【実施例】
【0185】
(実施例1:レンチウイルスベクター系の開発)
図3(直鎖形態)および
図4(環状化形態)にまとめたようにレンチウイルスベクター系を開発した。まず
図3の上部を参照すると、左から右に、次のエレメント:ハイブリッド5’末端反復配列(RSV/5’LTR)(配列番号34〜35)、Psi配列(RNAパッケージング部位)(配列番号36)、RRE(Rev応答エレメント)(配列番号37)、cPPT(ポリプリントラクト)(配列番号38)、EF−1αプロモーター(配列番号4)、miR30CCR5(配列番号1)、miR21Vif(配列番号2)、miR185Tat(配列番号3)、ウッドチャック転写後調節エレメント(WPRE)(配列番号32または80)、およびΔU3 3’LTR(配列番号39)を有する代表的な治療用ベクターをデザインし産生した。
図3で詳述されている治療用ベクターは、本明細書ではAGT103とも呼ばれる。
【0186】
次に
図3の中央部を参照すると、左から右に、次のエレメント:CAGプロモーター(配列番号41)、HIV成分gag(配列番号43)、HIV成分pol(配列番号44)、HIV Int(配列番号45)、HIV RRE(配列番号46)、およびHIV Rev(配列番号47)を有するヘルパープラスミドをデザインし産生した。
【0187】
次に
図3の下部を参照すると、左から右に、次のエレメント:RNAポリメラーゼIIプロモーター(CMV)(配列番号60)および水疱性口内炎ウイルスG糖タンパク質(VSV−G)(配列番号62)を有するエンベローププラスミドをデザインし産生した。
【0188】
293T/17 HEK細胞(American Type Culture Collection、Manassas、VAから購入)において、治療用ベクター、エンベローププラスミド、およびヘルパープラスミド(
図3に示したもの)をトランスフェクションした後、レンチウイルス粒子を産生した。機能的なウイルス粒子を産生した293T/17 HEK細胞のトランスフェクションでは、プラスミドDNAの取り込み効率を上昇させるために試薬ポリ(エチレンイミン)(PEI)を用いた。プラスミドおよびDNAは最初に、血清を含まない培養培地に3:1の比(PEIのDNAに対する質量比)で別々に添加した。2〜3日後、細胞培地を収集し、高速遠心分離および/または濾過の後にアニオン交換クロマトグラフィーを行うことにより、レンチウイルス粒子を精製した。レンチウイルス粒子の濃度は、形質導入単位/ml(TU/ml)の点から表すことができる。TUの決定は、培養液中のHIV p24レベルを測定し(p24タンパク質がレンチウイルス粒子に組み込まれている)、定量的PCRにより、または細胞を感染させ光を使用することにより(ベクターがルシフェラーゼまたは蛍光タンパク質マーカーをコードする場合)、細胞あたりのウイルスDNAコピー数を測定することによって達成した。
【0189】
上記に言及したように、レンチウイルス粒子の産生のための3ベクター系(すなわち、2ベクターレンチウイルスパッケージング系)をデザインした。この3ベクター系の概略は
図4に示されている。
図4の概略は、これまでに
図3に記載した直鎖系の環状化バージョンである。
図4を参照しながら簡潔に述べると、最上部のベクターは、この場合はRevを含むヘルパープラスミドである。
図4の中央にあるベクターは、エンベローププラスミドである。最下部のベクターは、これまでに記載した治療用ベクターである。
【0190】
より具体的に
図4を参照すると、ヘルパー+Revプラスミドは、CAGエンハンサー(配列番号40)、CAGプロモーター(配列番号41)、ニワトリベータアクチンイントロン(配列番号42)、HIV gag(配列番号43)、HIV Pol(配列番号44)、HIV Int(配列番号45)、HIV RRE(配列番号46)、HIV Rev(配列番号47)、およびウサギベータグロビンポリA(配列番号48)を含む。
【0191】
エンベローププラスミドは、CMVプロモーター(配列番号60)、ベータグロビンイントロン(配列番号61)、VSV−G(配列番号62)、およびウサギベータグロビンポリA(配列番号63)を含む。
【0192】
ヘルパー(+Rev)およびエンベローププラスミドを含む2ベクターレンチウイルスパッケージング系の合成。
材料および方法:
ヘルパープラスミドの構築:Gag、Pol、およびインテグラーゼ遺伝子を含有するpNL4−3 HIVプラスミド(NIH Aids Reagent Program)からのDNA断片の初回PCR増幅によってヘルパープラスミドを構築した。pCDNA3プラスミド(Invitrogen)の同じ部位に挿入するために使用され得る、EcoRIおよびNotI制限部位を有する断片を増幅するためのプライマーをデザインした。フォワードプライマーは(5’−TAAGCAGAATTC ATGAATTTGCCAGGAAGAT−3’)(配列番号81)であり、リバースプライマーは(5’−CCATACAATGAATGGACACTAGGCGGCCGCACGAAT−3’)(配列番号82)であった。Gag、Pol、インテグラーゼ断片の配列は次の通りであった。
GAATTCATGAATTTGCCAGGAAGATGGAAACCAAAAATGATAGGGGGAATTGGAGGTTTTATCAAAGTAAGACAGTATGATCAGATACTCATAGAAATCTGCGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAATCTGTTGACTCAGATTGGCTGCACTTTAAATTTTCCCATTAGTCCTATTGAGACTGTACCAGTAAAATTAAAGCCAGGAATGGATGGCCCAAAAGTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAGTAGAAATTTGTACAGAAATGGAAAAGGAAGGAAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCCATAAAGAAAAAAGACAGTACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGATTTCTGGGAAGTTCAATTAGGAATACCACATCCTGCAGGGTTAAAACAGAAAAAATCAGTAACAGTACTGGATGTGGGCGATGCATATTTTTCAGTTCCCTTAGATAAAGACTTCAGGAAGTATACTGCATTTACCATACCTAGTATAAACAATGAGACACCAGGGATTAGATATCAGTACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAGTGTAGCATGACAAAAATCTTAGAGCCTTTTAGAAAACAAAATCCAGACATAGTCATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAACTGAGACAACATCTGTTGAGGTGGGGATTTACCACACCAGACAAAAAACATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTCCATCCTGATAAATGGACAGTACAGCCTATAGTGCTGCCAGAAAAGGACAGCTGGACTGTCAATGACATACAGAAATTAGTGGGAAAATTGAATTGGGCAAGTCAGATTTATGCAGGGATTAAAGTAAGGCAATTATGTAAACTTCTTAGGGGAACCAAAGCACTAACAGAAGTAGTACCACTAACAGAAGAAGCAGAGCTAGAACTGGCAGAAAACAGGGAGATTCTAAAAGAACCGGTACATGGAGTGTATTATGACCCATCAAAAGACTTAATAGCAGAAATACAGAAGCAGGGGCAAGGCCAATGGACATATCAAATTTATCAAGAGCCATTTAAAAATCTGAAAACAGGAAAGTATGCAAGAATGAAGGGTGCCCACACTAATGATGTGAAACAATTAACAGAGGCAGTACAAAAAATAGCCACAGAAAGCATAGTAATATGGGGAAAGACTCCTAAATTTAAATTACCCATACAAAAGGAAACATGGGAAGCATGGTGGACAGAGTATTGGCAAGCCACCTGGATTCCTGAGTGGGAGTTTGTCAATACCCCTCCCTTAGTGAAGTTATGGTACCAGTTAGAGAAAGAACCCATAATAGGAGCAGAAACTTTCTATGTAGATGGGGCAGCCAATAGGGAAACTAAATTAGGAAAAGCAGGATATGTAACTGACAGAGGAAGACAAAAAGTTGTCCCCCTAACGGACACAACAAATCAGAAGACTGAGTTACAAGCAATTCATCTAGCTTTGCAGGATTCGGGATTAGAAGTAAACATAGTGACAGACTCACAATATGCATTGGGAATCATTCAAGCACAACCAGATAAGAGTGAATCAGAGTTAGTCAGTCAAATAATAGAGCAGTTAATAAAAAAGGAAAAAGTCTACCTGGCATGGGTACCAGCACACAAAGGAATTGGAGGAAATGAACAAGTAGATAAATTGGTCAGTGCTGGAATCAGGAAAGTACTATTTTTAGATGGAATAGATAAGGCCCAAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTTTAACCTACCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAATGTCAGCTAAAAGGGGAAGCCATGCATGGACAAGTAGACTGTAGCCCAGGAATATGGCAGCTAGATTGTACACATTTAGAAGGAAAAGTTATCTTGGTAGCAGTTCATGTAGCCAGTGGATATATAGAAGCAGAAGTAATTCCAGCAGAGACAGGGCAAGAAACAGCATACTTCCTCTTAAAATTAGCAGGAAGATGGCCAGTAAAAACAGTACATACAGACAATGGCAGCAATTTCACCAGTACTACAGTTAAGGCCGCCTGTTGGTGGGCGGGGATCAAGCAGGAATTTGGCATTCCCTACAATCCCCAAAGTCAAGGAGTAATAGAATCTATGAATAAAGAATTAAAGAAAATTATAGGACAGGTAAGAGATCAGGCTGAACATCTTAAGACAGCAGTACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTGGAAAGGACCAGCAAAGCTCCTCTGGAAAGGTGAAGGGGCAGTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAAAAGCAAAGATCATCAGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTGGCAAGTAGACAGGATGAGGATTAA(配列番号83)
【0193】
次に、XbaIおよびXmaI隣接制限部位を有する、Rev、RRE、およびウサギベータグロビンポリA配列を含有するDNA断片を、MWG Operonによって合成した。次いでこのDNA断片を、XbaIおよびXmaI制限部位においてプラスミドに挿入した。DNA配列は次の通りであった。
TCTAGAATGGCAGGAAGAAGCGGAGACAGCGACGAAGAGCTCATCAGAACAGTCAGACTCATCAAGCTTCTCTATCAAAGCAACCCACCTCCCAATCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCCTTGGCACTTATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCAGCTACCACCGCTTGAGAGACTTACTCTTGATTGTAACGAGGATTGTGGAACTTCTGGGACGCAGGGGGTGGGAAGCCCTCAAATATTGGTGGAATCTCCTACAATATTGGAGTCAGGAGCTAAAGAATAGAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTAGATCTTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATTGCAATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCGGAAGGACATATGGGAGGGCAAATCATTTAAAACATCAGAATGAGTATTTGGTTTAGAGTTTGGCAACATATGCCATATGCTGGCTGCCATGAACAAAGGTGGCTATAAAGAGGTCATCAGTATATGAAACAGCCCCCTGCTGTCCATTCCTTATTCCATAGAAAAGCCTTGACTTGAGGTTAGATTTTTTTTATATTTTGTTTTGTGTTATTTTTTTCTTTAACATCCCTAAAATTTTCCTTACATGTTTTACTAGCCAGATTTTTCCTCCTCTCCTGACTACTCCCAGTCATAGCTGTCCCTCTTCTCTTATGAAGATCCCTCGACCTGCAGCCCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCGGATCCGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCAGCGGCCGCCCCGGG(配列番号84)
【0194】
最後に、pCDNA3.1のCMVプロモーターを、CAGエンハンサー/プロモーター+ニワトリベータアクチンイントロン配列に置き換えた。MluIおよびEcoRI隣接制限部位を有する、CAGエンハンサー/プロモーター/イントロン配列を含有するDNA断片を、MWG Operonによって合成した。次いでこのDNA断片を、MluIおよびEcoRI制限部位においてプラスミドに挿入した。DNA配列は次の通りであった。
ACGCGTTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGGGAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCGCTTGGTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTAAAGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTGTGTGCGTGGGGAGCGCCGCGTGCGGCCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGCGGCGCGGGGCTTTGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGCCCCGCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGTGAGCAGGGGGTGTGGGCGCGGCGGTCGGGCTGTAACCCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGCCGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGCGAAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGTCCCCTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGGGGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGGAATTC(配列番号85)
【0195】
VSV−Gエンベローププラスミドの構築:
隣接するEcoRI制限部位を有する水疱性口内炎Indianaウイルス糖タンパク質(VSV−G)配列を、MWG Operonによって合成した。次いでこのDNA断片をEcoRI制限部位においてpCDNA3.1プラスミド(Invitrogen)に挿入し、CMV特異的なプライマーを使用したシーケンシングによって正しい方向を決定した。DNA配列は次の通りであった。
GAATTCATGAAGTGCCTTTTGTACTTAGCCTTTTTATTCATTGGGGTGAATTGCAAGTTCACCATAGTTTTTCCACACAACCAAAAAGGAAACTGGAAAAATGTTCCTTCTAATTACCATTATTGCCCGTCAAGCTCAGATTTAAATTGGCATAATGACTTAATAGGCACAGCCTTACAAGTCAAAATGCCCAAGAGTCACAAGGCTATTCAAGCAGACGGTTGGATGTGTCATGCTTCCAAATGGGTCACTACTTGTGATTTCCGCTGGTATGGACCGAAGTATATAACACATTCCATCCGATCCTTCACTCCATCTGTAGAACAATGCAAGGAAAGCATTGAACAAACGAAACAAGGAACTTGGCTGAATCCAGGCTTCCCTCCTCAAAGTTGTGGATATGCAACTGTGACGGATGCCGAAGCAGTGATTGTCCAGGTGACTCCTCACCATGTGCTGGTTGATGAATACACAGGAGAATGGGTTGATTCACAGTTCATCAACGGAAAATGCAGCAATTACATATGCCCCACTGTCCATAACTCTACAACCTGGCATTCTGACTATAAGGTCAAAGGGCTATGTGATTCTAACCTCATTTCCATGGACATCACCTTCTTCTCAGAGGACGGAGAGCTATCATCCCTGGGAAAGGAGGGCACAGGGTTCAGAAGTAACTACTTTGCTTATGAAACTGGAGGCAAGGCCTGCAAAATGCAATACTGCAAGCATTGGGGAGTCAGACTCCCATCAGGTGTCTGGTTCGAGATGGCTGATAAGGATCTCTTTGCTGCAGCCAGATTCCCTGAATGCCCAGAAGGGTCAAGTATCTCTGCTCCATCTCAGACCTCAGTGGATGTAAGTCTAATTCAGGACGTTGAGAGGATCTTGGATTATTCCCTCTGCCAAGAAACCTGGAGCAAAATCAGAGCGGGTCTTCCAATCTCTCCAGTGGATCTCAGCTATCTTGCTCCTAAAAACCCAGGAACCGGTCCTGCTTTCACCATAATCAATGGTACCCTAAAATACTTTGAGACCAGATACATCAGAGTCGATATTGCTGCTCCAATCCTCTCAAGAATGGTCGGAATGATCAGTGGAACTACCACAGAAAGGGAACTGTGGGATGACTGGGCACCATATGAAGACGTGGAAATTGGACCCAATGGAGTTCTGAGGACCAGTTCAGGATATAAGTTTCCTTTATACATGATTGGACATGGTATGTTGGACTCCGATCTTCATCTTAGCTCAAAGGCTCAGGTGTTCGAACATCCTCACATTCAAGACGCTGCTTCGCAACTTCCTGATGATGAGAGTTTATTTTTTGGTGATACTGGGCTATCCAAAAATCCAATCGAGCTTGTAGAAGGTTGGTTCAGTAGTTGGAAAAGCTCTATTGCCTCTTTTTTCTTTATCATAGGGTTAATCATTGGACTATTCTTGGTTCTCCGAGTTGGTATCCATCTTTGCATTAAATTAAAGCACACCAAGAAAAGACAGATTTATACAGACATAGAGATGAGAATTC(配列番号86)
【0196】
本明細書に記載される方法および材料を使用し、4ベクター系(すなわち、3ベクターレンチウイルスパッケージング系)もデザインし、産生した。この4ベクター系の概略は
図5に示されている。
図5を参照しながら簡潔に述べると、最上部のベクターは、この場合はRevを含まないヘルパープラスミドである。上から2番目のベクターは、別個のRevプラスミドである。下から2番目のベクターは、エンベローププラスミドである。最下部のベクターは、これまでに記載した治療用ベクターである。
【0197】
図5を部分的に参照すると、ヘルパープラスミドは、CAGエンハンサー(配列番号49)、CAGプロモーター(配列番号50)、ニワトリベータアクチンイントロン(配列番号51)、HIV gag(配列番号52)、HIV Pol(配列番号53)、HIV Int(配列番号54)、HIV RRE(配列番号55)、およびウサギベータグロビンポリA(配列番号56)を含む。
【0198】
Revプラスミドは、RSVプロモーター(配列番号57)、HIV Rev(配列番号58)、およびウサギベータグロビンポリA(配列番号59)を含む。
【0199】
エンベローププラスミドは、CMVプロモーター(配列番号60)、ベータグロビンイントロン(配列番号61)、VSV−G(配列番号62)、およびウサギベータグロビンポリA(配列番号63)を含む。
【0200】
ヘルパー、Rev、およびエンベローププラスミドを含む3ベクターレンチウイルスパッケージング系の合成。
材料および方法:
Revを含まないヘルパープラスミドの構築:
RREおよびウサギベータグロビンポリA配列を含有するDNA断片を挿入することにより、Revを含まないヘルパープラスミドを構築した。隣接するXbaIおよびXmaI制限部位を有するこの配列は、MWG Operonによって合成した。次いでこのRRE/ウサギポリAベータグロビン配列を、XbaIおよびXmaI制限部位においてヘルパープラスミドに挿入した。DNA配列は次の通りである。
TCTAGAAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTAGATCTTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATTGCAATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCGGAAGGACATATGGGAGGGCAAATCATTTAAAACATCAGAATGAGTATTTGGTTTAGAGTTTGGCAACATATGCCATATGCTGGCTGCCATGAACAAAGGTGGCTATAAAGAGGTCATCAGTATATGAAACAGCCCCCTGCTGTCCATTCCTTATTCCATAGAAAAGCCTTGACTTGAGGTTAGATTTTTTTTATATTTTGTTTTGTGTTATTTTTTTCTTTAACATCCCTAAAATTTTCCTTACATGTTTTACTAGCCAGATTTTTCCTCCTCTCCTGACTACTCCCAGTCATAGCTGTCCCTCTTCTCTTATGAAGATCCCTCGACCTGCAGCCCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCGGATCCGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCACCCGGG(配列番号87)
【0201】
Revプラスミドの構築:
隣接するMfeIおよびXbaI制限部位を有するRSVプロモーターおよびHIV Rev配列を、MWG Operonにより、単一のDNA断片として合成した。次いでこのDNA断片を、CMVプロモーターが、RSVプロモーターに置き換えられているMfeIおよびXbaI制限部位においてpCDNA3.1プラスミド(Invitrogen)に挿入した。DNA配列は次の通りであった。
CAATTGCGATGTACGGGCCAGATATACGCGTATCTGAGGGGACTAGGGTGTGTTTAGGCGAAAAGCGGGGCTTCGGTTGTACGCGGTTAGGAGTCCCCTCAGGATATAGTAGTTTCGCTTTTGCATAGGGAGGGGGAAATGTAGTCTTATGCAATACACTTGTAGTCTTGCAACATGGTAACGATGAGTTAGCAACATGCCTTACAAGGAGAGAAAAAGCACCGTGCATGCCGATTGGTGGAAGTAAGGTGGTACGATCGTGCCTTATTAGGAAGGCAACAGACAGGTCTGACATGGATTGGACGAACCACTGAATTCCGCATTGCAGAGATAATTGTATTTAAGTGCCTAGCTCGATACAATAAACGCCATTTGACCATTCACCACATTGGTGTGCACCTCCAAGCTCGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCCCTCGAAGCTAGCGATTAGGCATCTCCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGAACTCCTCAAGGCAGTCAGACTCATCAAGTTTCTCTATCAAAGCAACCCACCTCCCAATCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCCTTAGCACTTATCTGGGACGATCTGCGGAGCCTGTGCCTCTTCAGCTACCACCGCTTGAGAGACTTACTCTTGATTGTAACGAGGATTGTGGAACTTCTGGGACGCAGGGGGTGGGAAGCCCTCAAATATTGGTGGAATCTCCTACAATATTGGAGTCAGGAGCTAAAGAATAGTCTAGA(配列番号88)
【0202】
2ベクターおよび3ベクターのパッケージング系のためのプラスミドは、同様のエレメントで改変することができ、イントロン配列は、ベクターの機能を損失することなく除去できる可能性があった。例えば、以下のエレメントは、2ベクターおよび3ベクターのパッケージング系において同様のエレメントに取って代わることができた。
【0203】
プロモーター:伸長因子1(EF−1)(配列番号64)、ホスホグリセリン酸キナーゼ(PGK)(配列番号65)、およびユビキチンC(UbC)(配列番号66)は、CMV(配列番号60)またはCAGプロモーター(配列番号100)に取って代わることができる。これらの配列は、付加、置換、欠失、または変異によってさらに変化させることもできる。
【0204】
ポリA配列:SV40ポリA(配列番号67)およびbGHポリA(配列番号68)は、ウサギベータグロビンポリA(配列番号48)に取って代わることができる。これらの配列は、付加、置換、欠失、または変異によってさらに変化させることもできる。
【0205】
HIV Gag、Pol、およびインテグラーゼ配列:ヘルパープラスミド中のHIV配列は、異なるHIV株またはクレードから構築されていてよい。例えば、Bal株由来のHIV Gag(配列番号69)、HIV Pol(配列番号70)、およびHIV Int(配列番号71)は、本明細書に概説されるヘルパー/ヘルパー+Revプラスミドに含有されるgag、pol、およびint配列と交換することができる。これらの配列は、付加、置換、欠失、または変異によってさらに変化させることもできる。
【0206】
エンベロープ:VSV−G糖タンパク質は、ネコ内在性ウイルス(RD114)(配列番号72)、テナガザル白血病ウイルス(GALV)(配列番号73)、狂犬病(FUG)(配列番号74)、リンパ球性脈絡髄膜炎ウイルス(LCMV)(配列番号75)、インフルエンザA家禽ペストウイルス(FPV)(配列番号76)、ロスリバーアルファウイルス(RRV)(配列番号77)、マウス白血病ウイルス10A1(MLV)(配列番号78)、またはエボラウイルス(EboV)(配列番号79)由来の膜糖タンパク質で置換され得る。これらのエンベロープの配列は、本明細書の配列の部分において特定される。さらに、これらの配列は、付加、置換、欠失、または変異によってさらに変化させることもできる。
【0207】
まとめると、3ベクター系対4ベクター系は、部分的には次のように比較および対比することができる。3ベクターのレンチウイルスベクター系は、1.ヘルパープラスミド:HIV Gag、Pol、インテグラーゼ、およびRev/Tat;2.エンベローププラスミド:VSV−G/FUGエンベロープ;ならびに3.治療用ベクター:RSV 5’LTR、Psiパッケージングシグナル、Gag断片、RRE、Env断片、cPPT、WPRE、および3’デルタLTRを含有する。4ベクターのレンチウイルスベクター系は、1.ヘルパープラスミド:HIV Gag、Pol、およびインテグラーゼ;2.Revプラスミド:Rev;3.エンベローププラスミド:VSV−G/FUGエンベロープ;ならびに4.治療用ベクター:RSV 5’LTR、Psiパッケージングシグナル、Gag断片、RRE、Env断片、cPPT、WPRE、および3’デルタLTRを含有する。上記のエレメントに対応する配列は、本明細書の配列表の部分において特定される。
【0208】
(実施例2:抗HIVレンチウイルスベクターの開発)
この実施例の目的は、抗HIVレンチウイルスベクターを開発することであった。
【0209】
阻害性RNAのデザイン。Homo sapiensケモカインC−Cモチーフ受容体5(CCR5)(GC03P046377)のmRNA配列を使用して、ヒト細胞においてCCR5レベルをノックダウンする潜在的なsiRNAまたはshRNA候補を検索した。Broad InstituteのプログラムまたはThermo ScientificのBLOCK−iT RNAi DesignerなどのsiRNAまたはshRNAデザインプログラムによって選択された候補から、潜在的なRNA干渉配列を選択した。選択された個々のshRNA配列を、レンチウイルスベクターのRNAポリメラーゼIIIプロモーター、例えばH1、U6、または7SKのすぐ3’側に挿入して、shRNA発現を調節した。これらのレンチウイルス−shRNA構築物を使用して細胞の形質導入を行い、特異的なmRNAレベルの変化を測定した。mRNAレベルを低下させるために最も強力なshRNAをマイクロRNA骨格内に個々に包埋して、CMVまたはEF−1アルファRNAポリメラーゼIIプロモーターのいずれかによる発現を可能にした。マイクロRNA骨格は、mirbase.orgから選択した。RNA配列を合成siRNAオリゴヌクレオチドとしても合成し、レンチウイルスベクターを使用せずに細胞に直接導入した。
【0210】
ヒト免疫不全ウイルス1型のBal株(HIV−1 85US_BaL、受託番号AY713409)のゲノム配列を使用して、ヒト細胞におけるHIV複製レベルをノックダウンする潜在的なsiRNAまたはshRNA候補を検索した。配列相同性および経験に基づいて、この検索ではHIVのTatおよびVif遺伝子の領域に焦点を合わせたが、当業者には、これらの領域の使用は非限定的であり、他の潜在的な標的が選択され得ることは理解されよう。重要なことに、gagまたはpol遺伝子の高度に保存された領域は、ベクターの製造に必要なパッケージング系補完プラスミドにこれらと同じ配列が存在したため、shRNAによってターゲティングすることができなかった。CCR5(NM 000579.3、NM 001100168.1特異的)RNAと同様に、Broad Instituteが主催しているGene−E Software Suite(broadinstitute.org/mai/public)またはThermo ScientificのBLOCK−iT RNAi Designer(rnadesigner.thermofisher.com/rnaiexpress/setOption.do?designOption=shrna&pid=6712627360706061801)などのsiRNAまたはshRNAデザインプログラムによって選択された候補から、潜在的なHIV特異的RNA干渉配列を選択した。選択された個々のshRNA配列を、レンチウイルスベクターのRNAポリメラーゼIIIプロモーター、例えばH1、U6、または7SKのすぐ3’側に挿入して、shRNA発現を調節した。これらのレンチウイルス−shRNA構築物を使用して細胞の形質導入を行い、特異的なmRNAレベルの変化を測定した。mRNAレベルを低下させるために最も強力なshRNAをマイクロRNA骨格内に個々に包埋して、CMVまたはEF−1アルファRNAポリメラーゼIIプロモーターのいずれかによる発現を可能にした。
【0211】
ベクターの構築。CCR5、Tat、またはVifのshRNAについて、BamHIおよびEcoRI制限部位を含有するオリゴヌクレオチド配列を、Eurofins MWG Operon,LLCによって合成した。重複するセンスおよびアンチセンスオリゴヌクレオチド配列を混合し、セ氏70度から室温に冷却中にアニールした。レンチウイルスベクターを、セ氏37度で1時間にわたり、制限酵素BamHIおよびEcoRIで消化した。消化されたレンチウイルスベクターをアガロースゲル電気泳動によって精製し、InvitrogenのDNAゲル抽出キットを使用してゲルから抽出した。DNA濃度を決定し、ベクターとオリゴ(3:1比)を混合し、アニールさせ、ライゲートした。ライゲーション反応は、室温で30分間T4 DNAリガーゼを用いて行った。2.5マイクロリットルのライゲーションミックスを、25マイクロリットルのSTBL3コンピテント細菌細胞に添加した。セ氏42度での熱ショック後に形質転換が達成された。アンピシリンを含有する寒天プレート上に細菌細胞を広げ、薬物耐性コロニー(アンピシリン耐性プラスミドの存在を示す)を回収し、精製し、LBブロスにおいて拡大増殖させた。オリゴ配列の挿入を調べるために、採取した細胞培養物からInvitrogenのDNAミニプレップキットを用いてプラスミドDNAを抽出した。shRNA発現を調節するために使用したプロモーターに特異的なプライマーを使用したDNAシーケンシングにより、レンチウイルスベクターにおけるshRNA配列の挿入を検証した。HIV複製を制限することが決定された例示的なベクター配列は
図6に見出すことができる。例えば、CCR5、Tat、またはVif遺伝子発現に対する活性が最も高いshRNA配列を、次いで、EF−1アルファプロモーターの制御下でマイクロRNA(miR)クラスターにアセンブルした。プロモーターおよびmiR配列は
図6に示されている。
【0212】
さらに、標準的な分子生物学技術(例えば、Sambrook;Molecular Cloning: A Laboratory Manual、第4版)ならびに本明細書に記載される技術を使用して、本明細書の
図7に示されるように、一連のレンチウイルスベクターを開発した。
【0213】
ベクター1を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);H1エレメント(配列番号101);shCCR5(配列番号16、18、20、22、または24−Y);ウッドチャック肝炎ウイルスの転写後調節エレメント(WPRE)(配列番号32、80);および末端反復配列部分(配列番号102)を含有する。
【0214】
ベクター2を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);H1エレメント(配列番号101);shRev/Tat(配列番号10);H1エレメント(配列番号101);shCCR5(配列番号16、18、20、22、または24);ウッドチャック肝炎ウイルスの転写後調節エレメント(WPRE)(配列番号32、80);および末端反復配列部分(配列番号102)を含有する。
【0215】
ベクター3を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);H1エレメント(配列番号101);shGag(配列番号12);H1エレメント(配列番号101);shCCR5(配列番号16、18、20、22、または24);ウッドチャック肝炎ウイルスの転写後調節エレメント(WPRE)(配列番号32、80);および末端反復配列部分(配列番号102)を含有する。
【0216】
ベクター4を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);7SKエレメント(配列番号103);shRev/Tat(配列番号10);H1エレメント(配列番号101);shCCR5(配列番号16、18、20、22、または24);ウッドチャック肝炎ウイルスの転写後調節エレメント(WPRE)(配列番号32、80);および末端反復配列部分(配列番号102)を含有する。
【0217】
ベクター5を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);EF1エレメント(配列番号4);miR30CCR5(配列番号1);MiR21Vif(配列番号2);miR185Tat(配列番号3);ウッドチャック肝炎ウイルスの転写後調節エレメント(WPRE)(配列番号32、80);および末端反復配列部分(配列番号102)を含有する。
【0218】
ベクター6を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);EF1エレメント(配列番号4);miR30CCR5(配列番号1);MiR21Vif(配列番号2);miR155Tat(配列番号104);ウッドチャック肝炎ウイルスの転写後調節エレメント(WPRE)(配列番号32、80);および末端反復配列部分(配列番号102)を含有する。
【0219】
ベクター7を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);EF1エレメント(配列番号4);miR30CCR5(配列番号1);MiR21Vif(配列番号2);miR185Tat(配列番号3);ウッドチャック肝炎ウイルスの転写後調節エレメント(WPRE)(配列番号32、80);および末端反復配列部分(配列番号102)を含有する。
【0220】
ベクター8を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);EF1エレメント(配列番号4);miR30CCR5(配列番号1);MiR21Vif(配列番号2);miR185Tat(配列番号3);および末端反復配列部分(配列番号102)を含有する。
【0221】
ベクター9を開発し、これは、左から右に、末端反復配列(LTR)部分(配列番号35);CD4エレメント(配列番号30);miR30CCR5(配列番号1);miR21Vif(配列番号2);miR185Tat(配列番号3);ウッドチャック肝炎ウイルスの転写後調節エレメント(WPRE)(配列番号32、80);および末端反復配列部分(配列番号102)を含有する。
【0222】
ベクターの開発
これらの実験のために開発したベクターのすべてが必ずしも予想され得た通りに機能したとは限らないことに留意されたい。より具体的には、HIVに対するレンチウイルスベクターは、1)標的細胞表面上のHIV結合タンパク質(受容体)のレベルを低下させて初期のウイルスの付着および侵入を遮断する阻害性RNA、2)ウイルスTatタンパク質を隔離し、ウイルス遺伝子発現をトランス活性化するその能力を減少させる、HIV TAR配列の過剰発現、および3)HIVゲノム内の重要な保存配列を攻撃する阻害性RNAという、3つの主要な成分を含み得る。
【0223】
上記の第1の点に関して、重要な細胞表面HIV結合タンパク質は、ケモカイン受容体CCR5である。HIV粒子は、CD4およびCCR5細胞表面タンパク質に結合することにより、感受性T細胞に付着する。CD4は、T細胞の免疫学的機能に重要な細胞表面上の必須の糖タンパク質であるため、その発現レベルを操作するための標的として、これは選択しなかった。しかしながら、CCR5遺伝子のヌル変異のホモ接合体として生まれ、受容体発現が完全に欠如している人々は、いくつかの感染性疾患に対する感受性の増強および稀な自己免疫が発生する可能性を除いては通常の生活を送る。よって、CCR5の調整は比較的安全なアプローチであると決定され、抗HIVレンチウイルスベクターの開発における主要な標的であった。
【0224】
上記の第2の点に関して、ウイルスTAR配列は、ウイルスTatタンパク質と密に結合するHIVゲノムRNAの高度に構造化された領域である。Tat:TAR複合体は、ウイルスRNAの効率的な生成に重要である。TAR領域の過剰発現は、Tatタンパク質を隔離し、ウイルスRNAのレベルを低下させる、デコイ分子として想定された。しかしながら、TARは、レンチウイルス粒子の製造に使用された細胞を含め、ほとんどの哺乳動物細胞に対して毒性があることが証明された。さらにTARは、他の実験室においてウイルス遺伝子発現を阻害するのに非効率的であり、HIV遺伝子療法において実行可能な成分としては却下された。
【0225】
様々な実施形態では、i)一連のHIV単離物にわたり合理的に保存されている配列が、目的の地理的領域における流行を代表すること;ii)ウイルスベクター中の阻害性RNAの活性に起因するRNAレベルの低下により、対応するタンパク質レベルが、HIV複製を有意に低減させるのに十分な量だけ低下すること;およびiii)阻害性RNAによりターゲティングされるウイルス遺伝子配列が、製造中にウイルスベクター粒子のパッケージングおよびアセンブリに必要とされる遺伝子に存在しないことという、3つの基準を満たすウイルス遺伝子配列が特定された。様々な実施形態では、HIV TatおよびRev遺伝子の接合部における配列、ならびにHIV Vif遺伝子内の第2の配列が、阻害性RNAによってターゲティングされた。Tat/Revのターゲティングは、この領域はHIVゲノム内のエンベロープ遺伝子と重複するため、HIVエンベロープ糖タンパク質の発現を低減させるというさらなる利益を有する。
【0226】
ベクターの開発および試験のための様々な方法は、まず好適な標的(本明細書に記載されている)を特定した後、細胞モデルで試験するための個々または複数の阻害性RNA種を発現するプラスミドDNAを構築し、最後に、抗HIV機能が証明された阻害性RNAを含有するレンチウイルスベクターを構築することに依拠する。レンチウイルスベクターは、毒性、in vitro産生中の収量、およびCCR5発現レベルの低下またはウイルス遺伝子産物の低減によるウイルス複製の阻害という点でのHIVに対する有効性について試験される。
【0227】
以下の表2は、複数のバージョンの阻害性構築物を通して臨床候補に到達するまでの進行を実証する。最初にshRNA(短鎖相同RNA)分子をデザインし、プラスミドDNA構築物から発現させた。
【0228】
以下の表2で詳述するプラスミド1〜4は、HIVのGag、Pol、およびRT遺伝子に対するshRNA配列を試験した。各shRNAは細胞モデルにおいてウイルスタンパク質発現を抑制するのに活性であったが、さらなる開発を妨げた2つの重要な問題があった。第1に、これらの配列は、北米および欧州で現在循環しているクレードB HIV株を代表するものではないHIVの実験室単離物に対してターゲティングされた。第2に、これらのshRNAは、レンチウイルスベクターパッケージング系において重要な成分をターゲティングし、製造中のベクター収量を大きく低減させることになる。表2で詳述するプラスミド5は、CCR5をターゲティングするために選択され、リード候補配列をもたらした。表2で詳述するプラスミド6、7、8、9、10、および11は、TAR配列を組み込んだものであり、レンチウイルスベクター製造に使用された細胞を含む哺乳動物細胞に対して許容されない毒性をもたらしたことが分かった。表2で詳述するプラスミド2は、Tat RNA発現を低減させることができるリードshRNA配列を特定した。表2で詳述するプラスミド12は、レンチウイルスベクターにおいてマイクロRNA(miR)として発現されるshCCR5の有効性を実証し、これが最終産物に存在するはずであることを裏付けた。表2で詳述するプラスミド13は、レンチウイルスベクターにおいてマイクロRNA(miR)として発現されるshVifの有効性を実証し、これが最終産物に存在するはずであることを裏付けた。表2で詳述するプラスミド14は、レンチウイルスベクターにおいてマイクロRNA(miR)として発現されるshTatの有効性を実証し、これが最終産物に存在するはずであることを裏付けた。表2で詳述するプラスミド15は、単一のプロモーターから発現されたmiRクラスターの形態で、miR CCR5、miR TatおよびmiR Vifを含有した。これらのmiRは、レンチウイルスベクターパッケージング系において重要な成分をターゲティングせず、哺乳動物細胞に対して無視できる毒性を有することが証明された。クラスター内のmiRは、以前に試験された個々のmiRに対して等しく有効であり、全体的な影響は、CCR5向性HIV BaL株の複製の実質的な低減であった。
【表2-1】
【表2-2】
【表2-3】
【表2-4】
【表2-5】
【表2-6】
【0229】
機能アッセイ。CCR5、Tat、またはVif shRNA配列を含有する個々のレンチウイルスベクター、ならびに、実験の目的で、CMV最初期プロモーターの制御下で緑色蛍光タンパク質(GFP)を発現し、AGT103/CMV−GFPと呼称されるレンチウイルスベクターを、CCR5、Tat、またはVifの発現をノックダウンする能力について試験した。ポリブレンの存在下または非存在下のいずれかで、哺乳動物細胞にレンチウイルス粒子を形質導入した。2〜4日後に細胞を収集し、タンパク質およびRNAをCCR5、Tat、またはVifの発現について分析した。ウェスタンブロットアッセイまたは特異的な蛍光抗体による細胞の標識(CCR5アッセイ)後、CCR5特異的抗体またはアイソタイプ対照抗体のいずれかを使用し、改変および非改変細胞の蛍光を比較する分析的フローサイトメトリーによって、タンパク質レベルを試験した。
【0230】
レンチウイルス試験の開始。10% FBSおよび1%ペニシリン−ストレプトマイシンを補充したRPMI 1640を使用してT細胞培養培地を作った。IL2 10,000単位/ml、IL−12 1μg/ml、IL−7 1μg/ml、IL−15 1μg/mlのサイトカインストックも事前に調製した。
【0231】
レンチウイルスを形質導入する前に、感染性ウイルス力価を決定し、適切な感染多重度(MOI)になるように添加するためのウイルスの量を算出した。
【0232】
0〜12日目:抗原特異的濃縮。0日目、凍結保存されたPBMCを解凍し、10分間1200rpmにて10mlの37℃培地で洗浄し、2×10
6/mlの濃度で37℃培地に再懸濁した。この細胞を、24ウェルプレート中0.5ml/ウェルにて、37℃、5% CO2で培養した。最適な刺激条件を定義するために、以下の表3に列挙した試薬の組み合わせで細胞を刺激した。
【表3-1】
【0233】
4日目および8日目、0.5mlの新鮮培地およびサイトカインを列挙した濃度で(濃度はすべて培養物中の最終濃度を示す)、刺激した細胞に添加した。
【0234】
12〜24日目:非特異的拡大増殖およびレンチウイルス形質導入。12日目、刺激した細胞をピペット操作によりプレートから取り出し、新鮮なT細胞培養培地に1×106/mlの濃度で再懸濁した。再懸濁した細胞をT25培養フラスコに移し、製造元の説明に従い、DYNABEADS(登録商標)Human T−Activator CD3/CD28と、それに加えて上記に列挙したサイトカインで刺激した。フラスコを垂直姿勢でインキュベートした。
【0235】
14日目、AGT103/CMV−GFPをMOI20で添加し、培養物を2日間インキュベーターに戻した。このとき、細胞をピペット操作により回収し、1300rpmで10分間の遠心分離によって収集し、同じ体積の新鮮培地に再懸濁し、再び遠心分離して緩い細胞ペレットを形成した。この細胞ペレットを、先行ステップで使用したものと同じサイトカインを含む新鮮培地に、1mlあたりの生存細胞0.5×10
6個の細胞で再懸濁した。
【0236】
14〜23日目にかけて、細胞の数を2日ごとに評価し、細胞を新鮮培地で0.5×10
6/mlに希釈した。サイトカインは毎回添加した。
【0237】
24日目に細胞を収集し、細胞からビーズを除去した。ビーズを除去するため、2分間にわたり、選別用磁石に入れた好適な管に細胞を移した。細胞を含有する上清を新しい管に移した。次いで細胞を新鮮培地中1×10
6/mlで1日間培養した。アッセイを行い、抗原特異的T細胞およびレンチウイルスを形質導入した細胞の頻度を決定した。
【0238】
可能性のあるウイルス増大を防止するため、アンプレナビル(0.5ng/ml)を刺激の第1日目および培養中1日おきに培養物に添加した。
【0239】
IFNガンマの細胞内サイトカイン染色により抗原特異的T細胞を調査する。ペプチド刺激後または1×10
6細胞/mlでのレンチウイルス形質導入後の培養細胞を、培地単独(陰性対照)、Gagペプチド(5μg/mlの個々のペプチド)、またはPHA(5μg/ml、陽性対照)で刺激した。4時間後、BD GolgiPlug(商標)(1:1000、BD Biosciences)を添加してゴルジ輸送を遮断した。8時間後、細胞を洗浄し、製造元の説明に従ってBD Cytofix/Cytoperm(商標)キットを用い、細胞外抗体(CD3、CD4またはCD8;BD Biosciences)および細胞内抗体(IFNガンマ;BD Biosciences)で染色した。BD FACSCalibur(商標)Flow Cytometerで試料を分析した。適切なアイソタイプ適合抗体で標識した対照試料を各実験に含めた。Flowjoソフトウェアを使用してデータを分析した。
【0240】
レンチウイルス形質導入率をGFP+細胞の頻度によって決定した。形質導入された抗原特異的T細胞をCD3+CD4+GFP+IFNガンマ+細胞の頻度によって決定する。CD3+CD8+GFP+IFNガンマ+細胞の試験は対照として含まれている。
【0241】
これらの結果は、HIV特異的タンパク質の発現を特異的にノックダウンするようにデザインされたレンチウイルスを標的T細胞集団のCD4 T細胞に形質導入することにより、ウイルスに対して免疫があるT細胞の拡大増殖可能な集団が産生され得ることを示す。この実施例は、開示されているレンチウイルス構築物をワクチン接種と組み合わせて使用するとHIV患者の機能的治癒がもたらされ得ることを示す概念の証拠として機能する。
【0242】
(実施例4:実験的ベクターによるCCR5のノックダウン)
AGTc120は、多量のCD4およびCCR5を安定に発現するHela細胞株である。LV−CMV−mCherry(CMV最初期プロモーターの制御下で発現される赤色蛍光タンパク質mCherry)またはAGT103/CMV−mCherryありまたはなしでAGTc120に形質導入を行った。mCherry蛍光タンパク質の遺伝子発現は、CMV(サイトメガロウイルス最初期プロモーター)発現カセットによって制御された。LV−CMV−mCherryベクターはマイクロRNAクラスターを欠いていたが、AGT103/CMV−mCherryは、CCR5、Vif、およびTatに対する治療用miRNAを発現した。
【0243】
図8Aに示されるように、形質導入効率は>90%であった。7日後、細胞を収集し、CCR5に対する蛍光モノクローナル抗体で染色し、分析的フローサイトメトリーに供した。CCR5 APCの平均蛍光強度(x軸)を最頻値に正規化した細胞数(y軸)に対してプロットするこれらのヒストグラムにおいて、アイソタイプ対照は灰色で示されている。細胞表面CCR5について染色した後、レンチウイルスなしまたは対照レンチウイルス(mCherryマーカーのみを発現する)で処置した細胞はCCR5密度の変化を示さなかったが、AGT103(右のセクション)は、CCR5染色強度をアイソタイプ対照のレベル近くまで低減させた。7日後、R5向性HIVレポーターウイルスBal−GFPありまたはなしで細胞を感染させた。3日後に細胞を収集し、フローサイトメトリーによって分析した。90%超の細胞が形質導入されていた。AGT103−CMV/CMVmCherryは、対照ベクターで処置された細胞と比較して、形質導入されたAGTc120細胞におけるCCR5発現を低減させ、R5向性HIV感染を遮断した。
【0244】
図8Bは、トランスフェクトされたAGTc120細胞のHIV感染に対する相対的な非感受性を示す。上記のように、レンチウイルスベクターはmCherryタンパク質を発現し、HIVにも感染した(GFPを発現する)形質導入細胞は、フォールスカラーフローサイトメトリードットプロットの右上象限に二重陽性細胞として現れることになる。HIVの非存在下(上パネル)では、いかなる条件下でもGFP+細胞は存在しなかった。HIV感染後(下パネル)、レンチウイルス形質導入の非存在下で56%の細胞が感染し、LV−CMV−mCherryが形質導入されたAGTc120細胞では53.6%の細胞が感染した。治療用AGT103/CMV−mCherryベクターを細胞に形質導入したとき、細胞が形質導入され感染したことを示す二重陽性象限には、細胞の0.83%しか現れなかった。
【0245】
53.62(対照ベクターを含む二重陽性細胞の割合)を0.83(治療用ベクターを含む二重陽性細胞の割合)で割ると、この実験系においてAGT103が65倍超のHIVからの保護をもたらしたことが示される。
【0246】
(実施例5:レンチウイルスベクターにおけるshRNA阻害剤配列によるCCR5発現の調節)
阻害性RNAのデザイン。Homo sapiensケモカイン受容体CCR5(CCR5、NC 000003.12)の配列を使用して、ヒト細胞においてCCR5レベルをノックダウンする潜在的なsiRNAまたはshRNA候補を検索した。Broad InstituteのプログラムまたはThermo ScientificのBLOCK−IT RNA iDesignerなどのsiRNAまたはshRNAデザインプログラムによって選択された候補から、潜在的なRNA干渉配列を選択した。shRNA配列を、RNAポリメラーゼIIIプロモーター、例えばH1、U6、または7SKのすぐ後でプラスミドに挿入し、shRNA発現を調節することができる。shRNA配列は、CMVまたはEF−1アルファなどのRNAポリメラーゼIIプロモーターによる発現を可能にするために、同様のプロモーターを使用してレンチウイルスベクターに挿入するか、またはマイクロRNA骨格内に包埋してもよい。RNA配列は、siRNAオリゴヌクレオチドとして合成し、プラスミドまたはレンチウイルスベクターから独立して利用することもできる。
【0247】
プラスミドの構築。CCR5 shRNAについて、BamHIおよびEcoRI制限部位を含有するオリゴヌクレオチド配列を、MWG Operonによって合成した。オリゴヌクレオチド配列を70℃でインキュベートすることによってアニールし、次いで室温に冷ました。アニールしたオリゴヌクレオチドを37℃で1時間にわたり制限酵素BamHIおよびEcoRIで消化し、次いで70℃で20分間にわたり酵素を不活化した。並行して、プラスミドDNAを、37℃で1時間にわたり、制限酵素BamHIおよびEcoRIで消化した。消化されたプラスミドDNAをアガロースゲル電気泳動によって精製し、InvitrogenのDNAゲル抽出キットを使用してゲルから抽出した。DNA濃度を決定し、血漿とオリゴヌクレオチド配列を3:1のインサート対ベクター比でライゲートした。ライゲーション反応は、室温で30分間T4 DNAリガーゼを用いて行った。2.5μLのライゲーションミックスを、25μLのSTBL3コンピテント細菌細胞に添加した。形質転換には42℃での熱ショックが必要であった。アンピシリンを含有する寒天プレート上に細菌細胞を広げ、コロニーをLブロスにおいて拡大増殖させた。オリゴ配列の挿入を調べるために、採取した細胞培養物からInvitrogenのDNAミニプレップキットを使用してプラスミドDNAを抽出し、制限酵素消化によって試験した。shRNA発現を調節するために使用したプロモーターに特異的なプライマーを使用したDNAシーケンシングにより、プラスミドへのshRNA配列の挿入を検証した。
【0248】
CCR5 mRNAの低減に関する機能アッセイ:CCR5発現の阻害に関するアッセイでは、2つのプラスミドの共トランスフェクションが必要であった。第1のプラスミドは、CCR5 mRNAに対して指向された5つの異なるshRNA配列のうちの1つを含有する。第2のプラスミドは、ヒトCCR5遺伝子のcDNA配列を含有する。プラスミドを293T細胞に共トランスフェクトした。48時間後、細胞を溶解し、QiagenのRNeasyキットを使用してRNAを抽出した。InvitrogenのSuper Script Kitを使用し、RNAからcDNAを合成した。次いで、Applied Biosystems Step One PCR機械を使用した定量的RT−PCRにより、試料を分析した。ポリメラーゼ連鎖反応分析の標準的条件で、フォワードプライマー(5’−AGGAATTGATGGCGAGAAGG−3’)(配列番号93)およびリバースプライマー(5’−CCCCAAAGAAGGTCAAGGTAATCA−3’)(配列番号94)を使用し、InvitrogenのSYBR Greenを用いてCCR5発現を検出した。ポリメラーゼ連鎖反応分析の標準的条件で、フォワードプライマー(5’−AGCGCGGCTACAGCTTCA−3’)(配列番号95)およびリバースプライマー(5’−GGCGACGTAGCACAGCTTCP−3’)(配列番号96)を使用し、ベータアクチン遺伝子発現に関するmRNAに対して試料を正規化した。各試料についてアクチンメッセンジャーRNAのレベルに正規化したCt値によってCCR5 mRNAの相対発現を決定した。結果を
図9に示す。
【0249】
図9Aに示されるように、CCR5 shRNA構築物およびCCR5発現プラスミドの共トランスフェクションにより、293T細胞におけるCCR5のノックダウンを試験した。対照試料には、いずれのヒト遺伝子もターゲティングしないスクランブルshRNA配列、およびCCR5発現プラスミドをトランスフェクトした。トランスフェクションの60時間後、試料を採取し、定量的PCRによってCCR5 mRNAレベルを測定した。さらに、
図9Bに示されるように、CCR5 shRNA−1(配列番号16)を発現するレンチウイルスの形質導入後のCCR5ノックダウン。
【0250】
(実施例6:レンチウイルスベクターにおけるshRNA阻害剤配列によるHIV成分の調節)
阻害性RNAのデザイン。
HIV1型Rev/Tat(5’−GCGGAGACAGCGACGAAGAGC−3’)(配列番号9)およびGag(5’−GAAGAAATGATGACAGCAT−3’)(配列番号11)の配列を使用して、
Rev/Tat:
(5’GCGGAGACAGCGACGAAGAGCTTCAAGAGAGCTCTTCGTCGCTGTCTCCGCTTTTT−3’)(配列番号10)、および
Gag:
(5’GAAGAAATGATGACAGCATTTCAAGAGAATGCTGTCATCATTTCTTCTTTTT−3’)(配列番号12)のshRNAをデザインした。これらは、上述のように合成し、プラスミドにクローニングした。
【0251】
プラスミドの構築。Rev/TatまたはGag標的配列を、細胞または組織における遺伝子発現のレポーターとして一般的に使用されているホタルルシフェラーゼ遺伝子の3’UTR(非翻訳領域)に挿入した。さらに、1つのプラスミドは、Rev/Tat shRNAを発現するように構築し、第2のプラスミドは、Gag shRNAを発現するように構築した。プラスミドの構築は上述の通りであった。
【0252】
Rev/TatまたはGag mRNAのshRNAターゲティングに関する機能アッセイ:本発明者らはプラスミドの共トランスフェクションを使用し、shRNAプラスミドが、共トランスフェクトされた細胞においてルシフェラーゼメッセンジャーRNAを分解し、発光の強度を減少させることができるかどうかを試験した。shRNA対照(スクランブル配列)を使用して、ルシフェラーゼをトランスフェクトした細胞からの最大光収量を確立した。3’−UTR(mRNAの非翻訳領域)に挿入されたRev/Tat標的配列を含有するルシフェラーゼ構築物を、Rev/Tat shRNA配列とともに共トランスフェクトすると、発光が約90%低減し、shRNA配列の強力な機能が示された。3’−UTRにGag標的配列を含有するルシフェラーゼ構築物を、Gag shRNA配列とともに共トランスフェクトしたとき、同様の結果が得られた。これらの結果は、shRNA配列の強力な活性を示す。
【0253】
図10Aに示されるように、293T細胞における一過性のトランスフェクションによって3’UTR内の標的mRNA配列に融合したRev/Tat標的遺伝子のノックダウンを、ルシフェラーゼ活性の低減によって測定した。
図10Bは、ルシフェラーゼ遺伝子に融合したGag標的遺伝子配列のノックダウンを示す。結果は、それぞれ三連で行った3つの独立したトランスフェクション実験の平均±SDとして表示されている。
【0254】
(実施例7:AGT103はTatおよびVifの発現を減少させる)
例示的なベクターAGT103/CMV−GFPを細胞にトランスフェクトした。AGT103および他の例示的なベクターは、以下の表3に定義してある。
【表3-2】
【0255】
Tリンパ芽球様細胞株(CEM;CCRF−CEM;American Type Culture Collectionカタログ番号CCL119)にAGT103/CMV−GFPを形質導入した。48時間後、ウイルス配列全体をコードするHIV発現プラスミドを細胞にトランスフェクトした。24時間後、細胞からRNAを抽出し、逆転写酵素ポリメラーゼ連鎖反応を使用してインタクトなTat配列のレベルを試験した。
図11に示されるように、インタクトなTat RNAの相対発現レベルは、対照レンチウイルスベクターの存在下でおよそ850から、AGT103/CMV−GFPの存在下でおよそ200まで低下し、全体で>4分の1の低下であった。
【0256】
(実施例8:レンチウイルスベクターにおける合成マイクロRNA配列によるHIV成分の調節)
阻害性RNAのデザイン。HIV−1 TatおよびVif遺伝子の配列を使用して、ヒト細胞においてTatまたはVifレベルをノックダウンする潜在的なsiRNAまたはshRNA候補を検索した。Broad InstituteのプログラムまたはThermo ScientificのBLOCK−IT RNA iDesignerなどのsiRNAまたはshRNAデザインプログラムによって選択された候補から、潜在的なRNA干渉配列を選択した。TatまたはVifのノックダウンに最も強力である選択したshRNA配列を、CMVまたはEF−IアルファなどのRNAポリメラーゼIIプロモーターによる発現を可能にするために、マイクロRNA骨格内に包埋した。RNA配列は、siRNAオリゴヌクレオチドとして合成し、プラスミドまたはレンチウイルスベクターから独立して使用することもできる。
【0257】
プラスミドの構築。Tat標的配列(5’−TCCGCTTCTTCCTGCCATAG−3’)(配列番号7)をmiR185の骨格に組み込んで、Tat miRNA(5’−GGGCCTGGCTCGAGCAGGGGGCGAGGGATTCCGCTTCTTCCTGCCATAGCGTGGTCCCCTCCCCTATGGCAGGCAGAAGCGGCACCTTCCCTCCCAATGACCGCGTCTTCGTCG−3’)(配列番号3)を作り出し、これをレンチウイルスベクターに挿入し、EF−1アルファプロモーターの制御下で発現させた。同様に、Vif標的配列(5’−GGGATGTGTACTTCTGAACTT−3’)(配列番号6)をmiR21の骨格に組み込んで、Vif miRNA(5’−CATCTCCATGGCTGTACCACCTTGTCGGGGGATGTGTACTTCTGAACTTGTGTTGAATCTCATGGAGTTCAGAAGAACACATCCGCACTGACATTTTGGTATCTTTCATCTGACCA−3’)(配列番号2)を作り出し、これをレンチウイルスベクターに挿入し、EF−1アルファプロモーターの制御下で発現させた。結果として得られたVif/Tat miRNA発現レンチウイルスベクターを、レンチウイルスベクターパッケージング系を使用して293T細胞内で産生した。VifおよびTat miRNAを、すべてEF−1プロモーターの制御下で発現されるmiR CCR5、miR Vif、およびmiR TatからなるマイクロRNAクラスターに包埋した。
【0258】
Tat mRNAの蓄積のmiR185Tatによる阻害に関する機能アッセイ。293T細胞に形質導入するため、miR185 Tatを発現するレンチウイルスベクター(LV−EF1−miR−CCR5−Vif−Tat)を、5に等しい感染多重度で使用した。形質導入の24時間後、標準的条件下でLipofectamine2000を使用し、HIV株NL4−3を発現するプラスミド(pNL4−3)を細胞にトランスフェクトした。24時間後、RNAを抽出し、Tat特異的プライマーを使用したRT−PCRによってTatメッセンジャーRNAのレベルを試験し、対照のアクチンmRNAレベルと比較した。
【0259】
Vifタンパク質の蓄積のmiR21 Vifによる阻害に関する機能アッセイ。293T細胞に形質導入するため、miR21 Vifを発現するレンチウイルスベクター(LV−EF1−miR−CCR5−Vif−Tat)を、5に等しい感染多重度で使用した。形質導入の24時間後、Lipofectamine2000を使用し、HIV株NL4−3を発現するプラスミド(pNL4−3)を細胞にトランスフェクトした。24時間後、細胞を溶解し、全可溶性タンパク質を試験して、Vifタンパク質の含有量を測定した。確立された技術に従い、SDS−PAGEによって細胞溶解物を分離した。分離したタンパク質をナイロン膜に移し、Vif特異的モノクローナル抗体またはアクチン対照抗体でプローブした。
【0260】
図12Aに示されるように、対照レンチウイルスベクターか、または合成miR185 TatもしくはmiR155 TatのいずれかのマイクロRNAを発現するレンチウイルスベクターのいずれかを形質導入した293T細胞において、Tatのノックダウンを試験した。24時間後、HIVベクターpNL4−3をLipofectamine2000と共に24時間トランスフェクトし、次いで、Tatに対するプライマーを用いたqPCR分析のためにRNAを抽出した。
図12Bに示されるように、対照レンチウイルスベクターか、または合成miR21 VifのマイクロRNAを発現するレンチウイルスベクターのいずれかを形質導入した293T細胞において、Vifのノックダウンを試験した。24時間後、HIVベクターpNL4−3をLipofectamine2000と共に24時間トランスフェクトし、次いで、HIV Vifに対する抗体を用いた免疫ブロット分析のためにタンパク質を抽出した。
【0261】
(実施例9:レンチウイルスベクターにおける合成マイクロRNA配列によるCCR5発現の調節)
CCR5の合成miR30配列(AGT103:TGTAAACTGAGCTTGCTCTA(配列番号97)、AGT103−R5−1:TGTAAACTGAGCTTGCTCGC(配列番号98)、またはAGT103−R5−2:CATAGATTGGACTTGACAC(配列番号99)を含有するレンチウイルスベクターを、CEM−CCR5細胞に形質導入した。6日後、APCコンジュゲートCCR5抗体を用いたFACS分析によってCCR5発現を決定し、平均蛍光強度(MFI)によって定量化した。CCR5レベルは、100%に設定したLV−対照を用いて%CCR5として表した。AGT103およびAGT103−R5−1の標的配列は、CCR5標的配列5番と同じ領域内にある。AGT103−R5−2の標的配列は、CCR5標的配列1番と同じである。AGT103(全CCR5の2%)は、AGT103−R5−1(全CCR5の39%)、およびCCR5レベルを低下させないAGT103−R5−2と比較して、CCR5レベルを低下させるのに最も有効である。このデータは本明細書で
図13に実証されている。
【0262】
(実施例10:長鎖または短鎖のWPRE配列のいずれかを含有するレンチウイルスベクターにおける、合成マイクロRNA配列によるCCR5発現の調節)
ベクターの構築。レンチウイルスベクターは、多くの場合、治療用遺伝子または遺伝子構築物の最適な発現のためにRNA調節エレメントを必要とする。一般的な選択肢は、ウッドチャック肝炎ウイルス転写後調節エレメント(WPRE)を使用することである。本発明者らは、全長WPRE:
(5’AATCAACCTCTGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCT−3’)(配列番号32)
を含有するAGT103を、短縮されたWPREエレメント
(5’AATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGATATTCTTAACTATGTTGCTCCTTTTACGCTGTGTGGATATGCTGCTTTAATGCCTCTGTATCATGCTATTGCTTCCCGTACGGCTTTCGTTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCCGTCAACGTGGCGTGGTGTGCTCTGTGTTTGCTGACGCAACCCCCACTGGCTGGGGCATTGCCACCACCTGTCAACTCCTTTCTGGGACTTTCGCTTTCCCCCTCCCGATCGCCACGGCAGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTAGGTTGCTGGGCACTGATAATTCCGTGGTGTTGTC−3’)(配列番号80)
を含有する改変されたAGT103ベクターと比較した。
【0263】
ベクター配列における長鎖対短鎖WPREエレメントに応じた細胞表面CCR5発現の調整に関する機能アッセイ。長鎖または短鎖のWPREエレメントを含有するAGT103を、5に等しい感染多重度でCEM−CCR5 T細胞に形質導入するために使用した。形質導入の6日後に細胞を収集し、細胞表面CCR5タンパク質を検出することができるモノクローナル抗体で染色した。この抗体は蛍光マーカーにコンジュゲートされており、その染色の強度は、細胞表面上のCCR5のレベルに正比例する。対照レンチウイルスは細胞表面CCR5レベルに影響を及ぼさず、平均蛍光強度が73.6単位の単一集団がもたらされた。長鎖WPREエレメントを有する従来のAGT103は、CCR5発現を11単位の平均蛍光強度レベルまで低減させた。短鎖WPREエレメントを組み込むように改変されたAGT103は、平均蛍光強度が13単位の単一の細胞集団をもたらした。したがって、短鎖WPREエレメントの置換は、細胞表面CCR5発現を低減させるAGT103の能力に、ほとんどまたは全く影響しなかった。
【0264】
図14に示されるように、長鎖または短鎖のいずれかのWPRE配列を含有するAGT103をCEM−CCR5細胞に形質導入した。6日後、APCコンジュゲートCCR5抗体を用いたFACS分析によってCCR5発現を決定し、平均蛍光強度(MFI)として定量化した。CCR5レベルは、100%に設定したLV−対照を用いて%CCR5として表した。CCR5レベルの低下は、短鎖WPRE配列(全CCR5の5.5%)または長鎖WPRE配列(全CCR5の2.3%)のいずれかを有するAGT103でも同様であった。
【0265】
(実施例11:WPRE配列ありまたはなしのレンチウイルスベクターにおける合成マイクロRNA配列によるCCR5発現の調節)
ベクターの構築。CCR5発現のAGT103による下方調節にWPREが必要であるかどうかを試験するため、本発明者らは、WPREエレメント配列を有しない改変ベクターを構築した。
【0266】
AGT103ベクターに長鎖WPREエレメントを含むか含まないかに応じた細胞表面CCR5発現の調整に関する機能アッセイ。CCR5発現レベルのAGT103による調整にWPREが必要であるかどうかを試験するため、本発明者らは、5に等しい感染多重度を使用し、AGT103、またはWPREを欠いた改変ベクターを、CEM−CCR5 T細胞に形質導入した。形質導入の6日後に細胞を収集し、細胞表面CCR5タンパク質を認識することができるモノクローナル抗体で染色した。このモノクローナル抗体は蛍光マーカーに直接コンジュゲートされており、その染色の強度は、細胞表面あたりのCCR5分子の数に正比例する。レンチウイルス対照ベクターは細胞表面CCR5レベルに影響を及ぼさず、平均蛍光強度が164の均一な集団をもたらした。レンチウイルスベクター(長鎖WPREを有し、またGFPマーカータンパク質を発現するAGT103)、GFPを欠いているが長鎖WPREエレメントを含有するAGT103、またはGFPおよびWPREの両方を欠いているAGT103はすべて、細胞表面CCR5発現を調整するのに同様に有効であった。GFPを除去した後、WPREエレメントありまたはなしのAGT103は、細胞表面CCR5発現を調整する能力という点で区別不能であった。
【0267】
GFPおよびWPREありまたはなしのAGT103をCEM−CCR5細胞に形質導入した。6日後、APCコンジュゲートCCR5抗体を用いたFACS分析によってCCR5発現を決定し、平均蛍光強度(MFI)として定量化した。CCR5レベルは、100%に設定したLV−対照を用いて%CCR5として表した。CCR5レベルの低下は、WPRE配列あり(全CCR5の0%)またはなし(全CCR5の0%)のAGT103で同様であった。このデータは
図15に実証されている。
【0268】
(実施例12:レンチウイルスベクターにおける合成マイクロRNA配列を調節するCD4プロモーターによるCCR5発現の調節。)
ベクターの構築。CCR5、Vif、およびTatの遺伝子発現を抑制するマイクロRNAクラスターを発現させるために代替のプロモーターを代わりに用いることの影響を試験するため、改変バージョンのAGT103を構築した。通常のEF−1プロモーターの代わりに、本発明者らは、配列:
(5’TGTTGGGGTTCAAATTTGAGCCCCAGCTGTTAGCCCTCTGCAAAGAAAAAAAAAAAAAAAAAAGAACAAAGGGCCTAGATTTCCCTTCTGAGCCCCACCCTAAGATGAAGCCTCTTCTTTCAAGGGAGTGGGGTTGGGGTGGAGGCGGATCCTGTCAGCTTTGCTCTCTCTGTGGCTGGCAGTTTCTCCAAAGGGTAACAGGTGTCAGCTGGCTGAGCCTAGGCTGAACCCTGAGACATGCTACCTCTGTCTTCTCATGGCTGGAGGCAGCCTTTGTAAGTCACAGAAAGTAGCTGAGGGGCTCTGGAAAAAAGACAGCCAGGGTGGAGGTAGATTGGTCTTTGACTCCTGATTTAAGCCTGATTCTGCTTAACTTTTTCCCTTGACTTTGGCATTTTCACTTTGACATGTTCCCTGAGAGCCTGGGGGGTGGGGAACCCAGCTCCAGCTGGTGACGTTTGGGGCCGGCCCAGGCCTAGGGTGTGGAGGAGCCTTGCCATCGGGCTTCCTGTCTCTCTTCATTTAAGCACGACTCTGCAGA−3’)(配列番号30)
を使用し、CD4糖タンパク質発現のためのT細胞特異的プロモーターを置換した。
【0269】
細胞表面でのCCR5タンパク質の発現を低減させる効力という点でEF−1およびCD4遺伝子プロモーターを比較する機能アッセイ。通常のEF−1プロモーターの代わりにCD4遺伝子プロモーターを用いることにより改変されたAGT103を、CEM−CCR5 T細胞の形質導入に使用した。形質導入の6日後に細胞を収集し、細胞表面CCR5タンパク質を認識することができるモノクローナル抗体で染色した。このモノクローナル抗体は蛍光マーカーにコンジュゲートされており、染色強度は、細胞表面CCR5タンパク質のレベルに正比例する。対照レンチウイルスの形質導入は、CCR5特異的モノクローナル抗体で染色されたCEM−CCR5 T細胞の集団をもたらし、81.7単位の平均蛍光強度をもたらした。マイクロRNAを発現させるためにEF−1プロモーターの代わりにCD4遺伝子プロモーターを使用して改変されたAGT103は、平均蛍光強度が17.3単位にほぼ等しい広い染色の分布を示した。この結果に基づくと、EF−1プロモーターは、マイクロRNAの発現に関してCD4遺伝子プロモーターと少なくとも同様であり、これより優れている可能性が高い。所望の標的細胞集団に応じて、EF−1プロモーターは、すべての細胞型で普遍的に活性があり、CD4プロモーターは、Tリンパ球においてのみ活性がある。
【0270】
CCR5、Vif、およびTatの合成マイクロRNA配列を調節するCD4プロモーターを含有するレンチウイルスベクター(AGT103)を、CEM−CCR5細胞に形質導入した。6日後、APCコンジュゲートCCR5抗体を用いたFACS分析によってCCR5発現を決定し、平均蛍光強度(MFI)として定量化した。CCR5レベルは、100%に設定したLV−対照を用いて%CCR5として表した。LV−CD4−AGT103を形質導入した細胞において、CCR5レベルは全CCR5の11%であった。これは、EF1プロモーターを含有するLV−AGT103で観察されたものと同等である。このデータは
図16に実証されている。
【0271】
(実施例13:HIV Gag特異的CD4 T細胞の検出)
細胞および試薬。凍結された生存可能な末梢血単核細胞(PBMC)をワクチン会社から得た。候補HIV治療用ワクチンを試験する早期臨床治験(治験登録:clinicaltrials.gov NCT01378156)に登録したHIV+の個体に由来する代表的な検体を用い、データを得た。「ワクチン接種前」および「ワクチン接種後」の研究のために2つの検体を得た。細胞培養製品、サプリメント、およびサイトカインは商業的供給元から得た。Thompson, M.、S. L. Heath、B. Sweeton、K. Williams、P. Cunningham、B. F. Keele、S. Sen、B. E. Palmer、N. Chomont、Y. Xu、R. Basu、M. S. Hellerstein、S. KwaおよびH. L. Robinson(2016年)、「DNA/MVA Vaccination of HIV−1 Infected Participants with Viral Suppression on Antiretroviral Therapy, followed by Treatment Interruption: Elicitation of Immune Responses without Control of Re−Emergent Virus.」、PLoS One、11巻(10号):e0163164頁に記載されているように、Geovax Corporationの組換え改変ワクシニアAnkara 62Bに対する応答について、細胞を試験した。HIV−1 Gagポリタンパク質の全体を表す合成ペプチドをGeoVaxから得て、HIV(GAG)UltraペプチドセットをJPT Peptide Technologies GmbH(www.jpt.com)、Berlin、Germanyから得た。HIV(GAG)Ultraは、それぞれ15アミノ酸長であり、11個のアミノ酸が重複している、150個のペプチドを含有する。これらを化学的に合成し、次いで精製し、液体クロマトグラフィー−質量分析によって分析した。集合的にこれらのペプチドは、HIV Gagポリタンパク質の主要な免疫原性領域を表し、公知のHIV株の間で57.8%の平均カバレッジ(coverage)となるようデザインされている。ペプチド配列は、Los Alamos National LaboratoryのHIV配列データベース(http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html)に基づいている。各ペプチドにつき25マイクログラムの乾燥したトリフルオロ酢酸塩としてペプチドを提供し、およそ40マイクロリットルのDMSOに溶解させ、次いで最終濃度までPBSで希釈する。CD4および細胞質のIFNガンマを検出するためのモノクローナル抗体を商業的供給源から得て、インターフェロンガンマに対してBD PharmingenのIntracellular Staining Kitを用いて細胞内染色を行った。ペプチドをDMSOに再懸濁した。DMSOのみの対照条件が含まれる。
【0272】
HIV特異的CD4+T細胞を検出するための機能アッセイ。凍結PBMCを解凍し、洗浄し、10%ウシ胎仔血清、サプリメント、およびサイトカインを含有するRPMI培地に再懸濁した。ワクチン接種前または後に収集した、培養されたPBMCを、Golgi Stop試薬の存在下で20時間にわたり、DMSO対照、MVA GeoVax(細胞あたり1プラーク形成単位に等しい感染多重度)、Peptides GeoVax(1マイクログラム/ml)、またはHIV(GAG)Ultraペプチド混合物(1マイクログラム/ml)で処置した。細胞を収集し、洗浄し、固定し、透過処理し、そして細胞表面CD4または細胞内インターフェロンガンマに特異的なモノクローナル抗体で染色した。染色された細胞をFACSCalibur分析用フローサイトメーターで分析し、CD4+T細胞サブセットでデータをゲーティングした。四角で囲まれた領域内の強調された細胞は二重陽性であり、MVAまたはペプチドでの刺激後のインターフェロンガンマ発現に基づいてHIV特異的CD4 T細胞と指定される。四角で囲まれた領域内の数字は、全CD4のうちHIV特異的と特定されたもののパーセンテージを示す。DMSOまたはMVAに対する強い応答は検出されなかった。GeoVaxのペプチドは、JPTのHIV(GAG)Ultraペプチド混合物と比較してより少ない応答細胞を誘発したが、差異はわずかであり、有意ではなかった。
【0273】
図17に示されるように、ワクチン接種前または後のHIV陽性患者由来のPBMCを、DMSO(対照)、GeoVaxのHIV Gagを発現する組換えMVA(MVA GeoVax)、GeoVaxのGagペプチド(Pep GeoVax、本明細書ではGagペプチドプール1とも呼ばれる)、またはJPTのGagペプチド(HIV(GAG)Ultra、本明細書ではGagペプチドプール2とも呼ばれる)で20時間刺激した。標準的なプロトコールを使用した細胞内染色およびフローサイトメトリーにより、IFNg産生を検出した。フローサイトメトリーデータは、CD4 T細胞に対してゲーティングした。四角内に捕捉された数字は、全CD4 T細胞のうち、抗原特異的刺激に対するサイトカイン応答に基づいて「HIV特異的」と指定されたもののパーセンテージである。
【0274】
(実施例14:HIV特異的CD4 T細胞の拡大増殖およびレンチウイルスの形質導入)
PBMCを濃縮してHIV特異的CD4 T細胞の割合を増加させ、これらの細胞にAGT103を形質導入して細胞産物AGT103Tを産生するための方法のデザインおよび試験。
【0275】
治療用HIVワクチンを受けたHIV陽性患者のPBMC(末梢血単核細胞)のex vivo培養のためのプロトコールをデザインした。この実施例において、治療用ワクチンは、3用量のHIV Gag、Pol、およびEnv遺伝子を発現するプラスミドDNAに続いて、2用量の同じHIV Gag、Pol、およびEnv遺伝子を発現するMVA 62−B(改変ワクシニアAnkara番号62−B)からなった。このプロトコールはワクチン製品に特異的でなく、免疫化後のHIV特異的CD4+T細胞の十分なレベルしか必要としない。静脈血を収集し、Ficoll−Paque密度勾配遠心分離によってPBMCを精製した。代わりに、抗体カクテルを使用した陽性または陰性選択方法および蛍光活性化または磁性ビーズソーティングによって、PBMCまたは規定の細胞トラクション(cellular traction)を調製してもよい。精製されたPBMCを洗浄し、サプリメント、抗生物質、およびウシ胎仔血清を含有する標準的な培地で培養する。これらの培養物に、HIV Gagポリタンパク質内の可能性のあるT細胞エピトープを代表する合成ペプチドのプールを添加した。インターロイキン2およびインターロイキン12、インターロイキン2およびインターロイキン7、インターロイキン2およびインターロイキン15の組み合わせを試験した後に選択されたインターロイキン2およびインターロイキン12のサイトカインを添加することにより、培養物を補完する。ペプチド刺激には、およそ12日間の培養期間が続く。12日間の培養中、新鮮培地および新鮮なサイトカインサプリメントをおよそ4日ごとに1回添加した。
【0276】
ペプチド刺激期間は、PBMC培養物中のHIV特異的CD4 T細胞の頻度を増加させるようにデザインされている。これらのHIV特異的CD4 T細胞は、事前の治療的免疫化によって活性化させた。これらは、合成ペプチドへの曝露によって再刺激し、増殖させてもよい。本発明者らの目標は、全体の1%を超えるかまたはこれに等しいCD4 T細胞がペプチド刺激培養期間の終わりまでにHIV特異的であることを達成することである。
【0277】
培養のおよそ12日目に細胞を洗浄して、残存する材料を除去し、次いで、CD4 T細胞表面タンパク質のCD3およびCD28に対する抗体で修飾された合成ビーズで刺激する。T細胞のポリクローナル刺激のためのこの十分に確立された方法は、細胞を再活性化し、AGT103レンチウイルスの形質導入に対して細胞をより感受性にする。レンチウイルス形質導入は培養のおよそ13日目に行われ、1から5の間の感染多重度を使用する。形質導入後、細胞を洗浄して残存するレンチウイルスベクターを除去し、インターロイキン2およびインターロイキン12を含有する培地中で培養し、新鮮培地およびサイトカインを培養のおよそ24日目までおよそ4日ごとに1回添加する。
【0278】
培養期間の間中、抗レトロウイルス薬のサキナビルをおよそ100nMの濃度で添加し、あらゆる可能性のあるHIVの増大を抑制する。
【0279】
培養のおよそ24日目に細胞を採取し、洗浄し、効力およびリリース(release)アッセイのために試料を取っておき、次いで残りの細胞を凍結保存培地に懸濁してから、AGT103が形質導入されたおよそ1×10
8個のHIV特異的CD4 T細胞を含有する、1用量あたり細胞およそ1×10
10個の単一のアリコートにおいて凍結する。
【0280】
2つの交互の効力アッセイのうちの1つにおいて、細胞産物(AGT103T)の効力を試験する。効力アッセイ1では、CD4 T細胞1個あたりのゲノムコピー(組み込まれたAGT103ベクター配列)の平均数を試験する。産物をリリースするための最小の効力は、CD4 T細胞1個あたりおよそ0.5個のゲノムコピーである。このアッセイは、磁性ビーズで標識したモノクローナル抗体を使用してCD3陽性/CD4陽性T細胞の陽性選択を行い、全細胞DNAを抽出し、定量的PCR反応を使用してAGT103ベクターに特有の配列を検出することにより行う。効力アッセイ2では、HIV特異的CD4 T細胞の亜集団内における組み込まれたAGT103のゲノムコピーの平均数を試験する。このアッセイは、まず、HIV Gagタンパク質を代表する合成ペプチドのプールでPBMCを刺激することにより達成される。次いで、CD4 T細胞に結合することができ、分泌されたインターフェロンガンマサイトカインを捕捉することもできる特異的抗体試薬で細胞を染色する。CD4陽性/インターフェロンガンマ陽性細胞を磁性ビーズ選択によって捕捉し、全細胞DNAを調製し、細胞1個あたりのAGT103のゲノムコピー数を定量的PCR反応によって決定する。アッセイ2を使用した効力に基づくリリース基準は、HIV特異的CD4 T細胞1個あたり0.5個を超えるかまたはこれと等しいゲノムコピーがAGT103細胞産物中に存在することを必要とする。
【0281】
治療用HIVワクチンを受けたHIV陽性患者のPBMCからHIV特異的CD4 T細胞を濃縮し形質導入するための機能試験。HIV特異的CD4 T細胞の頻度に対する治療用ワクチン接種の影響をペプチド刺激アッセイによって試験した(
図14パネルB)。ワクチン接種前のHIV特異的CD4 T細胞の頻度は、この代表的個体において0.036%であった。ワクチン接種後、HIV特異的CD4 T細胞の頻度は、0.076%の値までおよそ2倍増加した。細胞質のインターフェロンガンマの蓄積により特定される応答細胞(HIV特異的)は、特異的ペプチド刺激後にしか検出されなかった。
【0282】
本発明者らはまた、HIV特異的CD4 T細胞を濃縮するためのペプチド刺激の後にAGT103形質導入を行った場合、培養物中の全CD4 T細胞のうち、HIV特異的であり、かつAGT103が形質導入されたものをおよそ1%生成するという本発明者らの目標が達成されるかどうかを試験した。この場合において本発明者らは、緑色蛍光タンパク質(GFPを参照)を発現する実験用バージョンのAGT103を使用した。
図14、パネルCでは、ペプチド刺激(HIV(GAG)Ultra)およびAGT103形質導入後の、ワクチン接種後の培養により、全CD4 T細胞の1.11%がHIV特異的であり(ペプチド刺激に応答したインターフェロンガンマの発現に基づく)、かつAGT103が形質導入された(GFPの発現に基づく)ことが実証された。
【0283】
治療用HIVワクチン研究における数名の患者を試験して、ペプチド刺激への応答の範囲を評価し、将来のヒトでの臨床治験における遺伝子療法アームに参加するための適格性基準の定義付けを開始した。
図18パネルDは、4名のワクチン治験参加者のワクチン接種前および後の検体を比較し、これらの参加者におけるHIV特異的CD4 T細胞の頻度を示す。3つの事例において、ワクチン接種後の検体は、全CD4 T細胞の0.076%を超えるかまたはこれと等しいHIV特異的CD4 T細胞の値を示す。この値に達する能力は、ワクチン接種前の検体からは予想されなかった。なぜなら、患者001−004および患者001−006の両方で、ワクチン接種前のHIV特異的CD4 T細胞の値は0.02%から開始したが、一方ではワクチン接種後のHIV特異的CD4 T細胞の最終的な値が0.12%に達し、他方の個体ではワクチン接種後にこの値が増加していないためである。HIV特異的CD4 T細胞の頻度を増加させるという点でワクチンに良好に応答した同患者3名は、ペプチド刺激および培養後のHIV特異的CD4 T細胞の実質的な濃縮も示した。
図18パネルEに示される3つの事例では、ペプチド刺激およびその後の培養により、それぞれ、全CD4 T細胞の2.07%、0.72%、または1.54%がHIV特異的であった試料が生成された。これらの値は、治療用HIVワクチンに応答する個体の大多数が、全CD4 T細胞のうちおよそ1%が、最終的な細胞産物においてHIV特異的でありAGT103が形質導入されたものであることを達成する本発明者らの目標を可能にするために、ペプチド刺激に対して十分に大きなex vivo応答を有することを示す。
【0284】
図18に示されるように、パネルAには処置のスケジュールが記載されている。パネルBは、PBMCをGagペプチドまたはDMSO対照で20時間にわたって刺激したことを実証する。IFNガンマ産生をFACSによる細胞内染色によって検出した。CD4
+T細胞を分析のためにゲーティングした。パネルCは、CD4
+T細胞を拡大増殖し、パネルAに示される方法を使用してAGT103−GFPを形質導入したことを実証する。拡大増殖したCD4
+T細胞は、サイトカインを全く含まない新鮮培地中で2日間静置し、GagペプチドまたはDMSO対照で20時間にわたって再刺激した。IFNガンマ産生およびGFP発現をFACSによって検出した。CD4
+T細胞を分析のためにゲーティングした。パネルDは、HIV特異的CD4
+T細胞(IFNガンマ陽性、ワクチン接種前および後)の頻度が4名の患者から検出されたことを実証する。パネルEは、4名の患者由来のワクチン接種後のPBMCを拡大増殖し、HIV特異的CD4
+T細胞を調査したことを実証する。
【0285】
(実施例15:用量応答)
ベクターの構築。AGT103の改変バージョンを構築して、漸増するAGT103に対する用量応答および細胞表面CCR5レベルに対するその影響を試験した。AGT103は、CMVプロモーターの制御下の緑色蛍光タンパク質(GFP)発現カセットを含むように改変した。形質導入された細胞は、miR30CCR5 miR21Vif miR185TatマイクロRNAクラスターを発現し、GFPの発現に起因して緑色光を発する。
【0286】
漸増するAGT103−GFPの用量応答およびCCR5発現の阻害に関する機能アッセイ。細胞あたり0〜5の感染多重度を使用して、CEM−CCR5 T細胞にAGT103−GFPを形質導入した。細胞表面CCR5に特異的な蛍光コンジュゲート(APC)モノクローナル抗体で、形質導入された細胞を染色した。染色の強度は、細胞表面あたりのCCR5分子の数に比例する。緑色蛍光の強度は、細胞あたりの組み込まれたAGT103−GFPコピー数に比例する。
【0287】
図19に示されるように、パネルAは、漸増するAGT103−GFPに対する用量応答および細胞表面CCR5発現に対するその影響を実証する。0.4に等しい感染多重度では、細胞のうち1.04%だけが、緑色であり(形質導入を示す)、かつ著しく低減したCCR5発現を示す。1に等しい感染多重度では、CCR5low,GFP+細胞数は、68.1%に増加する/5に等しい感染多重度では、CCR5low,GFP+細胞数は、95.7%に増加した。これらのデータは、AGT103−GFPの漸増用量と共により低い平均蛍光強度に向かう、CCR5染色という点で正規分布の集団を示す
図19のパネルBにおいて、ヒストグラム形態で提示されている。AGT103−GFPの効力は、AGT103−GFPの漸増用量に伴うCCR5発現の阻害パーセンテージを示す
図19のパネルCにグラフ形態で提示されている。5に等しい感染多重度では、CCR5発現レベルが99%を超えて低下した。
【0288】
(実施例16:AGT103は初代ヒトCD4
+T細胞を効率的に形質導入する)
AGT103レンチウイルスベクターでの初代CD4 T細胞の形質導入。緑色蛍光タンパク質マーカー(GFP)を含有する改変されたAGT103ベクターを、精製された初代ヒトCD4 T細胞に形質導入するため、0.2から5の間の感染多重度で使用した。
【0289】
初代ヒトCD4 T細胞におけるAGT103の形質導入効率に関する機能アッセイ。磁性ビーズ標識抗体および標準的な手順を使用して、CD4 T細胞をヒトPBMC(HIV陰性ドナー)から単離した。精製されたCD4 T細胞をCD3/CD28ビーズでex vivoにて刺激し、AGT103形質導入前にインターロイキン2を含有する培地で1日培養した。レンチウイルスベクター用量(感染多重度)と形質導入効率との間の関係は、
図20パネルAに実証されており、0.2に等しい感染多重度ではCD4陽性T細胞のうち9.27%にAGT103が形質導入され、5に等しい感染多重度ではCD4陽性T細胞の63.1%にAGT103が形質導入されて、この値が増加したことが示されている。初代CD4陽性T細胞の効率的な形質導入を達成することに加えて、細胞あたりのゲノムコピー数を定量化することも必要である。
図20パネルBでは、細胞あたりのゲノムコピー数を決定するために、いくつかの感染多重度で形質導入した初代ヒトCD4 T細胞の全細胞DNAを定量的PCRによって試験した。0.2に等しい感染多重度では、パネルAにおける9.27%のGFP陽性CD4 T細胞と十分一致する、細胞1個あたり0.096個のゲノムコピーが測定された。1に等しい感染多重度では、細胞1個あたり0.691個のゲノムコピーが生成され、5に等しい感染多重度では、細胞1個あたり1.245個のゲノムコピーが生成された。
【0290】
図20に示されるように、PBMCから単離したCD4
+T細胞をCD3/CD28ビーズとIL−2で1日間刺激し、様々な濃度でAGT103を形質導入した。2日後にビーズを除去し、CD4
+T細胞を収集した。パネルAに示されるように、形質導入された細胞(GFP陽性)の頻度をFACSによって検出した。パネルBに示されるように、細胞あたりのベクターコピー数をqPCRによって決定した。5の感染多重度(MOI)では、CD4
+T細胞の63%に、細胞あたり平均1個のベクターコピーが形質導入された。
【0291】
(実施例17:AGT103は初代CD4
+T細胞におけるHIV複製を阻害する)
初代ヒトCD4陽性T細胞にAGT103を形質導入することによる細胞のHIV感染からの保護。治療用レンチウイルスAGT103を、初代ヒトCD4陽性T細胞に形質導入するため、細胞あたり0.2から5の間の感染多重度で使用した。次いで形質導入された細胞に、侵入のために細胞表面CCR5を必要としないCXCR4向性HIV株NL4.3を負荷した。このアッセイは、初代CD4陽性T細胞における増殖性感染を防止するという点での、HIVのVifおよびTat遺伝子に対するマイクロRNAの効力を試験するが、感染した初代ヒトCD4 T細胞から放出されるHIVの量を検出するためには、間接的な方法を使用する。
【0292】
初代ヒトCD4陽性T細胞のCXCR4向性HIV感染からのAGT103による保護に関する機能アッセイ。磁性ビーズ標識抗体および標準的な手順を使用して、CD4 T細胞をヒトPBMC(HIV陰性ドナー)から単離した。精製されたCD4 T細胞をCD3/CD28ビーズでex vivoにて刺激し、0.2から5の間の感染多重度を使用して、AGT103形質導入前にインターロイキン2を含有する培地で1日培養した。形質導入の2日後、CD4陽性T細胞培養物に、緑色蛍光タンパク質(GFP)を発現するように操作されたHIV株NL4.3を負荷した。形質導入しHIVに曝露した初代CD4 T細胞培養物を7日間維持してから、HIVを含有する無細胞培養液を収集した。この無細胞培養液を使用して、高度に許容性のT細胞株C8166を2日間にわたって感染させた。HIVに感染したC8166細胞の割合を、フローサイトメトリーでGFPの蛍光を検出することによって決定した。模擬レンチウイルス感染では、感染多重度0.1の用量のNL4.3 HIVについて、C8166 T細胞の15.4%において増殖性感染を確立することができる量のHIVが培養液中に放出された。感染多重度0.2の用量のAGT103について、C8166細胞のHIV感染に関するこの値は5.3%に低減し、1に等しい感染多重度のAGT103では、C8166 T細胞の3.19%しかHIVに感染しなかった。C8166感染は、5に等しい感染多重度を使用したAGT103形質導入後に、さらに0.62%に低減した。形質導入に使用されるAGT103の量と、培養培地中に放出されるHIVの量との間には、明らかな用量応答関係がある。
【0293】
図21に示されるように、PBMCから単離したCD4
+T細胞をCD3/CD28ビーズとIL−2で1日間刺激し、様々な濃度(MOI)でAGT103を形質導入した。2日後にビーズを除去し、CD4
+T細胞を0.1MOIのHIV NL4.3−GFPに感染させた。24時間後、細胞をPBSで3回洗浄し、IL−2(30U/ml)と共に7日間培養した。培養の最後に上清を収集して、HIV許容性細胞株C8166を2日間にわたって感染させた。HIVに感染したC8166細胞(GFP陽性)をFACSによって検出した。C8166細胞の感染低下によって観察されるように、AGT103の感染多重度の増加に伴い、生存可能なHIVが低減した(MOI 0.2=65.6%、MOI 1=79.3%、およびMOI 5=96%)。
【0294】
(実施例18:AGT103は初代ヒトCD4
+T細胞をHIV誘導性枯渇から保護する)
HIV媒介性細胞病理および細胞枯渇から保護するための初代ヒトCD4 T細胞へのAGT103の形質導入。健康なHIV陰性ドナーからPBMCを得て、CD3/CD28ビーズで刺激し、次いでインターロイキン2を含有する培地で1日培養してから、0.2から5の間の感染多重度を使用したAGT103の形質導入を行った。
【0295】
HIV媒介性細胞病理からの初代ヒトCD4 T細胞のAGT103による保護に関する機能アッセイ。AGT103を形質導入した初代ヒトCD4 T細胞を、細胞進入のためにCCR5を必要としないHIV NL 4.3株(CXCR4向性)に感染させた。CXCR4向性NL 4.3を使用する場合、HIV複製に対するVifおよびTatマイクロRNAの影響のみが試験されている。HIV NL 4.3の用量は感染多重度0.1であった。HIV感染の1日後、細胞を洗浄して残存ウイルスを除去し、インターロイキン2を加えた培地で培養した。14日間の培養中3日ごとに細胞を収集し、次いで、CD4に特異的であり、かつ蛍光マーカーに直接コンジュゲートされたモノクローナル抗体で染色して、PBMC中のCD4陽性T細胞の割合の測定を可能にした。無処置のCD4 T細胞、または対照レンチウイルスベクターを形質導入したCD4 T細胞は、HIV負荷に対して高度に感受性であり、PBMC中のCD4陽性T細胞の割合は、培養14日目までに10%未満に下がった。対照的に、AGT103には、HIV負荷による細胞枯渇の防止に対して用量依存的効果があった。感染多重度0.2のAGT103用量では、培養14日目までにPBMCの20%超がCD4 T細胞であったが、この値は、5に等しい感染多重度のAGT103用量では、PBMCの50%超が培養14日目までにCD4陽性T細胞となるまで増加した。繰り返すが、AGT103には、ヒトPBMCにおけるHIV細胞変性に対して明らかな用量応答効果がある。
【0296】
図22に示されるように、PBMCをCD3/CD28ビーズとIL−2で1日間刺激し、様々な濃度(MOI)でAGT103を形質導入した。2日後にビーズを除去し、細胞を0.1MOIのHIV NL4.3に感染させた。24時間後、細胞をPBSで3回洗浄し、IL−2(30U/ml)と共に培養した。細胞を3日ごとに収集し、CD4
+T細胞の頻度をFACSによって分析した。HIVに14日間曝露した後、LV−対照を形質導入したCD4
+T細胞は87%低減し、AGT103 MOI0.2では60%低減し、AGT103 MOI1では37%低減し、AGT103 MOI5では17%低減した。
【0297】
(実施例19:HIV特異性について濃縮され、AGT103/CMV−GFPが形質導入されたCD4+T細胞集団の生成)
HIVに対する治療用ワクチン接種がCD4+、CD8+、およびCD4+/CD8+T細胞の分布に及ぼした影響は最小限であった。
図23Aに示されるように、CD4 T細胞集団は、分析的フローサイトメトリードットプロットの左上象限に示されており、一連のワクチン接種後に全T細胞の52%から57%に変化している。これらは代表的なデータである。
【0298】
HIV治療用ワクチン治験の参加者由来の末梢血単核細胞を、培地+/−インターロイキン2/インターロイキン12または+/−インターロイキン7/インターロイキン15において12日間にわたり培養した。一部の培養物は、T細胞刺激のためのエピトープペプチドの供給源としての、HIV−1のp55 Gagタンパク質全体を表す重複するペプチド(HIV(GAG)Ultraペプチド混合物)で刺激した。これらのペプチドは10〜20アミノ酸長であり、HIV−1 BaL株のGag前駆体タンパク質(p55)の全体を表すようにそれらの長さの20〜50%が重複している。個々のペプチドの組成および配列は、主な循環HIV配列の領域変動を補償するために、または詳細な配列情報がこの療法を受けている個々の患者に関して利用可能である場合に、調整することができる。培養終了時に、細胞を回収し、抗CD4または抗CD8モノクローナル抗体で染色し、CD3+集団をゲーティングし、ここに表示した。ワクチン接種前または後のいずれの試料についても、HIV(GAG)Ultraペプチド混合物による刺激は培地対照と同様であり、HIV(GAG)Ultraペプチド混合物は細胞に対して毒性ではなく、ポリクローナルマイトジェンとして作用していなかったことが示された。この分析の結果は
図23Bに見出すことができる。
【0299】
HIV(GAG)Ultraペプチド混合物およびインターロイキン2/インターロイキン12は、抗原特異的CD4 T細胞の最適な拡大増殖をもたらした。
図23Cの上パネルに示されるように、HIV(GAG)Ultraペプチド混合物に曝露されたワクチン接種後の検体では、サイトカイン(インターフェロンガンマ)を分泌する細胞が増加した。ワクチン接種前の試料では、抗原性ペプチドへの曝露の結果として、サイトカイン分泌細胞が0.43から0.69%に増加した。対照的に、ワクチン接種後の試料は、ペプチド刺激の結果として、全CD4 T細胞のうち0.62から1.76%へのサイトカイン分泌細胞の増加を示した。これらのデータは、HIV抗原へのCD4 T細胞の応答に対するワクチン接種の強い影響を実証する。
【0300】
最後に、抗原で拡大増殖したCD4 T細胞にAGT103/CMV−GFPを形質導入すると、HIVの機能的治癒の一環として患者に注入するために必要であるHIV特異的でHIV耐性のヘルパーCD4 T細胞が産生された(他の様々な態様および実施形態によれば、AGT103単独が使用される;例えば、臨床的実施形態はCMV−GFPセグメントを含まなくてもよい)。
図23Cの上パネルは、培養物中のCD4+T細胞集団を分析した結果を示す。
図23Cのx軸は、個々の細胞にAGT103/CMV−GFPが形質導入されたことを示す、緑色蛍光タンパク質(GFP)の発光を示す。ワクチン接種後の試料では、全CD4 T細胞のうち、両方のサイトカインを分泌するものが1.11%回収され、これらの細胞がHIV抗原に特異的に応答し、またAGT103/CMV−GFPが形質導入されていることが示された。これが標的細胞集団であり、注入およびHIVの機能的治癒のために意図される臨床産物である。抗原刺激およびその後のex vivo培養のポリクローナル拡大増殖期の間に細胞拡大増殖の効率により、4×10
8個の抗原特異的な、レンチウイルスを形質導入したCD4 T細胞が産生され得る。これは細胞産生の標的を4倍上回り、これにより、抗原特異的でHIV耐性のCD4 T細胞が、血液1マイクロリットルあたり細胞およそ40個、または全循環CD4 T細胞の約5.7%という数が達成できるであろう。
【0301】
以下の表4は、開示されているベクターおよび方法を使用した、HIV特異的でHIV耐性のCD4 T細胞のex vivo産生の結果を示す。
【表4】
【0302】
(実施例20:HIVの処置のための臨床研究)
AGT103Tは、AGT103レンチウイルスベクターも形質導入されている、>5×10
7個のHIV特異的CD4 T細胞を含有する、遺伝子改変された自己PBMCである。
【0303】
第I相臨床治験では、cARTを受けている間に、HIV感染、血液1mm
3あたりCD4+T細胞数>600個の細胞、および血漿1mlあたり200個未満のコピーの安定なウイルス抑制が確認された、成人の研究参加者に、ex vivoで改変された自己CD4 T細胞(AGT103T)を注入することの安全性および実現可能性を試験する。研究参加者はすべて、第I相臨床治験の間、各自の標準的な抗レトロウイルス薬物適用を継続して受けることになる。最大40名の研究参加者が、HIV Gag、Pol、およびEnvタンパク質を発現する組換え改変ワクシニアAnkara(rMVA)の筋肉内注射による2用量を8週間おいて受ける。第2の免疫化の7〜10日後、in vitro試験のために血液試料を収集し、HIV−1 Gagポリタンパク質を代表する重複する合成ペプチドのプールによる刺激に応答するCD4+T細胞の頻度を測定する。Gag特異的CD4 T細胞の頻度の測定に基づき、ワクチン応答者のうち上位半数の被験体を遺伝子療法アームに登録し、応答者のうち下位半数の被験体は研究を継続しない。上位の応答者のカットオフは、全CD4 T細胞のうち≧0.065%のHIV特異的CD4+T細胞の頻度であることが予測される。本発明者らの治験の遺伝子療法アームに登録された被験体に白血球除去を施し、これに続いて、ex vivoで培養し、HIV Gagペプチドとインターロイキン2およびインターロイキン12で12日間刺激し、次いでCD3/CD28二重特異性抗体で修飾されたビーズで再度刺激した、PBMCの精製を行う(Ficoll密度勾配遠心分離または抗体による陰性選択を使用する)。ex vivo培養中の自己HIVの出現を防止するため、抗レトロウイルス薬のサキナビルを100nMで含める。CD3/CD28刺激の1日後、1から10の間の感染多重度でAGT103を細胞に形質導入する。形質導入された細胞をさらに7〜14日間培養し、この間それらはポリクローナル増殖によって拡大増殖する。培養期間は、細胞を採取および洗浄し、効力および安全性リリースアッセイのためにアリコートを取っておき、残りの細胞を凍結保存培地に再懸濁することによって終了する。単回用量は、≦1×10
10個の自己PBMCである。効力アッセイは、インターフェロンガンマを発現することによりペプチド刺激に応答するCD4 T細胞の頻度を測定する。他のリリース基準としては、HIV特異的でありAGT103も形質導入されているCD4 T細胞が0.5×10
7個以上生成物に含まれていなければならないことが挙げられる。別のリリース基準は、細胞あたりのAGT103ゲノムコピー数が3を超えてはならないことである。AGT103T注入の5日前、被験体は、1用量のブスルフラム(busulfuram)(またはCytoxan)の馴化レジメンの後、遺伝子改変されたCD4 T細胞を含有する≦1×10
10個のPBMCの注入を受ける。
【0304】
第II相研究では、AGT103T細胞療法の有効度を評価する。第II相研究の参加者には、本発明者らの第I相研究に既に登録しており、遺伝子改変された自己のHIV特異的CD4 T細胞の成功裏かつ安定な生着を有し、有効度評価(1.3.)に記載されるようにモニタリングされるパラメータの肯定的な変化として定義される臨床応答を有すると判断された個体が含まれる。研究参加者は、各自の既存の抗レトロウイルス薬物適用のレジメンにマラビロクを加えるよう求められる。マラビロクは、CCR5レベルの低下を目的とする遺伝子療法の有効性を増強するCCR5アンタゴニストである。マラビロクレジメンが実施されたら、被験体は、それまでの抗レトロウイルス薬物レジメンを中止し、28日間にわたり、または2回の連続した毎週の採血時の血漿中ウイルスRNAレベルが1mlあたり10,000を超えるまで、マラビロク単独療法のみを維持するよう求められる。ウイルス血症が持続的に高い場合、参加者は、各自のHIVケアの医師の推奨に従ってマラビロクありまたはなしで、各自の元の抗レトロウイルス薬物レジメンに戻るよう要請される。
【0305】
マラビロク単独療法中に>28日間にわたって参加者のHIVが抑制されたままである場合(血漿1mlあたり2,000未満のvRNAコピー)、4週間にわたってマラビロクの投薬を徐々に低減させるよう求められ、その後さらに28日間にわたって集中的なモニタリングが行われる。マラビロク単独療法によるHIVの抑制が維持された被験体は、機能的治癒を有するとみなされる。マラビロク退薬後でさえHIVの抑制が維持される被験体も、機能的治癒を有する。6か月にわたって毎月モニタリングし、その後はさほど集中的でないモニタリングにより、機能的治癒の耐久性が確立される。
【0306】
患者の選択
組み入れ基準:
・ 年齢18〜60歳。
・ 研究登録前に記録されたHIV感染。
・ 研究期間中に抗レトロウイルス薬物レジメンを変更しないこと(医療上の指示がある場合を除く)を含め、研究により強制される評価に従う意志がなければならない。
・ 1立方ミリメートルあたりCD4+T細胞数>600個の細胞(細胞/mm3)
・ >400個の細胞/mm3のCD4+T細胞最下点
・ HIVウイルス量<1,000コピー/ミリリットル(mL)
【0307】
除外基準:
・ 何らかのウイルス肝炎
・ 急性HIV感染
・ HIVウイルス量>1,000コピー/mL
・ 活発または最近(過去6か月)のAIDSを定義する合併症
・ 研究登録から12週間以内におけるHIV薬物適用の何らかの変化
・ 処置に成功した皮膚の基底細胞癌を除く、少なくとも5年間にわたって寛解していないがんまたは悪性疾患
・ NYHAグレード3もしくは4のうっ血性心不全または制御不良の狭心症もしくは不整脈の現在の診断
・ 出血障害歴
・ 過去30日間の慢性的なステロイドの使用
・ 妊娠中または授乳中
・ 能動的な薬物またはアルコールの乱用
・ 過去30日間の深刻な病気
・ 別の臨床治験に現在参加しているか、または何らかの以前の遺伝子療法
【0308】
安全性評価
・ 急性注入反応
・ 注入後安全性追跡調査
【0309】
有効度評価 − 第I相
・ 改変CD4 T細胞の数および頻度。
・ 改変CD4 T細胞の耐久性。
・ メモリーT細胞機能の尺度としてのGagペプチド再刺激に対するin vitro応答(ICSアッセイ)。
・ ワクチン接種前および後の時点と比較した多機能性の抗HIV CD8 T細胞応答。
・ in vitro刺激後に二重スプライシングされたHIV mRNAを作るCD4 T細胞の頻度。
【0310】
有効度評価 − 第II相
・ 遺伝子改変CD4 T細胞の数および頻度。
・ マラビロク単独療法によるウイルス抑制の維持(1mlあたり<2,000個のvRNAコピー、ただし2回連続した毎週の採血で1mlあたりのvRNAコピーが5×10
4を超えない場合は許容される)。
・ マラビロク投与中および退薬後のウイルス抑制の持続。
・ 安定なCD4 T細胞数。
【0311】
AGT103Tは、≧5×10
7個のHIV特異的CD4 T細胞を含有し、AGT103レンチウイルスベクターも形質導入されている、最大1×10
10個の遺伝子改変された自己CD4+T細胞からなる。第I相臨床治験では、cARTを受けている間に、HIV感染、血液1mm
3あたりCD4+T細胞数>600個の細胞、および血漿1mlあたり200個未満のコピーの安定なウイルス抑制が確認された、成人の研究参加者において、ex vivoで改変された自己CD4 T細胞(AGT103T)を注入することの安全性および実現可能性を試験する。最大40名の研究参加者が、HIV Gag、Pol、およびEnvタンパク質を発現する組換え改変ワクシニアAnkara(rMVA)の筋肉内注射による2回の用量を8週間おいて受ける。第2の免疫化の7〜10日後、in vitro試験のために血液試料を収集し、HIV−1 Gagポリタンパク質を代表する重複する合成ペプチドのプールによる刺激に応答するCD4+T細胞の頻度を測定する。Gag特異的CD4 T細胞の頻度の測定に基づき、ワクチン応答者のうち上位半数の被験体を遺伝子療法アームに登録し、応答者のうち下位半数の被験体は研究を継続しない。上位の応答者のカットオフは、全CD4 T細胞のうち≧0.065%のHIV特異的CD4+T細胞の頻度であることが予測される。本発明者らの治験の遺伝子療法アームに登録された被験体に白血球除去を施し、CD4+T細胞を陰性選択によって濃縮する。濃縮されたCD4サブセットをCD4陰性サブセットの細胞数の10%と混合して、供給源および抗原提示細胞を提供する。濃縮されたCD4 T細胞をHIV Gagペプチドとインターロイキン2およびインターロイキン12で12日間刺激し、次いで、CD3/CD28二重特異性抗体で修飾されたビーズで再度刺激する。ex vivo培養中の自己HIVの出現を防止するため、抗レトロウイルス薬のサキナビルを100nMで含める。CD3/CD28刺激の1日後、1から10の間の感染多重度でAGT103を細胞に形質導入する。形質導入された細胞をさらに7〜14日間培養し、この間それらはポリクローナル増殖によって拡大増殖する。培養期間は、細胞を採取および洗浄し、効力および安全性リリースアッセイのためにアリコートを取っておき、残りの細胞を凍結保存培地に再懸濁することによって終了する。単回用量は、CD4+T細胞サブセットが濃縮された≦1×10
10個の自己細胞である。効力アッセイは、インターフェロンガンマを発現することによりペプチド刺激に応答するCD4 T細胞の頻度を測定する。他のリリース基準としては、HIV特異的でありAGT103も形質導入されているCD4 T細胞が0.5×10
7個以上生成物に含まれていなければならないことが挙げられる。別のリリース基準は、細胞あたりのAGT103ゲノムコピー数が3を超えてはならないことである。AGT103T注入の5日前、被験体は、1用量のブスルフラム(またはCytoxan)の馴化レジメンの後、≦1×10
10個の濃縮され遺伝子改変されたCD4 T細胞の注入を受ける。
【0312】
第II相研究では、AGT103T細胞療法の有効度を評価する。第II相研究の参加者には、本発明者らの第I相研究に既に登録しており、遺伝子改変された自己のHIV特異的CD4 T細胞の成功裏かつ安定な生着を有し、有効度評価(1.3.)に記載されるようにモニタリングされるパラメータの肯定的な変化として定義される臨床応答を有すると判断された個体が含まれる。研究参加者は、各自の既存の抗レトロウイルス薬物適用のレジメンにマラビロクを加えるよう求められる。マラビロクは、CCR5レベルの低下を目的とする遺伝子療法の有効性を増強するCCR5アンタゴニストである。マラビロクレジメンが実施されたら、被験体は、それまでの抗レトロウイルス薬物適用のレジメンを中止し、28日間にわたり、または2回の連続した毎週の採血時の血漿中ウイルスRNAレベルが1mlあたり10,000を超えるまで、マラビロク単独療法のみを維持するよう求められる。ウイルス血症が持続的に高い場合、参加者は、各自のHIVケアの医師の推奨に従ってマラビロクありまたはなしで、各自の元の抗レトロウイルス薬物レジメンに戻るよう要請される。
【0313】
マラビロク単独療法中に>28日間にわたって参加者のHIVが抑制されたままである場合(血漿1mlあたり2,000未満のvRNAコピー)、4週間にわたってマラビロクの投薬を徐々に低減させるよう求められ、その後さらに28日間にわたって集中的なモニタリングが行われる。マラビロク単独療法によるHIVの抑制が維持された被験体は、機能的治癒を有するとみなされる。マラビロク退薬後でさえHIVの抑制が維持される被験体も、機能的治癒を有する。6か月にわたって毎月モニタリングし、その後はさほど集中的でないモニタリングにより、機能的治癒の耐久性が確立される。
【0314】
【表5-1】
【表5-2】
【表5-3】
【表5-4】
【表5-5】
【表5-6】
【表5-7】
【表5-8】
【表5-9】
【表5-10】
【表5-11】
【表5-12】
【表5-13】
【表5-14】
【表5-15】
【表5-16】
【表5-17】
【表5-18】
【表5-19】
【表5-20】
【表5-21】
【表5-22】
【表5-23】
【表5-24】
【表5-25】
【表5-26】
【表5-27】
【表5-28】
【表5-29】
【表5-30】
【表5-31】
【表5-32】
【表5-33】
【表5-34】
【表5-35】
【表5-36】
【表5-37】
【表5-38】
【表5-39】
【表5-40】
【表5-41】
【表5-42】
【表5-43】
【表5-44】
【表5-45】
【表5-46】
【表5-47】
【表5-48】
【表5-49】
【表5-50】
【表5-51】
【表5-52】
【表5-53】
【表5-54】
【0315】
以上、本発明の好ましい実施形態のうちのいくつかを記載し、具体的に例示したが、本発明がこのような実施形態に限定されることは意図していない。本発明の範囲および趣旨から逸脱することなく、これに様々な改変を行ってよい。
本発明の実施形態の例として、以下の項目が挙げられる。
(項目1)
HIVに感染した細胞を処置する方法であって、
(a)ex vivoで行われる、HIVに感染した被験体から単離された末梢血単核細胞(PBMC)を治療有効量の刺激剤と接触させるステップと、
(b)少なくとも1つの遺伝子エレメントをコードするウイルス送達系を前記PBMCにex vivoで形質導入するステップであって、前記少なくとも1つの遺伝子エレメントが、ケモカイン受容体CCR5の産生を阻害することができる低分子RNA、またはHIV RNA配列をターゲティングすることができる少なくとも1つの低分子RNAを含む、ステップと、
(c)少なくとも1日間にわたって、形質導入された前記PBMCを培養するステップとを含む、方法。
(項目2)
形質導入された前記PBMCを被験体に注入するステップをさらに含む、項目1に記載の方法。
(項目3)
前記被験体がヒトである、項目2に記載の方法。
(項目4)
前記刺激剤がペプチドを含む、項目1に記載の方法。
(項目5)
前記ペプチドがgagペプチドを含む、項目4に記載の方法。
(項目6)
前記刺激剤がワクチンを含む、項目1に記載の方法。
(項目7)
前記ワクチンがHIVワクチンを含む、項目6に記載の方法。
(項目8)
前記HIVワクチンが、MVA/HIV62Bワクチンまたはそのバリアントを含む、項目7に記載の方法。
(項目9)
前記少なくとも1つの遺伝子エレメントが、ケモカイン受容体CCR5の産生を阻害することができる低分子RNAと、HIV RNA配列をターゲティングすることができる少なくとも1つの低分子RNAとを含む、項目1に記載の方法。
(項目10)
前記HIV RNA配列が、HIV Vif配列、HIV Tat配列、またはそれらのバリアントを含む、項目1または9に記載の方法。
(項目11)
前記少なくとも1つの遺伝子エレメントが、マイクロRNAまたはshRNAを含む、項目1または9に記載の方法。
(項目12)
前記少なくとも1つの遺伝子エレメントが、マイクロRNAクラスターを含む、項目11に記載の方法。
(項目13)
前記少なくとも1つの遺伝子エレメントが、
AGGTATATTGCTGTTGACAGTGAGCGACTGTAAACTGAGCTTGCTCTACTGTGAAGCCACAGATGGGTAGAGCAAGCACAGTTTACCGCTGCCTACTGCCTCGGACTTCAAGGGGCTT(配列番号1)
と少なくとも80%、または少なくとも85%、または少なくとも90%、または少なくとも95%のパーセント同一性を有するマイクロRNAを含む、項目11に記載の方法。
(項目14)
前記少なくとも1つの遺伝子エレメントが、
AGGTATATTGCTGTTGACAGTGAGCGACTGTAAACTGAGCTTGCTCTACTGTGAAGCCACAGATGGGTAGAGCAAGCACAGTTTACCGCTGCCTACTGCCTCGGACTTCAAGGGGCTT(配列番号1)
を含む、項目11に記載の方法。
(項目15)
前記少なくとも1つの遺伝子エレメントが、
a.CATCTCCATGGCTGTACCACCTTGTCGGGGGATGTGTACTTCTGAACTTGTGTTGAATCTCATGGAGTTCAGAAGAACACATCCGCACTGACATTTTGGTATCTTTCATCTGACCA(配列番号2)
と少なくとも80%、もしくは少なくとも85%、もしくは少なくとも90%、もしくは少なくとも95%のパーセント同一性、または
b.GGGCCTGGCTCGAGCAGGGGGCGAGGGATTCCGCTTCTTCCTGCCATAGCGTGGTCCCCTCCCCTATGGCAGGCAGAAGCGGCACCTTCCCTCCCAATGACCGCGTCTTCGTCG(配列番号3)
と少なくとも80%、もしくは少なくとも85%、もしくは少なくとも90%、もしくは少なくとも95%のパーセント同一性
を有するマイクロRNAを含む、項目11に記載の方法。
(項目16)
前記少なくとも1つの遺伝子エレメントが、
a.CATCTCCATGGCTGTACCACCTTGTCGGGGGATGTGTACTTCTGAACTTGTGTTGAATCTCATGGAGTTCAGAAGAACACATCCGCACTGACATTTTGGTATCTTTCATCTGACCA(配列番号2);または
b.GGGCCTGGCTCGAGCAGGGGGCGAGGGATTCCGCTTCTTCCTGCCATAGCGTGGTCCCCTCCCCTATGGCAGGCAGAAGCGGCACCTTCCCTCCCAATGACCGCGTCTTCGTCG(配列番号3)
を含む、項目14に記載の方法。
(項目17)
前記マイクロRNAクラスターが、
AGGTATATTGCTGTTGACAGTGAGCGACTGTAAACTGAGCTTGCTCTACTGTGAAGCCACAGATGGGTAGAGCAAGCACAGTTTACCGCTGCCTACTGCCTCGGACTTCAAGGGGCTTCCCGGGCATCTCCATGGCTGTACCACCTTGTCGGGGGATGTGTACTTCTGAACTTGTGTTGAATCTCATGGAGTTCAGAAGAACACATCCGCACTGACATTTTGGTATCTTTCATCTGACCAGCTAGCGGGCCTGGCTCGAGCAGGGGGCGAGGGATTCCGCTTCTTCCTGCCATAGCGTGGTCCCCTCCCCTATGGCAGGCAGAAGCGGCACCTTCCCTCCCAATGACCGCGTCTTCGTC(配列番号31)
と少なくとも80%、または少なくとも85%、または少なくとも90%、または少なくとも95%のパーセント同一性を有する配列を含む、項目12に記載の方法。
(項目18)
前記マイクロRNAクラスターが、
AGGTATATTGCTGTTGACAGTGAGCGACTGTAAACTGAGCTTGCTCTACTGTGAAGCCACAGATGGGTAGAGCAAGCACAGTTTACCGCTGCCTACTGCCTCGGACTTCAAGGGGCTTCCCGGGCATCTCCATGGCTGTACCACCTTGTCGGGGGATGTGTACTTCTGAACTTGTGTTGAATCTCATGGAGTTCAGAAGAACACATCCGCACTGACATTTTGGTATCTTTCATCTGACCAGCTAGCGGGCCTGGCTCGAGCAGGGGGCGAGGGATTCCGCTTCTTCCTGCCATAGCGTGGTCCCCTCCCCTATGGCAGGCAGAAGCGGCACCTTCCCTCCCAATGACCGCGTCTTCGTC(配列番号31)
を含む、項目12に記載の方法。
(項目19)
被験体においてHIV感染を処置する方法であって、
(a)有効量の第1の刺激剤で前記被験体を免疫化するステップと、
(b)前記被験体から白血球を取り出し、末梢血単核細胞(PBMC)を精製するステップと、
(c)前記PBMCを治療有効量の第2の刺激剤とex vivoで接触させるステップと、
(d)少なくとも1つの遺伝子エレメントをコードするウイルス送達系を前記PBMCにex vivoで形質導入するステップと、
(e)少なくとも1日間にわたって、形質導入された前記PBMCを培養するステップとを含む、方法。
(項目20)
形質導入された前記PBMCを前記被験体に注入するステップをさらに含む、項目19に記載の方法。
(項目21)
前記第1の刺激剤および前記第2の刺激剤が同じである、項目19に記載の方法。
(項目22)
前記第1の刺激剤および前記第2の刺激剤のうちの少なくとも1つが、HIVワクチンを含む、項目19に記載の方法。
(項目23)
前記HIVワクチンが、MVA/HIV62Bワクチンまたはそのバリアントを含む、項目22に記載の方法。
(項目24)
前記ウイルス送達系がレンチウイルス粒子を含む、項目19に記載の方法。
(項目25)
前記少なくとも1つの遺伝子エレメントが、ケモカイン受容体CCR5の産生を阻害することができる低分子RNA、またはHIV RNA配列をターゲティングすることができる少なくとも1つの低分子RNAを含む、項目19に記載の方法。