【実施例】
【0036】
以下において本発明の実施例について説明する。ただし、本発明は以下に説明する実施例に限定されるものではない。
【0037】
(実施例1)
実施例1では、AlPO型のERI構造を有するゼオライト膜を作製した。
【0038】
まず、リン源である85%リン酸と構造規定剤であるN,N,N’,N’−テトラメチルジアミノヘキサンとを0℃の純水(氷水)に溶解させながら混合することによって、pH7.3、温度0℃の混合液を調製した。
【0039】
次に、アルミニウム源であるアルミニウムイソプロポキシドを混合液に添加し、冷水中で冷やしながら超音波分散及び攪拌でアルミニウムイソプロポキシドを完全に溶解させることによって、組成が1Al
2O
3:2.1P
2O
5:2.8SDA:1340H
2Oの原料溶液を調製した。SDAは、構造規定剤である。
【0040】
次に、AlPO型のERI結晶を種付けしたモノリス型多孔質支持体の入った耐圧容器に原料溶液を投入して、160℃で40時間水熱合成することによって、AlPO型のERI構造を有するゼオライト膜を成膜した。
【0041】
次に、水熱合成後、AlPO型のERI構造を有するゼオライト膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、AlPO型のERI構造を有するゼオライト膜のN
2透過量を測定したところ、0.005nmol/m
2・s・Pa以下であった。これにより、実施例1に係るERI膜は、十分に実用可能な緻密性を有していることが確認された。
【0042】
次に、AlPO型のERI構造を有するゼオライト膜を450℃で50時間加熱処理することによってSDAを燃焼除去して、ゼオライト膜内の細孔を貫通させた。
【0043】
そして、支持体の両端部をシール材で封止した状態で、0.3MPaGでCO
2/CH
4(50:50)の混合ガスの分離試験を実施したところ、CO
2/CH
4のPerm.比は504であった。また、0.3MPaGでN
2/CH
4(50:50)の混合ガスの分離試験を実施したところ、N
2/CH
4のPerm.比は8.6であった。これにより、実施例1に係るERI膜は、十分に実用可能な分離性能を有していることが確認された。
【0044】
(実施例2)
実施例2では、SAPO型のAFX構造を有するゼオライト膜を作製した。
【0045】
まず、リン源である85%リン酸と構造規定剤であるN,N,N’,N’−テトラメチルジアミノヘキサンとを0℃の純水(氷水)に溶解させながら混合することによって、pH8.4、温度0℃の混合液を調製した。
【0046】
次に、アルミニウム源であるアルミニウムイソプロポキシドを混合液に添加し、冷水中で冷やしながら超音波分散及び攪拌でアルミニウムイソプロポキシドを完全に溶解させた後、さらにケイ素源としてコロイダルシリカを加えることによって、組成が0.75SiO
2:1Al
2O
3:1.25P
2O
5:1.7SDA:305H
2Oの原料溶液を調製した。
【0047】
次に、SAPO型のAFX結晶を種付けしたモノリス型多孔質支持体の入った耐圧容器に原料溶液を投入して、170℃で50時間水熱合成することによって、SAPO型のAFX構造を有するゼオライト膜を成膜した。
【0048】
次に、水熱合成後、SAPO型のAFX構造を有するゼオライト膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、SAPO型のAFX構造を有するゼオライト膜のN
2透過量を測定したところ、0.6nmol/m
2・s・Pa以下であった。これにより、実施例2に係るAFX膜は、十分に実用可能な緻密性を有していることが確認された。
【0049】
次に、SAPO型のAFX構造を有するゼオライト膜を500℃で20時間加熱処理することによってSDAを燃焼除去して、ゼオライト膜内の細孔を貫通させた。
【0050】
そして、支持体の両端部をシール材で封止した状態で、0.2MPaGでCO
2/CH
4(50:50)の混合ガスの分離試験を実施したところ、CO
2/CH
4のPerm.比は159であった。また、0.3MPaGでN
2/CH
4(50:50)の混合ガスの分離試験を実施したところ、N
2/CH
4のPerm.比は6.3であった。これにより、実施例2に係るAFX膜は、十分に実用可能な分離性能を有していることが確認された。
【0051】
(実施例3)
実施例3では、AlPO型のAEI構造を有するゼオライト膜を作製した。
【0052】
まず、リン源である85%リン酸と構造規定剤であるテトラエチルアンモニウムヒドロキシドとを4℃の純水に溶解させながら混合した後に冷却することによって、pH6.2、温度4℃の混合液を調製した。
【0053】
次に、アルミニウム源であるアルミニウムイソプロポキシドを混合液に添加し、冷水中で冷やしながら超音波分散及び攪拌でアルミニウムイソプロポキシドを完全に溶解させた後、リン酸を追加することによって、組成が1Al
2O
3:3.16P
2O
5:6.3SDA:850H
2Oの原料溶液を調製した。
【0054】
次に、AlPO型のAEI結晶を種付けしたモノリス型多孔質支持体の入った耐圧容器に原料溶液を投入して、175℃で30時間水熱合成することによって、AlPO型のAEI構造を有するゼオライト膜を成膜した。
【0055】
次に、水熱合成後、AlPO型のAEI構造を有するゼオライト膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、AlPO型のAEI構造を有するゼオライト膜のN
2透過量を測定したところ、0.04nmol/m
2・s・Pa以下であった。これにより、実施例3に係るAEI膜は、十分に実用可能な緻密性を有していることが確認された。
【0056】
次に、AlPO型のAEI構造を有するゼオライト膜を550℃で20時間加熱処理することによってSDAを燃焼除去して、ゼオライト膜内の細孔を貫通させた。
【0057】
そして、支持体の両端部をシール材で封止した状態で、0.2MPaGでCO
2/CH
4(50:50)の混合ガスの分離試験を実施したところ、CO
2/CH
4のPerm.比は289であった。また、0.3MPaGでN
2/CH
4(50:50)の混合ガスの分離試験を実施したところ、N
2/CH
4のPerm.比は9.4であった。これにより、実施例3に係るAEI膜は、十分に実用可能な分離性能を有していることが確認された。
【0058】
(比較例1)
比較例1では、リン源である85%リン酸とアルミニウム源であるアルミニウムイソプロポキシドとを混合した後、構造規定剤であるN,N,N’,N’−テトラメチルジアミノヘキサンを室温で添加した以外は、実施例1と同じ工程で原料溶液を調製した。比較例1の原料溶液の組成は、実施例1と同じであった。
【0059】
次に、AlPO型のERI結晶を種付けしたモノリス型多孔質支持体の入った耐圧容器に原料溶液を投入して、170℃で30時間、40時間、及び45時間水熱合成することによって、AlPO型のERI構造を有するゼオライト膜の成膜を試みた。
【0060】
次に、水熱合成後、AlPO型のERI構造を有するゼオライト膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、AlPO型のERI構造を有するゼオライト膜のN
2透過量を測定したところ、いずれの合成時間で成膜したものも、N
2透過量は500〜5000nmol/m
2・s・Paの範囲内であった。このことから、緻密なAlPO型のERI構造を有するゼオライト膜を成膜できていないことが分かった。
【0061】
(比較例2)
比較例2では、リン源である85%リン酸とアルミニウム源であるアルミニウムイソプロポキシドとを混合した後、構造規定剤であるN,N,N’,N’−テトラメチルジアミノヘキサンとコロイダルシリカとを室温で添加した以外は、実施例2と同じ工程で原料溶液を調製した。比較例2の原料溶液の組成は、実施例2と同じであった。
【0062】
次に、SAPO型のAFX結晶を種付けしたモノリス型多孔質支持体の入った耐圧容器に原料溶液を投入して、170℃で30時間、40時間、及び50時間水熱合成することによって、SAPO型のAFX構造を有するゼオライト膜の成膜を試みた。
【0063】
次に、水熱合成後、SAPO型のAFX構造を有するゼオライト膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、SAPO型のAFX構造を有するゼオライト膜のN
2透過量を測定したところ、いずれの合成時間で成膜したものも、N
2透過量は3000〜10000nmol/m
2・s・Paの範囲内であった。このことから、緻密なSAPO型のAFX構造を有するゼオライト膜を成膜できていないことが分かった。
【0064】
(比較例3)
比較例3では、構造規定剤であるテトラエチルアンモニウムヒドロキシド水溶液とアルミニウム源であるアルミニウムイソプロポキシドとを混合して溶解した後、リン源である85%リン酸を室温で添加した以外は、実施例3と同じ工程で原料溶液を調製した。リン源を添加する際に、一部ゲル化する様子が見られた。比較例3の原料溶液の組成は、実施例3と同じであった。
【0065】
次に、AlPO型のAEI結晶を種付けしたモノリス型多孔質支持体の入った耐圧容器に原料溶液を投入して、175℃で30時間水熱合成することによって、AlPO型のAEI構造を有するゼオライト膜の成膜を試みた。
【0066】
次に、水熱合成後、AlPO型のAEI構造を有するゼオライト膜を純水で十分に洗浄した後、90℃で完全に乾燥させた。乾燥後、AlPO型のAEI構造を有するゼオライト膜のN
2透過量を測定したところ、608nmol/m
2・s・Paの範囲内であった。このことから、緻密なAlPO型のAEI構造を有するゼオライト膜を成膜できていないことが分かった。
【0067】
(考察)
以上のとおり、酸性のリン源とアルカリ源とを中和させた混合液にアルミニウム源を添加して原料溶液とした実施例1〜3では、リン源とアルミニウム源とが反応して溶解性の低いリン酸アルミニウムが生成されることを抑制できたため、アルミノフォスフェート系ゼオライト膜の成膜性を向上させることができた。その結果、緻密かつ分離性能の高いアルミノフォスフェート系ゼオライト膜が得られた。
【0068】
一方、酸性のリン源とアルミニウム源を混合した後にアルカリ源を混合して原料溶液とした比較例1〜2では、リン源とアルミニウム源とが先に反応してリン酸アルミニウムが生成されてしまったため、アルミノフォスフェート系ゼオライト膜の成膜性が低下した。同様に、アルカリ性の構造規定剤とアルミニウム源を混合した後に酸性のリン源を混合して原料溶液とした比較例3では、中和時に原料溶液の一部がゲル化してしまった。その結果、比較例1〜3では、緻密なアルミノフォスフェート系ゼオライト膜を得ることができなかった。
【0069】
以上より、酸性のリン源とアルカリ源とを中和させた混合液にアルミニウム源を添加して原料溶液を調製することによって、アルミノフォスフェート系ゼオライト膜の成膜性を向上させられることが確認された。