続されている。
【0036】
2.上述の態様によるコンデンサアレンジメントであって、
多層コンデンサは、多層コンデンサの1つの同一の外面上に配置された、第1外部コンタクトと第2外部コンタクトとを備え、
第1電極は第1外部コンタクトを介して複数の配線路のうちの1つと接続されており、
第2電極は第2外部コンタクトを介して複数の配線路のうちの1つと接続されている。
【0037】
3.上述の態様によるコンデンサアレンジメントであって、多層コンデンサは、第1前記外面の少なくとも半分で、台座の直接上に載置されている。
【0038】
4.上述の態様によるコンデンサアレンジメントであって、セラミック多層コンデンサは、銀含有層を介して台座と接続されている。
【0039】
5.上述の態様によるコンデンサアレンジメントであって、セラミック多層コンデンサは、ペーストを塗布した後に焼結させて形成される層を介して台座と接続されている。
【0040】
6.上述の態様によるコンデンサアレンジメントであって、複数のセラミック層とその間に配置された電極とを有する第2セラミック多層コンデンサが、台座上に配置されており、第2セラミック多層コンデンサの電極は配線路と電気的に接続されている。
【0041】
7.上述の態様によるコンデンサアレンジメントであって、台座は、セラミック多層コンデンサと第2セラミック多層コンデンサとの間に延在する少なくとも1つのスリットを有する。
【0042】
8.6.又は7.の態様によるコンデンサアレンジメントであって、セラミック多層コンデンサ及び第2セラミック多層コンデンサは相互に並列に接続されている。
【0043】
9.上述の態様によるコンデンサアレンジメントであって、コンデンサアレンジメントはSMD素子である。
【0044】
10.上述の態様によるコンデンサアレンジメントであって、基板の材料及び厚さと、配線路の材料及び厚さとは、多層コンデンサの熱膨張係数と適合する熱膨張係数を台座が有するように選択される。
【0045】
11.上述の態様によるコンデンサアレンジメントであって、台座及び多層コンデンサは同一の幅を有している。
【0046】
12.上述の態様によるコンデンサアレンジメントであって、基板は、窒化ケイ素、酸化アルミニウム又は窒化アルミニウムを含む。
【0047】
13.上述の態様によるコンデンサアレンジメントであって、基板は、0.1mmと2.0mmとの間の厚さを有する。
【0048】
14.上述の態様によるコンデンサアレンジメントであって、配線路は銅を含む又は銅から成る。
【0049】
15.上述の態様によるコンデンサアレンジメントであって、配線路は0.05mmと1.0mmとの間の厚さを有する。
【図面の簡単な説明】
【0050】
以下では、本発明が図面を参照して説明される。
【
図1】コンデンサアレンジメントの断面図を示す図である。
【
図2】第1実施形態による多層コンデンサの電極構成を示す図である。
【
図3】第1実施形態による多層コンデンサの電極構成を示す図である。
【
図4】第1実施形態による多層コンデンサの電極構成を示す図である。
【
図5】第2実施形態による多層コンデンサの電極構成を示す図である。
【
図6】第2実施形態による多層コンデンサの電極構成を示す図である。
【
図7】第2実施形態による多層コンデンサの電極構成を示す図である。
【
図8】コンデンサアレンジメントの第2実施形態を示す図である。
【
図10】
図9に示される台座の上面図を示す図である。
【
図12】本発明による種々のコンデンサアレンジメントの種々の特性を比較コンデンサアレンジメントと対比したシミュレーション結果の一覧表を示す。
【発明を実施するための形態】
【0051】
図1はコンデンサアレンジメント1の断面図を示す。コンデンサアレンジメント1はセラミック多層コンデンサ2と台座3とを有する。さらに、
図1は、コンデンサアレンジメント1の詳細を認識できるようにする、断面図の部分拡大図を示す。
【0052】
セラミック多層コンデンサ2は、重なり合って積層された複数のセラミック層4と、その間に配置された電極5a,5b,5cとを有する。セラミック多層コンデンサ2に対する複数の実施形態は後に
図2乃至7を参照して述べられる。セラミック多層コンデンサ2は、台座3の方に向けられた第1外面6上に、2つの外部コンタクト7a,7bを有する。電極5a,5bは外部コンタクト7a,7bと電気的に接続される。多層コンデンサ2は、片面接続として意図されている。
図1に示されるハッチングは、電極5a,5b,5cの経過を示すものではなく、コンデンサアレンジメント1の他の要素から多層コンデンサ2をより良く区別することができるようにするためだけに役立つ。
【0053】
特に、電極5a,5b及びピエゾ電気材料は、一方の外部コンタクト7aと接続される1つの電極5aと、他方の外部コンタクト7bと接続される1つの電極5bと、がそれぞれ積層方向Sにおいて交互になるように、かつ、各2つの電極5a,5bの間に1つのピエゾ電気材料層が配置されるように、セラミック多層コンデンサ2内に積層される。
【0054】
外部コンタクト7a,7bは0.1μmと1μmとの間の厚さを有する。ここでは「厚さ」とは、多層コンデンサ2の第1外面6の面法線の方向に平行な方向における、それぞれの層の広がりを示す。
【0055】
多層コンデンサ2は台座3と機械的に接続される。この接続は、銀を含有する層8によって確立される。特に、層8は、95重量%又は99重量%の純粋な銀を含む。多層コンデンサ2を台座3と接続する層8は、ペーストの焼結によって形成される。多層コンデンサ2を台座3に固定する工程は、銀焼結技術とも称される。層8はさらに、多層コンデンサ2の外部コンタクト7a,7bと台座3との間の電気的コンタクトを確立する。銀を含有する層8は、5μmと50μmとの間の厚さを有する。
【0056】
台座3は、基板9及び配線と10a,10bを有する。基板9はセラミック又は誘電体材料からなり、例えば、窒化ケイ素、酸化アルミニウム又は窒化アルミニウムを含む。基板9は、直方体形状を有し、基板9の上面11は多層コンデンサ2に面し(hingewandt)、基板9の下面12は多層コンデンサから離れる方を向く(weg
weist)。基板9は0.2mmと1.0mmとの間の厚さを有する。
【0057】
配線路10a,10bは、基板9の表面上で、基板9の上面11から基板9の下面へ向かって延在する。配線路10a,10bは、伝導材料、例えば銅からなる。配線路10a,10bは、0.1mmと0.6mmとの間の厚さを有する。
【0058】
特に、台座3は第1配線路10a及び第2配線路10bを有する。基板9の上面11上には、両配線路10a,10bの間に空気で充填された中空空間13がある。両配線路10a,10b間の距離は、第1配線路10aと第2配線路10bとの間の電気的フラッシュオーバー(Ueberschlag)が生じないほど大きい。特に、両配線路10a,10b間の距離は相互に、コンデンサアレンジメント1への漏れ距離要求(Kriechstreckenanforderungen)が満たされるように選択される。基板9の下面上でも両配線路10a,10bは相互に、両配線路10a,10b間の電気的フラッシュオーバーが生じないほど遠くに、離れている。
【0059】
台座3は、所謂DCB部品(DCB = Direct Copper Bonding)であり、ときどきDBC部品(DBC
= Direct Bonded Copper)とも称される。これらの部品は、配線基板上の表面実装のために適している。相応にコンデンサアレンジメント1は、SMD部品(SMD = Surface Mounted Device)である。多層コンデンサ2及び台座3を有するコンデンサアレンジメント1は、表面実装を用いて配線基板上に固定され、従って基板9の下面12上に配置された配線路10a,10bは、例えばはんだ接続によって又は焼結銀技術によって製造された接続層を用いて配線基板と接続される。
【0060】
多層コンデンサ2及び台座3は同一の幅Bを有する。幅Bは、多層コンデンサ2の第1外面6の面法線に対して垂直であり、さらに、多層コンデンサ2内の電極5a,5b,5c及びセラミック層4が重なり合って積層される積層方向Sに対して垂直である、空間方向への多層コンデンサ2又は台座3の広がりを示す。積層方向Sは
図1の紙面から出てくる方向を示す。
【0061】
図2乃至4は、第1実施形態による多層コンデンサ2の電極構造を示す。電極構造は、多層コンデンサ2の片面接続を可能にし、電極5a,5bは多層コンデンサ2の第1外面6上に配置された外部コンタクト7a,7bとコンタクトしている。
図2は多層コンデンサ2を斜視図で示す。
図3は第1電極5aが配置された個別の第1電極層14aと、第2電極5bが配置された個別の第2電極層14bとを示す。第1電極層14a及び第2電極層14bは、多層コンデンサ2内で交互に重なり合って積層し、2つの電極層14a,14bの間にはそれぞれ1つのセラミック層4が配置される。
図4は多層コンデンサ2の上面図を示す。
【0062】
多層コンデンサ2は、第1実施形態によれば、第1電極5a及び第2電極5bを有する。第1電極5aは
図3の左図に示される。第1電極5aの一端は、多層コンデンサ2の第1外面6へ引き出され、第1外部コンタクト7aと接続される。第1電極5aは第2外部コンタクト7bとは接続されない。
【0063】
図3の右図は、第2電極5bを示す。第2電極5bは第2外部コンタクト7bと接続される。第2電極5bの一端は第1外面6に接している(anliegen)。積層方向Sにおける正投影において(In einer
orthogonalen Projektion in Stapelrichtung S)、第1電極5aと第2電極5bとは広い範囲で重なり合っているが、第1外面6と接続する一端においては重なり合っていない。第1電極5a及び第2電極5bの重なり合った面は、特に
図4に示される上面図においてはっきりと視認することができる。
【0064】
図5乃至7は、多層コンデンサ2の電極構造に対する第2実施形態を示す。
図5は、多層コンデンサ2における電極構造を斜視図で示す。
図6は、第1電極5a及び第2電極5bが配置される個別の第1電極層14aと、第3電極5cが配置される個別の第2電極層14bとを示す。第1電極層14a及び第2電極層14bは、多層コンデンサ2内で交互に重なり合って積層し、2つの電極層14a,14bの間にはそれぞれ1つのセラミック層4が配置される。
図7は多層コンデンサ2の上面図を示す。
【0065】
第2実施形態によれば、多層コンデンサは、第1電極5aと、第2電極5bと、第3電極5cとを有する。第1電極層14aには、第1電極5a及び第2電極5bが配置される。その際、第1電極5aの一端はそれぞれ多層コンデンサ2の第1外面6上で第1外部コンタクト7aと接続される。第2電極5bの一端は第1外面6上で第2外部コンタクト7bと接続される。第1電極5aと第2電極5bとは相互に接触しない。
【0066】
さらに、多層コンデンサ2は、第2電極層14bに配置される第3電極5cを有する。第3電極5cは外部コンタクト7a,7bと接続されない。第3電極5cは、積層方向Sにおける正投影において、第1電極5aとも第2電極5bとも重なり合う。相応に、多層コンデンサ2内で、直列に接続された2つの内部コンデンサが形成される。その際、第1内部コンデンサは、第1電極5a及び第3電極5cによって形成され、第2内部コンデンサは、第2電極5b及び第3電極5cによって形成される。MLSCコンデンサ(MLSC = Multi Layer Serial Capacitor)である。
【0067】
図8は、コンデンサアレンジメント1についてのさらなる実施形態を示す。
【0068】
さらなる実施形態によれば、コンデンサアレンジメント1は複数の多層コンデンサ2を有する。複数の多層コンデンサ2は、
図1乃至7との関係において1つの多層コンデンサ2に関して開示された構造と機能的特徴を有する。複数の多層コンデンサ2は、台座3の配線路によって、それぞれ1つの第1外面6と機械的かつ電気的に接続される。多層コンデンサ2は相互に並列に接続される。
【0069】
複数の多層コンデンサ2は、多層コンデンサ2の積層方向に相応する方向において順次配置される。複数の多層コンデンサ2及び台座3は同一の幅Bを有する。
【0070】
図9は、台座3を斜視図で示す。台座3はスリット15を有する。スリット15は台座3の機械的負荷の軽減に寄与することができる。例えば、スリット15は、多層コンデンサ2の熱膨張係数と台座3の熱膨張係数との間の差異によって生じ得る機械適応力を緩和することができる。
【0071】
コンデンサアレンジメント1が台座3上に配置された複数の多層コンデンサ2を有する場合、スリット15は2つの多層コンデンサ2の間にそれぞれ配置されることができる。配線基板との台座3の接続部の熱伝導性の著しい低下は、スリット15を介したコンデンサアレンジメント1の表面実装の際には予期されない。なぜなら、配線基板上の台座3と接続される面は、スリット15によって実質的に(wesentlich)縮小されていないからである。
【0072】
さらに、複数のコンデンサアレンジメント1を一緒に製造することも可能である。その際、複数の多層コンデンサ2は、スリット15を有する単一の台座3上に配置される。台座3はスリット15に沿って複数の部品に分割することができる。スリット15は従って製造工程の間目標破断位置(Sollbruchstellen)として用いられることができる。
【0073】
図10は
図9に示された台座3の上面図を示す。
図11は台座3を前面から見た図を示す。
【0074】
図12は、本発明によるコンデンサアレンジメント1の種々の特性を比較コンデンサアレンジメントと対比したシミュレーション結果の一覧表を示す。比較コンデンサアレンジメントでは、多層コンデンサは、多層コンデンサの外部電極と接続された焼結された銀層と、焼結された銀層に固定された銅フレームとを有する。銅フレームは四角形に形成され、配線基板への比較コンデンサアレンジメントのコンタクトを可能にする。
【0075】
第2乃至第5列においては、それぞれ本発明によるコンデンサアレンジメント1が考察される。第6列においては、上述の比較コンデンサアレンジメントが考察される。各コンデンサアレンジメントは、唯一の多層コンデンサ2を有し、多層コンデンサ2内の電極5a,5b,5cの数と厚さは全てのコンデンサアレンジメント1において同一である。
【0076】
図12に示されるシミュレーション結果に基づけば、温度抵抗又は温度抵抗の逆数として得られる熱伝導性は、本発明によるコンデンサアレンジメント1において、類似しており、場合によっては、固体金属導体(massive metallische Leiter)を有する比較コンデンサアレンジメントよりも良好であることが認識できる。本発明によるコンデンサアレンジメント1は比較コンデンサアレンジメントに対して、より小さい必要な設置スペースと、より大きい配線基板への接続面積とによって傑出している。特に、表の一番下の行から、本発明によるコンデンサアレンジメント1では必要な設置スペースが大幅に低減されていることがわかる。これは、特に、多層コンデンサ2がその上に固定される台座3を使用することが、コンデンサアレンジメント1の幅Bが多層コンデンサ2の幅と同一であるコンデンサアレンジメント1の設計を可能にすることに由来する。比較コンデンサアレンジメントでは、対照的に、アレンジメントの幅は、多層コンデンサの幅より明らかにより大きくなる。銅フレームによって幅が拡大されるからである。
【符号の説明】
【0077】
1 コンデンサアセンブリ
2 多層コンデンサ
3 台座
4 セラミック層
5a 電極
5b 電極
5c 電極
6 第1外面
7a 外部コンタクト
7b 外部コンタクト
8 層
9 基板
10a 配線
10b 配線
11 基板の上面
12 基板の下面
13 空所
14a 第1電極層
14b 第2電極層
15 スリット
B 幅
S 積層方向