(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6971259
(24)【登録日】2021年11月4日
(45)【発行日】2021年11月24日
(54)【発明の名称】流体中の個々の流動粒子の検出および/または構造的解析の方法および装置
(51)【国際特許分類】
G01N 15/14 20060101AFI20211111BHJP
【FI】
G01N15/14 P
G01N15/14 B
【請求項の数】20
【全頁数】16
(21)【出願番号】特願2018-557194(P2018-557194)
(86)(22)【出願日】2017年1月10日
(65)【公表番号】特表2019-506622(P2019-506622A)
(43)【公表日】2019年3月7日
(86)【国際出願番号】EP2017050376
(87)【国際公開番号】WO2017129390
(87)【国際公開日】20170803
【審査請求日】2020年1月8日
(31)【優先権主張番号】62/286,589
(32)【優先日】2016年1月25日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】518258124
【氏名又は名称】プレアー ソシエテ・アノニム
(74)【代理人】
【識別番号】110001298
【氏名又は名称】特許業務法人森本国際特許事務所
(72)【発明者】
【氏名】キセリョフ、デニス
【審査官】
外川 敬之
(56)【参考文献】
【文献】
特開平01−239434(JP,A)
【文献】
特開平08−136440(JP,A)
【文献】
特開昭63−113345(JP,A)
【文献】
特開昭61−029737(JP,A)
【文献】
特表2013−502594(JP,A)
【文献】
米国特許出願公開第2005/0151968(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 15/14
(57)【特許請求の範囲】
【請求項1】
流体中の流動粒子の検出および/または解析のための測定装置であって、
流体の流路に沿って流体の流れを生成する手段(1)と、
流体の流路の測定領域へレーザービーム(20)を照射するために配置されたレーザー(2)と、
流体の流れに含有された流動粒子(9)により測定領域で散乱されたレーザー光(23)を集めるためのレンズセット(3)と、
レンズセット(3)で集められた散乱レーザー光(23)の検出のために配置された光検出器(4)とを備え、
レンズセット(3)は、散乱光(23)をレンズセット(3)の焦点距離(f2)において列状に並んだ焦点に集束するように構成され、前記列は、測定領域における流体の流れ方向(y)に対して横方向に配置されており、
光検出器(4)は、レンズセット(3)で焦点に集束したレーザー光を取り込むための多画素検出器であって、前記多画素検出器(4)は、レンズセット(3)の焦点距離(f2)から距離をおいて配置されるとともに、前記列に対し平行な方向に配置されており、
前記測定装置は、レーザー(2)によって測定領域を超えて放射されるレーザービーム(20)を検出するための光検出器(6)をさらに備える、
ことを特徴とする流体中の流動粒子の検出および/または解析のための測定装置。
【請求項2】
流体の流れを生成する手段は、ノズル越しに流路とともに層流の空気の流れを生成するためのノズルであるか、またはチューブに沿った流路とともに液体の流れを生成するための前記チューブであることを特徴とする請求項1に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項3】
レンズセット(3)は、流れ方向(y)に平行な方向に散乱光を焦点に集束するとともに、散乱光線を流れ方向(y)に垂直な面内で互いに平行とさせるように構成されていることを特徴とする請求項1または2に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項4】
レーザーは、流れ方向(y)に偏光したレーザービーム(20)を生成するように構成されていることを特徴とする請求項1から3までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項5】
レーザー(2)と測定領域との間におけるレーザービーム(20)の光路に配置されて、流れ方向(y)に直線偏光されたレーザー光のみを測定領域に到達させるための直線偏光用の偏光子(21)をさらに有することを特徴とする請求項1から4までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項6】
レンズセット(3)は円柱型平凸レンズ(30)を有し、この円柱型平凸レンズは、散乱光(23)を流れ方向(y)に平行な方向において焦点に集束させるとともに、散乱光(23)を流れ方向(y)と垂直な方向においてそのまま変化させないようにするために配置されていることを特徴とする請求項1から5までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項7】
レンズセット(3)は測定領域と円柱型平凸レンズとの間にさらに球面型平凸レンズ(31)を有し、この球面型平凸レンズ(31)の焦点が測定領域に配置されるように構成されていることを特徴とする請求項1から6までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項8】
球面型平凸レンズ(31)で集められた散乱光からの平行成分の光のみを維持するために、球面型平凸レンズ(31)と円柱型平凸レンズ(30)との間に、散乱光を直線偏光させるための偏光子(32)をさらに有することを特徴とする請求項1から7までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項9】
球面型平凸レンズおよび円柱型平凸レンズ(31、30)の範囲効果を回避するための、および/または円柱型平凸レンズ(30)によって集められた寄生的な光を回避するための、球面型平凸レンズ(31)と円柱型平凸レンズ(30)との間に配置された第1の絞り(33)をさらに有することを特徴とする請求項7または8に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項10】
光検出器(4)は、測定装置で測定された最小サイズの個々の流動粒子が測定領域を横切る時間よりも、または測定領域における流体の移動時間よりも、少なくとも1/10短いサンプリング間隔にて、レンズセット(3)で焦点に集束されたレーザー光を採取するように構成され、前記移動時間は、測定領域における流れ方向(y)のレーザービーム(20)のサイズを、測定領域における流体の流れ速度で除算したものに相当することを特徴とする請求項1から9までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項11】
光検出器(4)は、1MSPS(Mega Sample Per Second)以上の、好ましくは5MSPS以上の、さらに好ましくは10MSPS以上の、さらにもっと好ましくは25MSPS以上のサンプリング率にて、レンズセット(3)で焦点に集束させられたレーザー光を採取するように構成されていることを特徴とする請求項1から10までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項12】
寄生的な光が光検出器(4)に取り込まれることを防止するために、レンズセット(3)と光検出器(4)との間に配置された第2の絞り(40)をさらに有することを特徴とする請求項1から11までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項13】
光検出器(4)が列状の多画素検出器であることを特徴とする請求項1から12までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定装置。
【請求項14】
流体中の流動粒子の検出および/または解析のための測定方法であって、
検出すべき流動粒子(9)を潜在的に含有するところの、流体の流路に沿った流体の流れを生成し、
流体の流路の測定領域にレーザービーム(20)を照射し、
流体の流れに含有された流動粒子(9)によって測定領域で散乱されたレーザー光(23)を集めるとともに、前記散乱された光を、レンズセット(3)の焦点距離(f2)において、前記測定領域での流体の流れの流れ方向(y)に垂直な方向の列状の焦点に集束させ、
焦点距離(f2)から距離をおいて配置されるとともに、その縦軸を前記列に平行な方向に向けられた列状の多画素光検出器(4)に、前記集められ、そして焦点に集束させられたレーザーの散乱光(23)を取り込み、
個々の流動粒子(9)が測定領域を横切っている間に、前記照射することと、集めたうえで集束させることと、取り込むこととを繰り返す、
ことを特徴とする流体中の流動粒子の検出および/または解析のための測定方法。
【請求項15】
流体の流れが層流の空気の流れまたは液体の流れであることを特徴とする請求項14に記載の流体中の流動粒子の検出および/または解析のための測定方法。
【請求項16】
レーザー光(20)が流れ方向(y)に偏光されていることを特徴とする請求項14または15に記載の流体中の流動粒子の検出および/または解析のための測定方法。
【請求項17】
集められた散乱光の光線を列状の焦点に集束させるときに、前記光線を流れ方向(y)に垂直な方向において互いに平行としたうえで、集められた散乱光(23)を流れ方向(y)と平行な方向で焦点に集束させることを特徴とする請求項14から16までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定方法。
【請求項18】
個々の流動粒子(9)が測定領域を横切っている間に、照射することと、集めたうえで集束させることと、取り込むこととを少なくとも10回繰り返すことを特徴とする請求項14から17までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定方法。
【請求項19】
照射することと、集めたうえで集束させることと、取り込むこととを、1MSPS(Mega Sample Per Second)以上のサンプリング率にて繰り返すことを特徴とする請求項14から18までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定方法。
【請求項20】
流動粒子(9)が測定領域を横切るときに取り込まれるレーザーの散乱光(23)を、流動粒子(9)のサイズと、測定領域を横切る流動粒子(9)の速度と、流動粒子(9)の形状と、流動粒子(9)の表面品質とのうちの少なくとも1つを決定するために使用することを特徴とする請求項14から19までのいずれか1項に記載の流体中の流動粒子の検出および/または解析のための測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体中の個々の流動粒子の検出および/または構造的解析の方法および装置に関する。本発明は、特に時分割した多画素における光散乱による、流体中の個々の流動粒子、例えば空気中または液体中の流動粒子の検出および/または構造的解析の方法および装置に関する。
【背景技術】
【0002】
本発明は特に、しかし限定的ではなく、流体中の危険な流動粒子の検出および/または解析、空気または水の汚染検出、空気または水の生物学的および/または化学的汚染検出、および/または空気中に流動するアレルギー物質の検出の分野に関する。例えば大気中の異なる種類のエアロゾル濃度の増加は、ますます重要な問題になっている。気候変化および大気の質の面において、それらの特定的影響はいまだ未解決の問題である。さらに大量破壊兵器として生物学的粒子を導入したバイオテロのような新脅威が近年出現している。そのため、信頼性、経済性が高く、素早く、程度の高い識別力を持った、エアロゾルおよび/または水質汚染検出器が、市場で強く必要とされている。
【0003】
花粉や胞子といった特定種のエアロゾル粒子は、人間の健康に大きな影響を与える。統計解析によれば、それらのうち幾つかはヨーロッパ人口の約20%に影響を及ぼすアレルギーといった健康問題の原因である。
【0004】
大抵の場合、いまだ顕微鏡下でこれら粒子の計数を手作業で行っている。粒子の検出と識別を行うときのさらなる困難性の原因となるところの、空気中の流動粒子のサイズは、マイクロメートルよりさらに小さい値から、マイクロメートルの数百倍の値までの範囲に及ぶ。
【0005】
空気中の流動粒子を検出するための測定装置および方法がすでに存在する。これらは、個々の粒子で散乱した光を測定することに基づき、エアロゾル中に含有される粒子のサイズを予測可能である。これらの装置と方法は、空気の流れに向けられた光源(レーザー、レーザーダイオード、LEDなど)と、空気中の個々の流動粒子により大きな角度を越えて散乱した光を集める光検出器、または幾つかのケースにおいて、その粒子から異なる方向に独立して散乱した光を集めるための、複数構造またはアレイ構造の検出器(1次元または2次元)とを使用する。集められた散乱光が、空気中の流動粒子の静止画像を提供する。単一の検出器しか備えていない装置は、単一の粒子についての構造的事柄および表面構造に関する、著しく限定された判定のみが可能であるに過ぎない。一方で、複数構造またはアレイ構造の検出器を持つ装置は、通常、これらパラメータについてのより精密な判定を可能にする。
【0006】
しかしながら、粒子の静止画像から得ることが可能な、粒子の構造的事柄および表面構造についての情報は、限定的である。このため、流体中の流動粒子の動力学上の情報を提供可能であるところの、流体中の流動粒子の検出および/または構造的解析のための測定装置および方法が必要である。
【0007】
いくつかの測定装置および方法においては、空気の流れに沿った2つの測定点であって互いに所定の距離にある測定点どうしの間で、空気中の個々の流動粒子の移動時間を判定することによって、それらの速度を測定する。
【発明の概要】
【発明が解決しようとする課題】
【0008】
速度を測定することによって、粒子の空気動力学的な径を直接に予測可能であり、それによって、粒子自身についての追加的な情報が提供される。しかしながら、これらの測定装置および方法では、2つの光源および2セットの光検出器を使用することを必要とする。このことでコストを大幅に増大させる。
【0009】
したがって、本発明の目的は、信頼性が高く、また費用面において効果的な手段をもちいて、流体中の流動粒子の速度を判定可能な、流体中の流動粒子の検出および/または構造的解析のための装置および方法を提供することにある。
【0010】
本発明の他の目的は、信頼性が高く、また費用面において効果的な手段をもちいて、流れのある流体中での粒子の動力学的振る舞いについての情報を取得可能な、流体中の流動粒子の検出および/または構造的解析のための装置および方法を提供することにある。
【0011】
本発明の他のもう一つの目的は、費用面において効果的な方法で、流体中の流動粒子の構造的事柄、表面、および/または構造上の、先進的で高精度な情報を取得可能な、流体中の流動粒子の検出および/または構造的解析のための装置および方法を提供することにある。
【課題を解決するための手段】
【0012】
これらの目的および他の利点は、対応する独立請求項にしたがった装置および方法で達成する。
【0013】
これらの目的および他の利点は、特に流体中の流動粒子の検出および/または解析のための下記の測定装置によって達成される。すなわち、この測定装置は、流路に沿った流体の流れを生成する手段と、流体の流路における測定領域にレーザー光線を照射するために配置されるレーザーと、測定領域において流体の流れに含有される流動粒子によって散乱されたレーザー散乱光を集めるためのレンズセットと、レンズセットで集めたレーザーの散乱光を検出するために配置された光検出器とを有する。ここで、レンズセットは、このレンズセット(3)の焦点距離(f2)において散乱光を列状の焦点に集束させるように構成されている。前記の列は、測定領域における流体の流れの方向(y)に対し横方向、好ましくは垂直方向に配置される。光検出器は、レンズセットで焦点に集束させたレーザー光を取り込む列状の多画素検出器である。この列状の多画素検出器は、レンズセットの焦点距離から少し離れて配置され、その縦方向が前記の列に対して平行に向けられる。
【0014】
本発明の実施形態において、流体の流れを生成する手段はノズルであり、このノズルは、このノズルを越えた層流の空気の流れと流路とを生成する。
【0015】
本発明の他の実施形態において、流体の流れを生成する手段はチューブであり、このチューブは、このチューブに沿った流路により液体の流れを生成する。
【0016】
本発明の実施形態において、レンズセットは、流れ方向に平行な方向の散乱光線を焦点に集束すること、および流れ方向に垂直な面で互いに平行な方向の散乱光線を生成することにより、散乱光を列状に集束するように構成されている。
【0017】
本発明の実施形態において、レーザーは流れ方向に偏光したレーザー光線を照射するように構成される。レーザー光について流れ方向の直線偏光のみが測定領域に到達するように、本発明の装置は、任意選択的に、レーザーと測定領域との間にて、レーザー光線の光路に配置された、光線を直線偏光させるための偏光子を備える。
【0018】
本発明の実施形態において、レンズセットは、散乱光線を流れ方向に平行な方向に集束させるために、および流れ方向に垂直な方向のままで無変化の散乱光線を取り除くために、円柱型平凸レンズを備える。
【0019】
本発明の実施形態において、レンズセットは、測定領域と円柱型平凸レンズとの間に、測定領域に焦点が位置する球面型平凸レンズを備える。
【0020】
本発明の実施形態において、測定装置は、球面型平凸レンズによって集められた散乱光のうちの平行光のみを保持するために、球面型平凸レンズと円柱型平凸レンズとの間にさらに散乱光用の直線偏光子を備える。
【0021】
本発明の実施形態において、球面型平凸レンズおよび円柱型平凸レンズの範囲効果(range effect)を回避するために、および/または円柱型平凸レンズで集めた寄生的な光(parasite light)を回避するために、測定装置は、さらに、球面型平凸レンズと円柱型平凸レンズとの間に配置された第1の絞りを備える。
【0022】
本発明の実施形態において、光検出器は、測定装置で測定される流体中の最小サイズの個々の流動粒子が測定領域を通過する時間よりも少なくとも1/10倍短いサンプリング間隔で、レンズセットにより焦点に集束させたレーザー光を採取するように構成されている。サンプリング間隔は、例えば流体が測定領域を移動する移動時間よりも少なくとも1/10倍短く、移動時間は、流体の移動方向に沿ったレーザー光線のサイズを、測定領域における流体の移動速度で除算した値に相当する。
【0023】
光検出器は、例えばレンズセットで焦点に集束させたレーザー光を、1、5、10、さらには25MSPS(1秒あたりのメガサンプル数[Mega Sample Per Second])以上のサンプリング率にて採取するように構成されている。
【0024】
本発明の実施形態において、測定装置は、寄生的な光が検出器にて検出されることを回避するために、さらにレンズセットと光検出器との間に配置した第2の絞りを有する。
【0025】
これらの目的および他の利点は、特に、流動粒子の検出および/または解析のための測定方法で達成される。この方法は、次のステップを有する。すなわち、検出すべき流動粒子を潜在的に含有する流体の流れを、流体流路に沿って生成し;流体流路における測定領域にレーザー光線を照射し;測定領域において流体の流れに含有された流動粒子によって散乱されたレーザー光を集めて、前記散乱光を、焦点距離において、測定領域における流体の流れ方向に垂直な方向に直線状に並んだ列に集束させ;前記の集束されかつ焦点が結ばれた散乱レーザー光を、焦点距離から距離をおいて位置され、かつ縦軸を前記列と平行に配置された列状の多画素検出器に取り込み;かつ前記の照射と集束と取り込みとを、この測定方法によって測定される最小サイズの個々の流動粒子が測定領域を通過する時間の間に複数回繰り返す。
【0026】
本発明の実施形態において、流体の流れは層流の空気流である。
【0027】
本発明の他の実施形態において、流体の流れは液体または気体の流れであって、レーザー光に対し透光性を有することが好ましい。
【0028】
本発明の実施形態において、レーザー光線は流体の流れ方向に偏光している。
【0029】
本発明の実施形態において、集めた列状の散乱光を焦点に集束させることは、流体の流れ方向に平行な方向に集めた散乱光の光線を焦点に集束させ、そしてこの集束した光を、流れ方向に垂直な方向で互いに平行な光とすることを含む。
【0030】
本発明の実施形態においては、本発明の測定方法によって測定される最小サイズの個々の流動粒子が測定領域を通過する時間の間に、照射と集束と取り込みとを、少なくとも10回繰り返す。
【0031】
照射と集束と取り込みとは、例えば1、5、10、さらに25MSPS(1秒あたりのメガサンプル数[Mega Sample Per Second])以上のサンプリング率で繰り返される。
【0032】
本発明の実施形態において、流動粒子が測定領域を通過する時間の間に取り込まれたレーザー散乱光は、例えば流動粒子のサイズ、測定領域を通過する流動粒子の速度、流動粒子の形状および/または流動粒子の表面品質を判定するために、さらに使用される。
【図面の簡単な説明】
【0033】
【
図1】空気中の流動粒子を検出するための本発明の装置の1つの実施形態の概略図である。
【
図2a】
図1の装置の詳細な鉛直方向断面図である。
【
図2b】
図1の装置の詳細な水平方向断面図である。
【
図3】液体中の流動粒子を検出するための本発明装置の実施形態の概略図である。
【
図4a】
図3の装置の詳細な鉛直方向断面図である。
【
図4b】
図3の装置の詳細な水平方向断面図である。
【
図5a】流動粒子が測定領域を通過する間に、本発明装置の列状の光検出器が、流動粒子にて散乱した光をどのように取り込むかを概略的に示す図である。
【
図5b】流動粒子が測定領域を通過する間に、本発明装置の列状の光検出器が、流動粒子にて散乱した光をどのように取り込むかを概略的に示す図である。
【
図5c】流動粒子が測定領域を通過する間に、本発明装置の列状の光検出器が、流動粒子にて散乱した光をどのように取り込むかを概略的に示す図である。
【
図6】本発明の装置における列状の光検出器で取り込んだ画像の処理を概略的に示すフローチャートである。
【
図7a】流動粒子が測定領域を通過するときに本発明の装置における列状の光検出器に取り込まれた、時間−散乱角度を表す図である。
【
図7b】流動粒子が測定領域を通過するときに本発明の装置における列状の光検出器に取り込まれた散乱光の、すべての画素における総量の時間変化を示す図である。
【
図7c】流動粒子が測定領域を通過するときに本発明の装置における線形光検出器に取り込まれた散乱光の、各散乱角についてのすべての画素における最大値の変化を示す図である。
【
図8a】本発明の装置によって得られた時間分割された散乱の様子を説明するための図である。
【
図8b】本発明の装置によって得られた時間分割された散乱の様子を示す図である。
【
図8c】本発明の装置によって得られた時間分割された散乱の様子を示す他の図である。
【
図8d】2次元光検出器を持った従来の装置で得られた静止的な2次元のパターンを本発明に対応させて説明するための図である。
【
図8e】2次元光検出器を持った従来の装置で得られた静止的な2次元のパターンを本発明に対応させて示す図である。
【
図8f】2次元光検出器を持った従来の装置で得られた静止的な2次元のパターンを本発明に対応させて示す他の図である。
【発明を実施するための形態】
【0034】
図によって示されている次の記述によって、本発明は、さらにより良く理解される。
【0035】
本発明の実施形態において、また
図1、2aおよび2bを参照すると、本発明の装置は、空気の流れの中に含有される流動粒子の検出および/または構造的解析のためのものである。
【0036】
図1を参照すると、本装置は、ノズル1を有し、このノズル1は、このノズル1を出て流路に沿った層流の空気流を生成する。層流の空気流は、個々のエアロゾル粒子9を潜在的に含有する。流路の流れ方向yは例えば鉛直方向である。
【0037】
本装置はさらに光源を有する。この光源は、例えばレーザー2、例えば660nmの連続波長(CW)のレーザーにて構成され、空気流に向けてビーム20を照射するために配置される。レーザー光は、好ましくは、流れ方向yに沿って、例えば鉛直方向に、偏光している。直線偏光用の偏光子21が、選択的に、照射用のレーザー2と空気流れとの間におけるビーム20の中に配置される。それによって、流れ方向yに偏光した光のみ、例えば鉛直方向に偏光した光のみが、直線偏光用の偏光子21を通過して空気流に届くことが保証される。
【0038】
レーザービーム20と空気流とが交差するところは、測定領域を規定する。その領域では、気体中の流動粒子9が流れ方向yに通過し、この流れ方向yは測定領域における空気流の方向に対応した流れ方向である。そのようにしてレーザービーム20は、測定領域を通過する個々の粒子9により少なくとも部分的に散乱され、そして散乱光23は、少なくとも部分的にレンズセット3に集められ、そして本発明の装置の光検出器4に取り込まれる。
【0039】
本発明によれば、
図2aおよび2bに示すように、レンズセット3は、例えば集められた散乱光23の光線を流れ方向と平行な方向、たとえば鉛直方向に焦点を結ばせることによって、集めた列状に並んだ散乱光23の光線を集合させるように、すなわち焦点に集束させるように構成されるとともに、集められた散乱光23の光線を、横方向に、好ましくは流れ方向yに対して垂直な方向に、たとえば水平方向に揃えるように構成されている。本発明の実施例によれば、レンズセット3は例えば円柱型レンズを備える。円柱型レンズは、例えばその縦軸が、横方向、好ましくは流れ方向yに垂直な方向に配置され、それによって、散乱光23が集められた光線を、流れ方向yに集束させ、かつその一方で、散乱光23が集められた光線の向きを変えずに、流れ方向yに対して、横方向、好ましくは垂直方向のままとする。しかしながら、本発明の範囲内において、集められた散乱光23を、レンズセット3の焦点距離f2において、流れ方向yに垂直な方向に焦点を結ばせるために、レンズセット3の他の構成、特に他のレンズ系や装置を用いることが、可能である。
【0040】
本発明の実施形態によれば、図示のように、レンズセット3は例えば円柱型平凸レンズ30を備える。この円柱型平凸レンズ30は、その凸側が測定領域に向くとともに、その平面側が光検出器4に向くように配置される。レンズセット3はさらに例えば球面型平凸レンズ31を備え、この球面型平凸レンズ31は、測定領域と円柱型平凸レンズ30との間に配置され、それによって、散乱光23が集められた光線を、この光線を円柱型平凸レンズ30に導く前に、全方向について互いに平行にする。この球面型平凸レンズ31は、例えば、その平面側を測定領域に向けるとともに、その凸側を円柱型平凸レンズ30に向けるように配置される。球面型平凸レンズ31は、その焦点が、測定領域の中心に対して共役関係にある、または測定領域の中心に位置するように配置される。換言すると、球面型平凸レンズ31と測定領域の中心との間の距離が、球面型平凸レンズ31の焦点距離f1と等しくなるように配置される。本発明の実施の形態によれば、円柱型平凸レンズ30は、その縦軸が流れ方向yに垂直な方向、例えば水平方向となるように配置される。それによって、集められた散乱光23を、円柱型平凸レンズ30の焦点距離f2において、流れ方向yと垂直な方向の列に焦点を結ばせる。
【0041】
そのようにして、本発明の装置におけるレンズセット3は画像システムを構築する。この画像システムは、例えば集められた散乱光の光線を流れ方向yと平行な方向に焦点を結ばせるとともに、互いに平行な集められた散乱光の光線を流れ方向yと垂直な方向に配列させることによって、測定領域からの散乱光の光線を、流れ方向yに平行な列状に焦点を結ばせる。本発明の実施形態によれば、例えばレーザー光線20を流れ方向yに横断する個々の粒子9により測定領域において散乱された散乱光23は、球面型平凸レンズ31によって集められる。球面型平凸レンズ31の焦点は、測定領域の中心と共役関係にあり、集められた散乱光23の光線は、球面型平凸レンズ31を出たときに互いに平行になる。すなわち、まるで無限遠で焦点に集束させられるかのように配置される。集められた散乱光23は、次に円柱型平凸レンズ30に向けられる。この円柱型平凸レンズ30は、その形状と位置とに基づいて、流れ方向yに垂直な面、例えば水平面において、無限遠の焦点距離を有するとともに、流れ方向と平行な面、例えば鉛直面において、有限の焦点距離f2を有する。そのようにして円柱型平凸レンズ30から抜け出た散乱光23の光線は、流れ方向yに垂直な方向、例えば鉛直方向において、互いに平行を維持するとともに、流れ方向yと平行な方向、例えば鉛直方向において、集束する。
【0042】
上記においては、レンズセット3は、本質的に円柱型平凸レンズ30と球面型平凸レンズ31との組合せとして説明した。しかしながら、測定領域の個々の粒子9により散乱された光の少なくとも一部を集めるために、および集めた光線を列状に収束させるために、本発明の範囲内で、他の光学的手段が、特に他の光学レンズの組合せが、可能である。
【0043】
本発明の実施形態において、レンズセット3は、寄生的な光をふるい分けし、かつ流れ方向yに沿って偏光していない散乱光をふるい分けし、および/または画像処理系にて生成された画像を形成するための手段をさらに有する。本発明の実施形態においては、レンズセット3は、流れ方向yに沿って偏光されていない散乱光をふるい分けて、平行成分すなわちp偏光の散乱光23のみを維持するために、例えば直線偏光用の偏光子32を備える。選択的に、レンズセット3は、このレンズセット3で生成した画像を造形するために、および選択的にそれらレンズの隙間効果を回避するために、絞りすなわちピンホール33をさらに備える。絞り33の開口部は、例えば四角形であって、その形状および寸法が、円柱型平凸レンズ30の焦点距離f2においてレンズセット3により投影する画像の形状および寸法を決定する。絞り33の開口部は、例えばその長辺が例えば流れ方向yに垂直な向きである四角形である。
【0044】
本発明によれば、光検出器4は多画素の光検出器であり、好ましくは、列状の多画素の光検出器であって、例えば光を検出する画素を一つにまとめた列状のアレイにて構成された列状のアレイセンサである。列状の光検出器のそれぞれの画素は、露出時間中の入射光を測定して、対応した画素における光の露出を表す電圧またはデジタル出力を発生する。本発明によれば、光検出器4をレンズセット3の焦点面に配置せずに、焦点距離f2からゼロ以外の距離を置いた位置に配置する。例えば、レンズセット3の焦点距離f2を越えたゼロ以外の距離dの位置に配置する。本発明によれば、本発明の撮像システム3で生成された画像は、伸長され、かつ流れ方向yに垂直な方向、例えば水平方向で、長い寸法すなわち長さを有し、また流れ方向yに垂直な方向、例えば鉛直方向で、より短い寸法すなわち高さを有する。投影された画像の長さは、その対応する方向において、撮像システム3の要素の寸法および形状に依存する。本発明の実施形態において、投影された画像の長さは、例えば同方向のピンホールすなわち絞り33の寸法と等しい。レンズセット3によって投影された画像の全長を取り込むことが可能であるように、少なくとも画像の長さと同程度となる列状の光検出器4の寸法すなわち長さを選択することが好ましい。光検出器4の位置での、つまりレンズセット3の焦点面からの距離dの位置での、画像の高さは、例えば、ピンホールすなわち絞り33における同方向の寸法に、距離dを乗算し、そしてレンズセット3特に円柱型レンズ30の焦点距離f2で除算することで、計算することができる。
【0045】
本発明の装置は、寄生的な光をふるい分けるために、および/またはレンズセット3で投影される画像を焦点面で形成するため、さらに選択的に、レンズセット3と光検出器4の間に第2の絞り40を有する。第2の絞り40は、例えばレンズセット3の焦点面、すなわちレンズセット3からの焦点距離f2の位置に配置される。
【0046】
本発明の装置は、好ましくは、光検出器4からの出力信号を受け取って、ユーザに情報を供給するために使用するための信号解析装置5をさらに備える。この情報としては、例えば、散乱されて集められて取り込まれた光による粒子9の散乱パターンであって時分割されたものや、粒子9の速度の表示などがあり、これらは以下おいてさらに説明される。本発明の実施形態において、本発明の装置は光検出器を備える。これは、例えばレーザー2から照射され測定領域を越えたレーザービーム20を検出するフォトダイオード6である。フォトダイオード6の出力信号は、例えば信号解析装置5に伝達され、それによって信号解析装置5にはレーザービーム20の存否が知らされる。さらに、フォトダイオード6は、好ましくは、レーザービームの強度の変動を連続的に測定し、それによって光検出器4によって測定される信号の修正または調節を行う。本発明の実施形態では、信号解析装置5は、レーザー2を制御するための、特にレーザービーム20の発光またはその停止を制御するための、制御信号を生成する。
【0047】
本発明によれば、レンズセット3は、流れ方向yに垂直な列状に集められた散乱光23を焦点に集束する。それによって、上記の集められた光を散乱させた粒子についての直線的な区域に対応する列状の画像を得る。この画像は、粒子が測定領域を移動する方向に対して垂直な方向すなわち流れ方向yに対して垂直な方向である。さらに以下に説明しているとおり、各粒子が測定領域を通過している間に取得された同粒子の連続的な列状の画像は、このようにして、粒子の2次元的な画像を再構築することができる。本出願において、「流れ方向yに平行」および「流れ方向yに垂直」の表現は、画像処理システムが、集められた散乱光かつそれゆえ形成された列状の画像を回転させない限り、それぞれ物理的な流れ方向に平行、および垂直、を意味するとして理解されるべきである。もし画像処理システムが集めた散乱光を回転させるのであれば、「流れ方向yに平行」および「流れ方向yに垂直」の表現は、列状の画像に適用されたとき、および/または画像処理システム内またはその後において要素に適用されたときに、それぞれ、画像処理システム内またはその後において散乱光に適用された回転によって回転された流体の方向に対して平行または垂直との意味に理解されるべきである。
【0048】
本発明の実施形態において、レーザー2によって出射されたレーザービーム20は、測定領域における流体の流路に沿った流体の流れ方向に相当する流れ方向yに偏光している。しかしながら、他の実施の形態においては、レーザー光は、偏光していないか、円偏光しているか、楕円偏光しているか、または流れ方向に対し所定の角度で直線偏光している。
【0049】
偏光していない光、円偏光した光、または部分偏光した光は、鉛直方向の偏光成分と水平方向の偏光成分との合計として表すことができる。測定領域において偏光していない光が個々の粒子に散乱されるときに、それぞれの偏光成分はそれ自身の散乱パターンを生成する。すなわち、散乱角の関数としての、散乱光の特定の強度分布を生成する。偏光していない散乱光では、すべての偏光成分の散乱パターンが光検出器4において重なり、それによって粒子サイズの測定および形状の測定の精度を低下させる。たとえ直線偏光用の偏光子を光検出器4の前に配置したとしても、様々な散乱パターンを完全に分離することは可能にはならない。
【0050】
上記の理由から、光散乱がベースである本発明の装置および方法にとって、直線偏光されたレーザーが好ましい。
【0051】
偏光の方向は、線形光検出器4の縦軸に垂直な方向、すなわち流れ方向yに平行な方向であることが好ましい。なぜなら偏光した散乱光は、観測角から独立した偏光角に偏光して観察されるからである。
【0052】
ノズル1によって形成される気流たとえば空気流中に存在するエアロゾル粒子9の検出および/または構造解析のための本発明の装置は、上述のとおりである。
図3、4a、4bに例として描かれた本発明の実施形態において、本発明の装置は、流体中すなわち気体中または液体中に存在する流動粒子の検出および/または構造解析用として構成されている。この流体は、好ましくはレーザー光に対して透光性を有する。
図3、4a、4bに例として描かれているが発明を限定するものではない本発明の装置は、例えば、水中の流動粒子の検出および/または構造解析用として構成されている。よって、本発明の装置は流体のためのガイドたとえば直線状のチューブ10を備える。このガイドに沿って、例えばその内部に、潜在的に粒子9を輸送する流体11が流れる。レーザー光のビーム20と流体11との交差部は、測定領域を規定する。この測定領域において、各流動粒子9は、ビーム20を通過するときにレーザー光を散乱する。この装置における他の要素およびその機能は、気体中の流動粒子の検出および/または解析の点について上述した装置と同一である。流体の流路に沿う流体の流れを生成し、およびそれをガイドする手段が、唯一の相違点である。さまざまな図において、特定をしない限り、同一の参照符号は同一の要素を示す。
【0053】
以下においては、流動粒子の検出および/または解析のための本発明の装置の機能と、それに対応する検出方法とを、空気中の流動粒子の検出および解析についての特別な場合に関して説明しかつ図示する。しかしながら、ここで説明する機能および方法は、本発明にもとづく適切な装置を用いた、どんな流体中の流動粒子の検出および/または解析にも適用する。上記の装置は、例えば、流体の性質に適合させた流体流路に沿って流体の流れを生成させる手段を備えた、本発明の装置である。
【0054】
図5a〜
図5cを参照すると、個々の粒子9が測定領域で流れ方向yに沿ってレーザービーム20を横切るときに、例えば垂直に下へ移動するときに、本発明の装置で特にレンズセット3にて生成された画像90は、同様に流れ方向yに平行な方向に、例えばその反対方向へ、移動する。図示された例によれば、画像90の速度は、次の式により、粒子9の速度に直接関係する。
Vi=−Vg×f1/f2
【0055】
ここで、Viは画像90の速度であり、Vpは流体中の流動粒子9の速度である。f1は例えば球面型平凸レンズ31の焦点距離に応じた測定領域の側での撮像システムの焦点距離であり、f2は例えば円柱型平凸レンズ30の焦点距離に応じた光検出器4の側での撮像システムの焦点距離である。
【0056】
例えばアレイ型の光電子増倍管、フォトダイオード、シリコン光電子増倍管、または任意の他の適切な光検出器4を構成する列状の多画素検出器4は、光強度を得て、その強度を電流に変換する。光検出器4の時間的応答tは、個々の粒子9がレーザービーム20を横切る時間よりずっと短いことが好ましい。
t<<D/Vpm
【0057】
ここで、Dは、流れ方向yにおけるレーザービーム20の寸法、例えばレーザービーム20の鉛直方向の寸法である。またVpmは、流体中の流動粒子9の最大速度であり、典型的には、噴射ノズル1の出口での、または管10に沿っての、最大の流体流れ速度である。
【0058】
図6を参照して説明すると、光検出器4で生成した電流信号は、例えば電圧に変換し、そして信号調節器41で増幅する。信号調節器41の時間的応答も、個々の粒子が測定領域を横切る時間よりも相当に短時間でなければならない。
【0059】
アナログ−デジタル変換器42が、信号調節器41からの全電圧信号を、サンプリング周波数fs>10×Vpm/Dで採取する。すなわちサンプリング周波数fsは、単一の粒子が測定領域を横切るのに要する時間に対応する周波数よりも少なくとも10倍高い。このことで、光検出器4のそれぞれの画素が、光検出器4の前における画像の経路を少なくとも10回のサンプリングによって分解するという時間的なトレースを行うことを可能とする。そして、例えば粒子9が測定領域を通過する経路にわたって、光検出器4によって取得された画像を表示部によってグラフィック表示するために、採取したデジタル信号は、データバスをわたって信号解析装置5へ送信される。
【0060】
時間と角度との関係を表す図の例を
図7aに示す。この例について、レーザーの波長は660nmであり、流れ方向でのレーザーの寸法、例えば鉛直方向におけるそのサイズは1.5mmであり、検出される粒子は直径が2μmの球形の粒子であり、f1/f2=1であり、粒子速度は50m/s程度であり、列状の光検出器は24画素のアレイを有し、それぞれの画素はその幅が1mmであり、隣接する画素と画素との間に1mmのギャップを持つ。
【0061】
図7aは、測定領域を横切る粒子によって生成されたミー散乱パターンを、光検出器4でどのように観察されるかを示す。完全に球である粒子のために、光検出器のそれぞれの画素は、鉛直面でのレーザーの強度分布に相当する正規分布の形態を測定する。レーザービームは、その断面において光が正規分布するように構成されている。それぞれの個々の画素の信号の振幅は、対応する散乱角に依存し、そしてゼロに等しくなることさえ可能である。しかしながら、すべての時間的なトレースに関する画素の合計は、結果として得られたトレースの半値幅を評価することによって、測定領域内における粒子の速度を決定するための信号を与える。そのトレースは例えば
図7bに示されている。
【0062】
本発明の装置によれば、時間的に得られた画像を2次元で表示することにより、測定領域を横切る個々の粒子の表面構造を正確に示すことができる。
図8a〜8fは、例えば
図8aに示された本発明の装置によって得られた、時分割した散乱の図と、例えば
図8dに示された2次元構造の光検出器を備えた従来の装置によって得られた静的な2次元パターンとを対比的に示す。
図8dは、2次元ミー散乱パターン取得のための装置構成を概略的に示す。この装置は、測定領域の中心に焦点を結ぶ球面レンズ39と、たとえば156×156画素の解像度を有する正方形状に形成され、そのサイズがレンズ39の寸法に合わせられた、2次元の光検出器49とを含む。サイズが2μmの球状の粒子が対応する測定領域を横切る場合は、
図8eに示すように、レーザービームの方向から90度の位置の2次元のミーパターンは、アーチ形状を持った鉛直方向の構造のみを持つ。本発明の装置における測定領域を横切る同一の粒子は、
図8bに示される、時間と角度との関係を表した散乱図を作成することができる。非球状の粒子は、
図8fに見られるように、鉛直軸に沿った振動すなわちリップルをさらに含む2次元ミーパターンの画像を生成する。これらのリップルは、
図8cに示すように、時間と角度の関係の図にも表れる。しかし、列状の検出器に対して画像が相対的に移動するために、それらは時間軸に関する振動として表される。
【0063】
本発明の装置は、単一のレーザーと従来の画像装置よりも簡単な構成の光検出器とを使って、散乱光23についての高速のサンプリング速度と、わずかにオフセットした光検出器4とを用いることで、測定領域を通過する個々の粒子の速度を決定することができるとともに、粒子についての正確な表面性状とその構造とを取得するこができる。光検出器による散乱光のサンプリング率は、例えば1MSPS(Mega Sample Per Second)以上であり、好ましくは5、10、さらには25MSPS以上である。