【実施例】
【0087】
実施例1:本発明は、FFPE組織切片内の多重標的を定量するための「バーコーディングの可能性」をもたらす。
【0088】
腫瘍内の不均一性が、標的とした治療薬の実施に対する重要な課題として現れる。歴史的に、免疫組織化学(IHC)は、タンパク質の空間的不均一性を評価するために使用された;しかしながら、高度な多重化および広いダイナミックレンジにてタンパク質量を定量することは難しい。
【0089】
この実施例では、ホルマリンで固定したパラフィン包埋(FFPE)組織切片内のタンパク質を、光切断可能リンカーおよび蛍光バーコードを含んだ抗体含有プローブで標識した。−FFPE組織切片のユーザー規定ROIにおける−プローブを、続いて集束UV光
に当て、それによって、ROIから(蛍光バーコードを含む)シグナルオリゴヌクレオチドを放出させる。放出されたシグナルオリゴヌクレオチドを、FFPEサンプルから洗い流し、回収した。次に、該放出されたシグナルオリゴヌクレオチドからの蛍光バーコードを、NanoString Technologies(登録商標)製のnCounter(登録商標)システムによって認識し、デジタル的にカウントし、それによって、組織切片のユーザー規定の空間的領域内のそれぞれの標的タンパク質の量を定量した。第一ROIからのシグナルオリゴヌクレオチドを放出させ、回収した後に、集束UV光を、FFPE組織切片の第二ユーザー規定ROIに当て、それによって、第二ROIからシグナルオリゴヌクレオチドを放出させた。この制限されることのない例では、観察されたカウント数対UV照射面積の高度な直線性(0.97<R
2<0.99)が観察され、そして、約100μm×100μm、または約100細胞の検出空間分解能を有した。意外なことに、本発明は、単独のFFPE組織切片において、対数5.5(基数10)のダイナミックレンジにて、最大800個の標的を定量するための「バーコーディングの可能性」をもたらした。
【0090】
実施例2:本発明は、シグナル増幅なしにタンパク質発現を定量するため、およびFFPE組織切片における高次な標的抗原の多重化を達成するための実用的かつ実現可能なアプローチを提供する。
【0091】
定量的な、多重免疫組織化学が、腫瘍学の中の非常に興味深い分野として現れた。なぜなら、それが、チェックポイントの遮断が腫瘍の微小環境にどのように影響を与えるかをさらに規定する、空間時間的組織および相互依存性を識別する独特な能力を有するからである。この実施例は、FFPE組織切片内で標的抗原と相互作用する光切断可能なオリゴタグを付与した一次抗体を使用する、ワンステップの、増幅不要の染色法を説明する。該抗体からオリゴを放出する紫外(UV)光の照射が適用され、そして、溶出液回収、定量、および抗原量に相当するデジタルカウントがその後に続く。
【0092】
最初に、さまざまな結合方法を調査した;これが、安定な、主にヒンジ領域重鎖に対して部位選択的であり、そのうえ、オリゴヌクレオチド対抗体の化学量論比に関して比較的制御可能であるシステイン生体共役反応法を確立した。
【0093】
次に、UV誘発性切断面積と、計測されたデジタルタンパク質カウントとの間の相関を判定するために、線形回帰分析を実施した;これから、高度な直線性(0.97<R
2<0.99)が観察され、FFPE組織に対するこの多重タンパク質カウント法に関連する基本機構/前提を確認した。
【0094】
抗体−抗原相互作用に対する結合オリゴヌクレオチドの存在の影響を判定するために、FFPE組織切片において同一条件下での無修飾抗体に対する標識オリゴヌクレオチド結合抗体の性能を、感度、特異性、およびシグナル強度に関して比較した。抗体性能と標的抗原の細胞下配置との相関を判定するために、核、細胞質、または膜に局在する抗原を標的とした抗体を選択した。選択した抗体は、Foxp3、ヒストン H3、P−S6(核抗原)、CD3、CD4、PD−1、CD45RO(細胞質抗原)、およびPD−L1(膜抗原)を標的とした。感度に関して、一般的に、「より重い」オリゴヌクレオチド結合抗体(1抗体あたり3または4つの標識オリゴヌクレオチドを有する)は、非結合抗体または「より軽い」オリゴヌクレオチド結合抗体(1抗体あたり1または2つの標識オリゴヌクレオチドを有する)と比較したときに、著しく感度を欠くことがわかった。核、細胞質、および膜の標的抗原を通じて、感度、特異性、または強度に関して、非結合抗体と、「より軽い」オリゴヌクレオチド結合抗体との間で顕著な違いは観察されなかった。
【0095】
本発明は、免疫治療介入前およびその最中における腫瘍の免疫状況を包括的に規定するための実用的かつ実現可能な方法を使用して、絶対タンパク質発現レベルを計測する高度に多重化したタンパク質プロファイリングを提供する。
【0096】
実施例3:本発明は、FFPE組織から空間分解した、多重タンパク質検出を提供する。
【0097】
方法
【0098】
抗体−この実施例および実施例4〜6に使用した抗体としては:「標的(クローンID、供給業者)」:H3(D1H2、CST)、CD8(OTI3H6、Origene)、CD4(SP35、Spring Bio)、FOXP3(D2W8E、CST)、B7−H3(D9M2L、CST)、S6(54D2、CST)、B7−H4(D1M8I、CST)、Granzyme B(OTI4E4、Origene)、Ki67(8D5、CST)、PD−1(Nat105、Cell Marque)、CD3(MRQ−39、Cell Marque)、Vista(D1L2G、CST)、Her2(29D8、CST)、PR(D8Q2J、CST)、ER(SP1、Spring Bio)、EGFR(D38B1、CST)、CD56(MRQ−42、Cell Marque)、PD−L1(E1L3N、CST)、CD45(2B11&PD7/26、Cell Marque)、TIM−3(D5D5R、CST)、およびPan Keratin(C11、CST)、CD45RO(UCHL1、Cell Marque)が挙げられる。
【0099】
扁桃腺の顕微鏡法−扁桃腺FFPEブロック(Amsbio)の5μm切片を、スライド上に封入した。IHCを、標準プロトコールを使用して実施した。抗原回復を、圧力鍋を用いて実施した。扁桃腺切片の染色を、CD3一次抗体MRQ−39(ウサギmAb、Cell Marque)およびKi−67一次抗体8D5(マウスmAb、CST)を用いて実施した。二次インキュベーションを、Alexa594標識ヤギαウサギ(Life Tech)およびAlexa488標識ヤギαマウス(Life Tech)と共に実施した。
【0100】
ここで、スライドに接着したサンプルを、最初に、蛍光抗体を使用して画像化し、次に、タンパク質発現を、サンプルからデジタル的にカウントした。
【0101】
図10〜
図14(上部)に例示したものと同様のステップを使用した。選択したROIのUV切断は、30plexすべてのデジタルプロファイリングを可能にした(nCounter(登録商標)カウント)。
【0102】
結果
【0103】
図18は、Ki−67(緑色の細胞増殖マーカー)およびCD3(赤色の免疫細胞マーカー)の二色の蛍光を使用して最初に画像化した扁桃腺サンプルの全体的な組織形態を確立する顕微写真を示す。12カ所の領域(
図19で拡大した4つの領域を含む)にわたる多重標的分析は、Ki−67およびCD3の局在性に関する3つの異なったプロファイルを示す。
図19は、
図18に示した4つの領域に関するKi−67およびCD3のnCounter(登録商標)カウントを示す。
図20は、
図18に示した扁桃腺サンプルから12の関心領域(ROI)に対する30plexのオリゴ抗体カクテルによる代表的なカウントを示す。(調査すべき様々な追加対照を許容するように)データを連続切片から得た。示したように、組織サンプルの領域を、発現されたマーカーの強度および同一性に基づいて分類した。示した代表的な分類:「CD3豊富」「Ki67豊富」、「混合」、および「結合組織」。
【0104】
これらのデータは、本発明が複数(ここでは、少なくとも30)のタンパク質標識の空間分解検出を提供することを示す。使用するタンパク質プローブ(抗体)数の規模を拡大することによって、最大800の異なったタンパク質標識を、同様の分解能で検出できる。
【0105】
実施例4:本発明は、FFPE組織からの多重タンパク質検出、および単独細胞分解能アプローチを提供する。
【0106】
方法
【0107】
黒色腫の顕微鏡法−メラノーマ(リンパ節由来)FFPEブロック(Asterand)の5μm切片を、スライド上に封入した。IHCを、標準プロトコールを使用して実施した。抗原回復を、圧力鍋を用いて実施した。
【0108】
ここで、サンプルを、最初に、蛍光を使用して画像化し、次に、タンパク質発現を、サンプルからデジタル的にカウントした。
【0109】
図10〜
図14(上部)に例示したものと同様のステップを使用した。
【0110】
結果
【0111】
図21は、CD3(赤色)、CD8(緑色)、およびDAPI(青色)の三色の蛍光を使用して最初に画像化したリンパ節の黒色腫サンプル中のT細胞の全体的な組織形態を確立する顕微写真を示す。白丸は、直径25μmであり、3つの細胞を囲んでいる。
【0112】
図22は、UV照射領域(直径100μm〜1mm)の作用としてFFPEリンパ節組織切片(5μm厚)から放出されたCD3複合体に関するnCounter(登録商標)データを示す。検出カウントの制限(LOD=バックグラウンドカウント+2×標準偏差)は、直径で26μmの空間分解能に相当する。視野の絞りサイズを、図面の下部に示す。
図23および
図24は、(それぞれ、同じ実験からの)CD45およびPD1に関するデータを示す。
【0113】
前記データは、本発明の空間的検出能力が約1〜4細胞に相当することを示す。
【0114】
実施例5:本発明は、臨床関連アッセイにおける定量性能を提供する。
【0115】
方法
【0116】
図10〜
図14(上部)に例示したものと同様のステップを使用した。
【0117】
乳癌組織マイクロアレイ(TMA):TMA BR1504aを、US Biomax, Inc.から入手し、H&E染色画像を、US Biomaxウェブサイト(World Wide Web (www) biomax.us/tissue-arrays/Breast/BR1504a)から入手した。
図25の左側のパネルに示した切片と同じブロックからの切片を、Her2一次抗体29D8(ウサギmAb、CST)およびAlexa594標識ヤギαウサギ(Life Tech)を用いて染色した。カウントもまた、ヒストン H3、リボソームタンパク質S6、エストロゲン受容体、プロゲステロン受容体、マウスIgGアイソタイプ対照、およびウサギIgGアイソタイプ対照に関して得た(データ未掲載)。TMA BR1504aのHer2病理学者スコアは、US Biomax, Inc.によって提供された(World Wide Web (www) biomax.us/tissue-arrays/Breast/BR1504a)。Her2一次抗体29D8(ウサギmAb、CST)およびAlexa594標識ヤギαウサギ(Life Tech)を用いて、染色を実施した。他のウサギ一次抗体を一次カクテル中に使用したが、それらの抗体からの蛍光は、Her2蛍光と比較して、ごくわずかであった。合計ピクセル強度(λ=594における)を、ImageJソフトウェアを使用して得た。これに関して、バックグラウンド値を強度=0に設定し、そして、最も高い強度を強度=255に設定した。ROIあたりの全ピクセル強度の合計を示す。
【0118】
ここで、サンプルを、最初に、蛍光を使用して画像化し、次に、タンパク質発現を、サンプルからデジタル的にカウントした。
【0119】
結果
【0120】
図25(左のパネル)は、IHC染色によってHer2蛍光を同定する顕微写真(中央のパネル)に示した可変レベルのHer2タンパク質を含めた、乳房腫瘍組織の組織マイクロアレイ(TMA)を示す。右のパネルは、中央のパネルの単一領域の拡大図を示す:斯かる領域を、多重抗体カクテルで染色した。
【0121】
図26は、48の代表的な領域対Her2状況(ASCO−CAPガイドライン)に関するnCounter(登録商標)カウントデータを示す。
図27では、
図26について言及した48の領域に関するnCounter(登録商標)カウント対合計ピクセル強度(×10
3)をプロットする。
【0122】
これらのデジタルカウントデータは、ASCO−CAPガイドラインによる目視によるHer2状況のスコアリング(R
2=0.51、
図26)と比較して、蛍光強度(R
2=0.92、
図27)との高い相関関係を示す。
【0123】
実施例6:本発明は、組織サンプル内の特定の細胞型の量を明らかにする。
【0124】
図10〜
図14(上部)に例示したものと同様のステップを使用した;
スライドに接着した黒色腫のサンプルを、最初に、蛍光を使用して画像化し、次に、タンパク質発現を、サンプルからデジタル的にカウントした。
【0125】
図28は、CD3(免疫細胞マーカー、赤色)とDAPI(細胞核、青色)の二色の蛍光を使用した黒色腫サンプルの全体的な組織形態を確立する顕微写真を示す。30個の抗体のカクテルを使用した発現データを、白枠で識別される10の領域から得た。
図29は、
図28に示した黒色腫サンプルからの10の関心領域(ROI)に対する30plexのオリゴ抗体カクテルによる代表的なnCounter(登録商標)カウントを示す。それぞれがバックグラウンドを超える発現カウントを有する、13のマーカーに関するカウントを示す。「免疫浸潤が豊富」であると確認された領域5、6、7は、T細胞性マーカーおよびT細胞調節マーカーの最も高い発現を有した。
【0126】
これらのデータは、本発明が複数(ここでは、少なくとも30)のタンパク質マーカーの空間分解検出を実現することを示す。使用するタンパク質プローブ(抗体)の数の規模を拡大することによって、最大800の異なったタンパク質標識を、同様の分解能で検出できる。
【0127】
実施例7:デジタルミラーデバイス(DMD)は、単独細胞の照射を可能にする。
【0128】
図30Aおよび30Bは、扁桃腺組織サンプル中の単独細胞に照射する場合、デジタルミラーデバイス(DMD)を使用したUV照射が可能であることを示す顕微写真である。
【0129】
これらのデータは、DMDを使用したときに、本発明が単独細胞分解可能であることを示す。
【0130】
実施例8:ゲルボックスは、サンプル全体に照射をおこない、そして、サンプル全体に結合したプローブからシグナルオリゴヌクレオチドを放出させることができる。
【0131】
図34:組織またはサンプル全体が、例えば、標準的な実験室用UVゲルボックスを用いて、照射された実施形態からのデータを示す。ここで、FFPE組織スライドを、ライトパネル上に置き、ワックスペンを使用して、バッファー溶液(TBS)を保持し、FFPE組織を被覆し、そして、UV光曝露(276〜362nm、例えば、302nm;〜5mW/cm
2)を、ガラススライド(1mm厚)を通して組織に適用した。データは、約1分以内のUV曝露で、シグナルオリゴヌクレオチドの大部分が、FFPE結合抗体から放出されたことを示す。カウントを、陽性対照に対して標準化する。
【0132】
実施例9:顕微鏡からの照射は、サンプルの関心領域を照射し、そして、関心領域に結合されたプローブからシグナルオリゴヌクレオチドを放出させることを可能にする。
【0133】
図35は、組織またはサンプルの一部に、例えば、顕微鏡を用いて、照射される実施形態、すなわち、顕微鏡下でのUV切断を示す(時間滴定実験)。これは、サンプル全体が照射される実施例8の実験と対照的である。ここで、UV LED(365nmにて)は、20×対物レンズを用いて〜150mW/cm
2にて適用される。UV照射は、以前の蛍光(〜590nmの励起)明視野画像化によって同定した全組織領域を走査した。視野(FOV)あたり約1秒以内のUV曝露で、ほとんどのシグナルオリゴヌクレオチドがFFPE結合プローブから放出される。実施例8のゲルボックス実験を、非空間分解100%放出対照として利用した。カウントを、陽性対照に対して標準化する。青色:可変の露出時間を用いた顕微鏡データ;赤色:ゲルボックス2.5分曝露のデータ。顕微鏡装置の形態を示す写真および図解も示す。
【0134】
図36は、シグナルオリゴヌクレオチドが肺組織サンプルに結合した均一に分布した抗ヒストン(H3)抗体から放出されることを示す。組織を、約450μm×330μm=0.15mm
2の視野(FOV)あたり1秒のUV(365nm、20×対物レンズを用いて〜150mW/cm
2)に当てた。流出液を回収するために使用される「マクロ体積」は、約70μlであった。これは、約5μlの回収流出液を用いた(FOV/5)〜99μm×99μmまでの検出限界を低下させた。したがって、この実施例では、検出限界は約10細胞×10細胞ニッシェある。これらのデータは、抗体シグナルが、空間分解照射領域FOVに比例し、「マクロ流体」検出限界(LOD)を評価することを示す。
【0135】
図37は、組織またはサンプルの一部に、例えば、顕微鏡を用いて、照射される実施形態、すなわち、顕微鏡下での、および多重標的に関するUV切断を示す(照射領域滴定実験)。組織における多重標的:2つの陽性標的(ヒストンH3およびリボソーム S6)および8つの陰性標的、のUV切断を示す。1つの陰性標的(Ox40)のみが、高いバックグラウンドを示した。ゼロ、1、4、9、および16視野からのデータを示す。
【0136】
実施例10:関心領域は、標識技術によってあらかじめ同定されてもよく、次に、関心領域は照射され、シグナルオリゴヌクレオチドが、あらかじめ同定した関心領域に結合したプローブから放出される。
【0137】
図38は、組織(例えば、乳癌サンプル)内の関心領域が最初に、マーカー(ここでは、Her2)の発現に関して同定され、次に、この関心領域は(例えば、UVを)照射されて、結合プローブからシグナルオリゴヌクレオチドが放出されるにある実施形態を示す。示したデータは、2つの位置:Her2+とあらかじめ識別した1つの関心領域およびHer2−とあらかじめ識別した1つの関心領域、から放出された2つの標的(ここで、Her2およびヒストン H3)に関して、シグナルオリゴヌクレオチドの量を比較する。
【0138】
実施例11:フローセルに包埋された包埋されたサンプルは、照射された関心領域からだけでなく、シグナルオリゴヌクレオチドが放出されるところからも、サンプル全体から溶出の回収を実現する。
【0139】
図39は、フローセルに組織が包埋された実施形態を示す。ここで、微小流体フローセルに包埋されたFFPE組織は(約25μlの体積を有する100μmの高さがある9mmの円形チャンバー(フローセルが300μmの高さであるとき、大体の体積は75μlである))、シリンジポンプによって制御される。UVはフローセルの内側を切断し、そして、ある領域(9FOVs)の照射、そして溶出、次に、別の領域(9FOVs)の照射、そして溶出の溶出プロファイルを示した。複数の画分に関するデータが示される。実施例10のデータと同様に、ここで、関心領域は、蛍光標識マーカーの発現に関してあらかじめ同定された。
【0140】
実施例12:関心領域の一面に小さい穴を含むフローセルに包埋されたサンプルは、照射された関心領域、およびシグナルオリゴヌクレオチドが放出された場所からの効果的な溶出の回収をもたらしたが、それはサンプル全体からではなかった。
【0141】
図40は、小さい穴を備えたフローセル内に組織が埋め込まれている実施形態を示す。ここで、溶出は、関心領域上で直接起こる。流体チャンバー上の直径0.4〜1mmの穴は、溶出液(例えば、5μlの回収体積)の回収を可能にする。9穴、96穴形式、および12穴形式(組織マイクロアレイ(TMA)のため)を試験した。蛍光画像を、複数の視野を組み合わせることによって作成した。装置の形態を示す写真および図解も示す。
【0142】
図41A〜41Cは、小さい穴を備えたフローセルを使用する実施形態が、組織の全表面からの溶出液の回収よりむしろ有意なシグナル対ノイズの改善を有することを示す。データは、関心領域上の穴を通して溶出液を回収するとシグナル対ノイズが約7倍増強されることを示す。この実施形態では、流体フローセル上の直径1mmの穴(25μlのチャンバー)を、溶出液を回収するために使用した(5μlの画分)。複数の画分に関するデータを示す。
【0143】
図42A〜42Cは、小さい穴(12または96穴形式)を備えたフローセルを使用したデータを示す。データは、関心領域上の穴を通して溶出液を回収するとシグナル対ノイズが約7倍増強されることを示す。この実施形態では、視野照射を穴の中心に集中した;1穴あたり5μlの体積の溶出。
【0144】
図43AおよびBは、全組織溶出を実施したフローセルからのバックグラウンドシグナル(
図43A;実施例11に示すように)を、溶出が関心領域の上で直接起こったフローセルからのバックグラウンドシグナル(
図43B)と比較した際のデータを示す。
図43Aに見られるように、全組織溶出に関しては、
図43Bに見られるバックグラウンドに対して、より高いバックグラウンドである。さらに、
図43Bは、フローセル内インキュベーションと、非フローセルインキュベーションとの相違を示さない。
【0145】
実施例13:放出されたシグナルオリゴヌクレオチドは、単一チューブ/ピペット、複数のチューブ/ピペット、またはマルチチューブ/ピペットアレイによって選択され得る。
【0146】
図44は、複数の関心領域の吸引の実施形態のための開放表面での溶出液回収を示す図解である。ここでは、回転弁の切り替えを用いた溶出液の吸引/分配ためのマルチチューブアレイを示す。
図47も参照。
【0147】
図45は、溶出液回収が毛細管(マイクロアスピレーター)を通してである実施形態を示す写真および図解を含む。
図47も参照。
図46AおよびBは、溶出液回収が毛細管(マイクロアスピレーター)を通してである
図45の実施形態からのデータを示す。この実施形態は、シグナル対ノイズにおいて劇的な改善があった:シグナル対ノイズ比は、穴溶出によるフローセルと比較して、約10倍増強され、そして、シグナル対ノイズ比は、全組織溶出と比較して、約200倍増強される。ここで、LOD面積は、約60μm×60μmである。
【0148】
実施例14:照射能力と溶出能力の両方を備えたデバイスは、規定した関心領域からの核酸および/またはタンパク質発現データを効率的かつ正確に得ることができる。
【0149】
図48は、組み合わせた毛細管とレンズによる照射および流体回収を示す図解である。
【0150】
実施例15:タンパク質発現は、単独細胞から検出および定量され得る。
【0151】
図50は、本明細書中に記載した方法および装置を使用して単独細胞または2つの細胞から得られたタンパク質発現データを示す。上部パネルでは、S6タンパク質が、少なくとも1つの細胞から検出および定量され、下部パネルでは、CD45タンパク質が、少なくとも1つの細胞から検出および定量される。
【0152】
実施例16:本明細書中に記載した方法およびデバイスは、空間分解、多重RNA標的および/またはタンパク質標的発現の正確、かつ、効果的な検出および定量を実現する。
【0153】
in situハイブリダイゼーション(ISH)を実施して、それぞれ標的結合ドメイン、シグナルオリゴヌクレオチド、および光切断可能リンカーを備えるDNAベースのオリゴプローブ(「RNAプローブ」)を内因性RNAにハイブリダイズさせる。5μmのFFPE HER2 3+乳房組織切片を、キシレン中で脱パラフィン処理し、段階的なエタノール中で部分的に再水和し、そして、70%のエタノール中、室温にて1時間インキュベートした。次に、切片を、40μg/mlのプロテイナーゼK中で37℃にて25分間インキュベートした。次に、組織を、50%のホルムアミド/2×SSC中、室温にて15分間インキュベートし、そして、1nMプローブ、40%のホルムアミド、1mg/mlの酵母tRNA、10%の硫酸デキストラン、および2×SSC中の0.2%のBSAの溶液中、37℃にて一晩ハイブリダイズさせた。ハイブリダイゼーション後に、50%のホルムアミド/2×SSC中での2回のストリンジェント洗浄を、それぞれ37℃にて25分間実施した。切片を、TO−PRO(登録商標)−3(Thermo Fisher Scientific)蛍光核酸染色を用いて染色して、組織形態を可視化した。次に、半導体型反射デバイスによって誘導した集束UV光を使用して、プローブからユーザー規定の関心領域(ROI)のDNAシグナルオリゴヌクレオチドを切断した。各組織切片に関して、2つのROIが腫瘍組織を含み、2つのROIが正常組織を含み、および2つのROIが組織を含まなかった(組織スライド自体)。切断後に、シグナルオリゴヌクレオチドを回収し、nCounter(登録商標)分子バーコードにハイブリダイズし、そして、NanoString Technologies(登録商標)製のnCounter(登録商標)システムによってデジタル的にカウントした。H&Eを組織切片に対して実施して、腫瘍および通常組織のROIについて確認した。
【0154】
連続切片に対して、標準的な免疫組織化学(IHC)を、それぞれ標的結合ドメインとしての抗体、DNAシグナルオリゴヌクレオチド、および光切断可能リンカーを備えた「タンパク質プローブ」を使用して実施した。次に、切片を、抗ウサギAlexa594二次抗体およびTO−PRO(登録商標)−3(Thermo Fisher Scientific)蛍光核酸染色を用いて染色して、組織形態を可視化した。次に、半導体型反射デバイス(DMD)によって誘導した集束UV光を使用して、プローブからユーザー規定の関心領域(ROI)のDNAシグナルオリゴヌクレオチドを切断した。各組織切片に関して、2つのROIが腫瘍組織を含み、1つのROIが正常組織を含み、および2つのROIが組織を含まなかった(組織スライド自体)。ROIを、ISHプローブ切断のために選択したROIに組み合わせた。切断後に、タンパク質標的からのシグナルオリゴヌクレオチドを、RNA標的からのシグナルオリゴヌクレオチドと混合し、そして、すべてを先に記載したように定量した。H&Eを組織切片に対して実施して、腫瘍および通常組織のROIについて確認し、さらに、ROIが、ISHとIHC組織との間で正しく組み合わせられたことを確認した。
【0155】
図51は、同じ腫瘍サンプルの連続切片からサンプル抽出したROIを示す。領域1〜4は、この画像に未掲載であるが、代わりに、組織を含まなかった組織の一部から取った(陰性対照−「組織なし」)。領域5〜8は、わずかな数の腫瘍細胞を含んでいた(「正常組織」)。領域9〜12は、多数の腫瘍細胞を含んでいた(「腫瘍」)。
【0156】
図52は、このアッセイに含まれる9つのRNAプローブのうち6つについて得られたカウントを示す。各ROIに関して、サンプルを、UV照射を適用する前(「−UV」データセット)および同じ領域からプラスUVサンプルを回収する前(「+UV」データセット)に回収した。カウントのバックグラウンドレベルを、UVがサンプルに適用されなかったときに得た;それによって、得られたシグナルのUV依存性を示す。+UVであるが、組織に向けられていなかったROIが、バックグラウンドカウントをもたらした(すなわち、ROI1〜4−「組織なし」)。本来正常組織であった領域(すなわち、ROI5〜8−「正常組織」)は、HER2プローブに関して低いカウントを示した(グラフのオレンジ色の棒)。本来腫瘍組織であった領域(すなわち、ROI9〜12−「腫瘍」)は、HER2に関してより高いカウントを示した。同様の、しかしそれほど劇的でない、増大が、リボソーム S6プローブに関して見られた(グラフの緑色の棒)。この組織型で高度に発現されないと予想されるRNAを対象とした追加の対照プローブは、正常組織と腫瘍組織との間で異なったレベルを示さず一貫したカウントを示した。これらの対照プローブを、CD45、PSA(前立腺特異抗原)、および2つの独特なERCC配列を標的とするように設計した。明確にするために、
図53は、
図52に示したデータの平均および標準偏差を示す。
【0157】
これらのRNAプローブのサンプルもまた、腫瘍サンプルのサンプル領域を分析したタンパク質プローブと同時に実施した。これに関しては、RNAおよびタンパク質プローブを、同時に、NanoString Technologies(登録商標)製のnCounter(登録商標)分子バーコードにハイブリダイズし、そして、nCounter(登録商標)システムによってデジタル的にカウントした。このアッセイに関するカウントを
図54に示す。HER2 RNAプローブカウント(上部グラフの赤色の棒)およびタンパク質プローブカウント(下部グラフの赤色およびオレンジ色の棒)の増大は、正常領域と比較して、腫瘍領域において見られる。+UVサンプルのみを示す。先に記載したとおり、−UV対照サンプルはこのグラフに未掲載である。なぜなら、それらにバックグラウンドカウント(「組織なし」カウントと同様)がないからである。合致するタンパク質プローブサンプルを入手できなかったため、ROI6およびROI8をこの分析から除外した。よって、タンパク質プローブからのシグナルオリゴヌクレオチドとRNAプローブからのシグナルオリゴヌクレオチドを、一緒に検出し、定量することができる。
【0158】
実施例17:部分的二本鎖プローブは、一本鎖プローブと比較したときに、より高いシグナル対ノイズ比を有する。
【0159】
DNAプローブ(mRNAを認識し、結合する)を、実施例16に記載のとおり、5μmのFFPE組織においてRNAにin situハイブリダイズさせた。UV切断を、別々のスライド上に封入した組織切片全体に対して、2×SSC+0.1%のTween20中でUVライトボックス(ゲルボックス)を使用して3分間実施した。切断およびシグナルオリゴヌクレオチドの放出後に、そのシグナルオリゴヌクレオチドを、実施例16のようにピペットによって回収し、検出した。一本鎖DNAプローブ、部分的二本鎖DNAプローブ、および無プローブ対照カウントを、
図55(上部のグラフ)においてHER2 3+乳房組織および扁桃腺組織に関して示す。シグナル対ノイズ比は、カウントを平均バックグラウンドカウントで割ることによって決定した(平均ERCCカウント)。
図55、下部のグラフを参照。
【0160】
実施例18:サケ精子DNAの追加がプローブハイブリダイゼーションを改善する。
【0161】
DNAプローブ(mRNAを認識し、結合する)を、先に記載されるように、5μmのFFPE組織においてRNAにin situにおいてハイブリダイズさせた。ハイブリダイゼーション中に、1mg/mlの超音波処理した変性サケ精子DNAを、酵母tRNAの代わりに使用した。スライドを、1nMプローブ、40%のホルムアミド、1mg/mlの超音波処理した変性サケ精子DNA、10%の硫酸デキストラン、および2×SSC中の0.2%のBSAの溶液を用いてハイブリダイズさせた。UV切断、シグナルオリゴヌクレオチド回収、および検出を、実施例17に記載のとおり実施した。一本鎖DNAプローブを、HER2 3+乳房および扁桃腺に示す(
図56)。シグナル対ノイズ比は、カウントを平均バックグラウンドカウントで割ることによって決定した(平均ERCCカウント)。
【0162】
実施例19:PSA(前立腺特異抗原)RNAプローブは、高度に特異的である。
【0163】
DNAプローブ(mRNAを認識し、結合する)を、先に記載されるように、FFPE前立腺の5μm切片においてRNAにin situにおいてハイブリダイズさせた。MES中、97℃にて10分間のインキュベーションを、1時間のエタノールインキュベーションの代わりに使用した。UV切断、シグナルオリゴヌクレオチドの回収および検出、ならびにシグナル対ノイズ比の算出を、実施例17に記載のとおり実施した。カウントおよび比を
図57に示す。
【0164】
実施例20:プローブの特異性は、非標準的な、nM未満の濃度にて増強される。
【0165】
典型的には、RNAを認識するために使用されるin situハイブリダイゼーション(ISH)プローブは、5〜200nMにてハイブリダイズさせる。驚いたことに、本発明の核酸認識プローブは、0.2nMまたはそれ未満で最もうまく働き、それは、標準的なISHプローブ濃度に比べて1/25〜1/1000の低さであった。
【0166】
DNAプローブを、先に記載されているように、FFPE HER2 3+乳房サンプルの5μm切片においてRNAにin situにおいてハイブリダイズさせた。プローブを、5、1、0.2、および0.4nMで使用した。UV切断、シグナルオリゴヌクレオチドの回収および検出、ならびに倍率変化の計算を、実施例17に記載のとおり実施した。
【0167】
図58は、プローブ濃度が低いほどカウントが低下することを示す(上部のグラフ)。しかしながら、意外なことに、プローブをnM未満の濃度にてハイブリダイズさせるとき、陽性プローブカウントを陰性対照プローブと比較して、シグナル対ノイズにおいて顕著な増大があった。