特許第6971623号(P6971623)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東芝の特許一覧 ▶ 東芝エネルギーシステムズ株式会社の特許一覧

特許6971623燃料電池発電システム及び燃料電池発電システムの制御方法
<>
  • 特許6971623-燃料電池発電システム及び燃料電池発電システムの制御方法 図000002
  • 特許6971623-燃料電池発電システム及び燃料電池発電システムの制御方法 図000003
  • 特許6971623-燃料電池発電システム及び燃料電池発電システムの制御方法 図000004
  • 特許6971623-燃料電池発電システム及び燃料電池発電システムの制御方法 図000005
  • 特許6971623-燃料電池発電システム及び燃料電池発電システムの制御方法 図000006
  • 特許6971623-燃料電池発電システム及び燃料電池発電システムの制御方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6971623
(24)【登録日】2021年11月5日
(45)【発行日】2021年11月24日
(54)【発明の名称】燃料電池発電システム及び燃料電池発電システムの制御方法
(51)【国際特許分類】
   H01M 8/04 20160101AFI20211111BHJP
   H01M 8/04858 20160101ALI20211111BHJP
【FI】
   H01M8/04 J
   H01M8/04858
【請求項の数】8
【全頁数】14
(21)【出願番号】特願2017-94832(P2017-94832)
(22)【出願日】2017年5月11日
(65)【公開番号】特開2018-190682(P2018-190682A)
(43)【公開日】2018年11月29日
【審査請求日】2020年1月21日
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100124372
【弁理士】
【氏名又は名称】山ノ井 傑
(74)【代理人】
【識別番号】100125151
【弁理士】
【氏名又は名称】新畠 弘之
(73)【特許権者】
【識別番号】317015294
【氏名又は名称】東芝エネルギーシステムズ株式会社
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100124372
【弁理士】
【氏名又は名称】山ノ井 傑
(74)【代理人】
【識別番号】100125151
【弁理士】
【氏名又は名称】新畠 弘之
(74)【代理人】
【識別番号】100082991
【弁理士】
【氏名又は名称】佐藤 泰和
(72)【発明者】
【氏名】小川 雅弘
【審査官】 大内 俊彦
(56)【参考文献】
【文献】 特開平9−22714(JP,A)
【文献】 特開2002−175826(JP,A)
【文献】 特開平1−195672(JP,A)
【文献】 特開平2−253565(JP,A)
【文献】 特開昭61−51772(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/00−8/2495
(57)【特許請求の範囲】
【請求項1】
副生水素ガスが流れる副生水素母管の分岐部から分岐した燃料供給配管が燃料極の吸気口に接続され、排出配管の一端が前記燃料極の排気口に接続され、他端側が前記副生水素母管の前記分岐部よりも下流側の合流部に接続され、前記分岐部と、前記合流部との差圧により供給される前記副生水素ガスを用いて直流電流を発生する燃料電池スタックと、
前記燃料電池スタックの前記燃料極から排出された排出ガスの少なくとも一部を定常的に前記燃料供給配管の外に排出する排出部と、
前記燃料電池スタックが発電した直流電力を交流電力に変換し、変換電力量により前記燃料電池スタックの発電量を調整する調整部と、
前記燃料供給配管を介して供給される前記副生水素ガスの水素比率に少なくとも基づき、前記燃料電池スタックの水素燃焼利用率が所定値になるように前記調整部を制御する制御部と、
を備える、燃料電池発電システム。
【請求項2】
前記制御部は、前記燃料電池スタックに供給される前記副生水素ガスの水素比率及び流量の値と、前記燃料電池スタックが出力する直流電流値とに基づき、前記燃料電池スタックの発電量を制御する請求項1に記載の燃料電池発電システム。
【請求項3】
前記燃料供給配管内の前記副生水素ガスを送風する送風装置を更に備え、
前記制御部は、前記燃料電池スタックの水素燃焼利用率が所定値になるように前記送風装置を制御する請求項2に記載の燃料電池発電システム。
【請求項4】
前記燃料供給配管内、及び前記排出配管内の少なくともいずれかを流れる前記副生水素ガスの量を測定する燃料流量計を更に備え、
前記制御部は、前記燃料流量計の測定値に基づき、前記燃料供給配管内の前記副生水素ガスの流量が所定値になるように前記送風装置を制御する請求項3に記載の燃料電池発電システム。
【請求項5】
前記燃料供給配管内、及び前記排出配管内の少なくともいずれかの圧力を測定する圧力計を更に備え、
前記制御部は、前記圧力計の測定値に基づき、前記圧力が所定値になるように前記送風装置を制御する請求項3に記載の燃料電池発電システム。
【請求項6】
前記燃料電池スタックの前記燃料極から排出された前記排出ガスの少なくとも一部を前記燃料供給配管に戻す循環経路を更に備える請求項1乃至5のいずれか一項に記載の燃料電池発電システム。
【請求項7】
前記燃料電池スタックの前記燃料極から排出された前記排出ガスの少なくとも一部を水素燃焼装置に排出する請求項1乃至6のいずれか一項に記載の燃料電池発電システム。
【請求項8】
副生水素ガスが流れる副生水素母管の分岐部から分岐した燃料供給配管が燃料極の吸気口に接続され、排出配管の一端が前記燃料極の排気口に接続され、他端側が前記副生水素母管の前記分岐部よりも下流側の合流部に接続され、前記分岐部と、前記合流部との差圧により供給される前記副生水素ガスを用いて直流電流を発生する燃料電池スタックに供給される前記副生水素ガスの水素比率及び流量と、前記燃料電池スタックが出力する直流電流とに基づき、水素燃焼利用率を演算する工程と、
前記水素燃焼利用率に応じて、前記燃料電池スタックが発電した直流電力を交流電力に変換する電力を調整する工程と、
を備える燃料電池発電システムの制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池発電システム及び燃料電池発電システムの制御方法に関する。
【背景技術】
【0002】
従来から、燃料の有している化学エネルギーを直接電気に変換するシステムとして燃料電池が知られている。この燃料電池は、燃料である水素ガスと、酸化剤である酸素ガスとを電気化学的に反応させて直接電気を取り出すものであり、高い効率で電気エネルギーを取り出すことができる。また、燃料電池は、静かで、有害な排ガスを出さず、環境性に優れたシステムでもある。これまで、比較的大型のPAFC(リン酸形燃料電池)が主として開発されてきたが、近年では小型のPEFC(固体高分子形燃料電池)の開発も進められている。これにより、家庭用燃料電池発電システムの商品化も実現し、2016年度には国内に15万台が設置されている状況となっている。
【0003】
また、燃料電池発電システムでは一般に、燃料電池スタックを用いて発電を行い、燃料電池スタックから排出された未反応の水素ガスを循環流路により循環させている。この未反応の水素ガスの循環を繰り返しているうちに、水素ガス中の不純物が次第に濃縮される。このため、水素ガスとしては、純水素や、不純物の少ない水素ガスを用いることが望ましい。従来の燃料電池発電システムでは、不純物が所定値を超えて濃縮されると、水素ガスの一部を循環流路から大気に排出することが行われる。ところが、より多くの不純物が含まれている副生水素ガスなどを燃料電池発電システムの燃料電池スタックの発電に用いると、定常運転時に不純物がより短時間に増加し、水素燃料利用率が100%を超えてしまい、燃料電池スタックを劣化させてしまう恐れがある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2016−96081号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明が解決しようとする課題は、燃料電池スタックの劣化を抑制可能な燃料電池発電システム及び燃料電池発電システムの制御方法を提供することである。
【課題を解決するための手段】
【0006】
本実施形態に係る燃料電池発電システムは、燃料供給配管を介して供給される水素ガスを用いて直流電流を発生する燃料電池スタックを備える。前記システムは更に、前記燃料電池スタックの燃料極から排出された排出ガスの少なくとも一部を定常的に前記燃料供給配管の外に排出する排出部を備える。前記システムは更に、前記排出部が前記排出ガスの少なくとも一部を定常的に前記燃料供給配管の外に排出するように、前記排出ガスの排出を制御する制御部を備える。
【発明の効果】
【0007】
本発明によれば、燃料電池スタックの劣化を抑制することができる。
【図面の簡単な説明】
【0008】
図1】第1実施形態に係る燃料電池発電システムの構成を説明するブロック図。
図2】制御部の構成を示すブロック図。
図3】制御部の制御動作の一例を示すフローチャート。
図4】第2実施形態に係る燃料電池発電システムの構成を説明するブロック図。
図5】第3実施形態に係る燃料電池発電システムの構成を説明するブロック図。
図6】第4実施形態に係る燃料電池発電システムの構成を説明するブロック図。
【発明を実施するための形態】
【0009】
以下、図面を参照して、本発明の実施形態について説明する。本実施形態は、本発明を限定するものではない。
【0010】
(第1実施形態)
(構成)
図1は、第1実施形態に係る燃料電池発電システム100の構成を説明するブロック図である。図1に示すように、本実施形態に係る燃料電池発電システム100は、水素比率のより低い水素ガスを用いて発電するシステムであり、燃料供給配管102と、大気供給配管104と、燃料電池スタック106と、燃料排出配管108と、大気排出配管110と、燃料遮断弁112と、燃料流量計114と、除湿器116と、アノードオフガス遮断弁118と、排出部120と、調整部122と、直流電流計124と、制御部126とを、備えて構成されている。水素比率とは、不純物を含み得る水素ガス中の水素(水素分子)の比率である。
【0011】
図1は更に、燃料電池発電システム100の外に設けられた副生水素母管2、副生水素引込管4、副生水素戻し管6、水素燃焼装置8、及び副生水素利用管10を示している。副生水素母管2は、曹達工場や石油精製工場などの工場で発生するガスから分離された副生水素ガスを発電施設などに供給する母管である。この副生水素母管2には接続部4Aで副生水素引込管4が接合されている。また、副生水素ガスは、不純物を含んでいるが、一般的にその組成はほぼ一定であり、安定している。副生水素戻し管6、水素燃焼装置8、及び副生水素利用管10の詳細については、後述する。
【0012】
燃料供給配管102の一端は、副生水素引込管4の端部に接続されており、他端は燃料電池スタック106のアノード106Aの吸気口に接続されている。すなわち、この燃料供給配管102は、副生水素引込管4を介して、副生水素母管2から供給される水素ガスを燃料電池スタック106のアノード106Aに供給する管である。
【0013】
大気供給配管104は、燃料電池スタック106のカソード106Bの吸気口に接続され、大気中の酸素ガスをカソード106Bに供給する。
【0014】
燃料電池スタック106は、電解質膜を挟んで設けられたアノード106Aとカソード106Bとを備えている。すなわち、この燃料電池スタック106は、副生水素母管2、副生水素引込管4、及び燃料供給配管102を介してアノード106Aに供給された水素ガスと、大気供給配管104を介してカソード106Bに供給された大気中の酸素ガスとを用いて発電する。また、アノード106Aの吸気口及び排気口の大きさは、燃料供給配管102内を流れる水素ガスの圧損を抑制する大きさに構成されている。例えば、アノード106Aの吸気口及び排気口は、一般的な燃料電池スタック106のアノード106Aの吸気口及び排気口のよりも大きく構成されている。なお、このアノード106Aが、本実施形態に係る燃料極を構成し、カソード106Bが本実施形態に係る空気極を構成している。
【0015】
燃料排出配管108の一端は、燃料電池スタック106のアノード106Aの排出口に接続され、他端は副生水素戻し管6に接続されている。また、副生水素戻し管6は、接続部6Aで副生水素母管2に接続され、さらに、副生水素母管2の下流には水素燃焼装置8が配置されている。すなわち、この燃料排出配管108は、燃料電池スタック106のアノード106Aから排出されたガスを副生水素戻し管6、及び副生水素母管2を介して水素燃焼装置8に排出する。そして、水素燃焼装置8に排出されガスは、水素燃焼装置8により燃焼される。これにより、本実施形態に係る燃料電池発電システム100では、燃料電池スタック106の排出ガスに含まれる不純物などは燃焼される。このため、この燃料電池発電システム100は、有害な排ガスを出すことがなく、環境性にも優れている。なお、本実施形態に係る水素母管は、副生水素母管2により構成され、本実施形態に係る水素引込管は、副生水素引込管4により構成され、本実施形態に係る水素戻し管は、副生水素戻し管6により構成される。
【0016】
また、副生水素戻し管6には、アノード106Aから排出されたガスを、副生水素母管2を介さずに水素燃焼装置8に供給する副生水素利用管10も利用可能に接続されている。これらから分かるように、副生水素利用管10を利用しない場合、副生水素母管2と副生水素引込管4との接続部4Aの気圧と、副生水素母管2と副生水素戻し管6との接続部6Aの気圧との差圧に応じて、燃料電池スタック106のアノード106Aに水素ガスが供給される。
【0017】
一方で、副生水素利用管10を利用する場合、燃料排出配管108の出口の気圧がより低下し、燃料電池スタック106のアノード106Aに供給される水素ガスがより増加する。なお、本実施形態に係る燃料電池発電システム100では、燃料排出配管108からアノード106Aの排出ガスの一部を燃料供給配管102に戻す循環流路を設けていないが、これに限定されず、循環流路を設けてもよい。
【0018】
大気排出配管110は、燃料電池スタック106のカソード106Bの排出口に接続されている。これにより、カソード106Bから排出されたガスは、大気排出配管110を介して燃料電池発電システム100の外部に排出される。
【0019】
燃料遮断弁112は、燃料供給配管102に設けられ、燃料供給配管102を遮断する。この燃料遮断弁112は、例えば低圧損タイプのバタフライ弁により構成されている。このバタフライ弁は、弁を開いた状態での圧損が一般的な遮断弁よりも低くなるように構成されている。
【0020】
燃料流量計114は、燃料供給配管102に設けられ、燃料供給配管102内を流れる水素ガスの流量を測定する。そして、燃料流量計114は、測定した流量の値を後述の制御部126に出力する。
【0021】
除湿器116は、燃料排出配管108に設けられ、燃料電池スタック106のアノード106Aから排出されるガスを除湿する。
【0022】
アノードオフガス遮断弁118は、燃料排出配管108に設けられ、燃料排出配管108を遮断する。このアノードオフガス遮断弁118は、燃料遮断弁112と同等の構成であり、低圧損タイプのバタフライ弁により構成されている。
【0023】
排出部120は、例えば燃料排出配管108と副生水素戻し管6との接続部に構成され、燃料電池スタック106のアノード106Aから排出された排出ガスを定常的に副生水素戻し管6に排出する。つまり、この排出部120は、燃料電池スタック106のアノード106Aから排出された排出ガスを、燃料電池スタック106の発電中に燃料供給配管102の外に常に排出する。
【0024】
調整部122は、燃料電池スタック106の電極に接続され、燃料電池スタック106の発電量を調整する。この調整部122は、例えばインバータであり、燃料電池スタック106が発電した直流電力を交流電力に変換する。つまり、調整部122は、交流電力に変換する電力量を調整することにより、燃料電池スタック106の発電量を調整する。また、調整部122の交流出力部は、負荷12に接続されている。
【0025】
直流電流計124は、燃料電池スタック106のアノード106Aと、調整部122の直流入力部との間に配置され、燃料電池スタック106が出力する直流電流値を測定する。そして、直流電流計124は、測定した直流電流値を制御部126に出力する。
【0026】
制御部126は、燃料電池発電システム100全体の制御を行う。例えば、燃料電池スタック106の発電開始時には、制御部126は、燃料遮断弁112、及びアノードオフガス遮断弁118を開状態にし、除湿器116を駆動状態にする制御を行う。一方で、燃料電池スタック106の発電終了時には、制御部126は、燃料遮断弁112、及びアノードオフガス遮断弁118を閉状態にし、除湿器116を停止状態にする制御を行う。このように、制御部126は、燃料電池スタック106の発電開始時から発電終了時までアノードオフガス遮断弁118を継続的に開状態に設定することで、排出部120から副生水素戻し管6に排出ガスを定常的に排出させる。
【0027】
また、制御部126は、燃料電池スタック106のアノード106Aに供給される水素ガスの水素比率に基づき、燃料電池スタック106の水素燃焼利用率が所定値、例えば80パーセントになるように調整部122を制御する。
【0028】
図2は、制御部126の構成を示すブロック図の一例であり、図2に基づき、調整部122に対する制御に関してより詳細に説明する。すなわち、この制御部126は、水素流量演算部126Aと、水素消費量演算部126Bと、水素燃焼利用率演算部126Cと、発電制御部126Dとを備えて構成されている。
【0029】
水素流量演算部126Aは、予め運転員に設定された水素比率と燃料流量計114から入力される燃料流量の値に基づき、単位時間あたりに燃料供給配管102内を流れる水素ガスの流量である水素流量を演算する。具体的には、水素流量(リットル/秒)=水素比率×燃料流量(リットル/秒)として演算される。ここで、水素比率は、0から1.0の間の値である。つまり、水素比率が0であれば、燃料供給配管102内を流れるガスは水素ガスを含んでいないことを示している。一方で、水素比率が1.0であれば、燃料供給配管102内を流れるガスは、全て純水な水素ガスであることを示している。
【0030】
水素消費量演算部126Bは、直流電流計124の測定値に基づき、単位時間あたりに燃料電池スタック106が発電に用いる水素ガスの量を演算する。具体的には、水素消費量(リットル/秒)=直流電流計124の測定値(クーロン/秒)×22.4(リットル/モル)/F(クーロン/モル)/2として演算される。ここで、Fはファラデー定数である。つまり、この水素消費量は、直流電流値から求められる水素の消費量である。
【0031】
水素燃焼利用率演算部126Cは、水素流量演算部126Aにより演算された水素流量(リットル/秒)と、水素消費量演算部126Bにより演算された水素消費量(リットル/秒)とに基づき、水素燃焼利用率を演算する。具体的には、水素燃焼利用率(パーセント)=水素消費量(リットル/秒)/水素流量(リットル/秒)×100(パーセント)として演算される。例えば、燃料電池スタック106による水素消費量と燃料供給配管102内の水素流量が一致する場合、水素燃焼利用率は100パーセントである。このように、水素燃焼利用率は、燃料電池スタック106のアノード106Aに供給される水素ガスの水素比率及び流量と、燃料電池スタック106が出力する直流電流値とに基づき、演算可能である。なお、水素燃焼利用率の上限は、一般に80パーセント程度に設定されている。水素燃焼利用率が100パーセント近くになると、燃料電池スタック106のカーボンを腐食しながらの発電となり、燃料電池スタック106を永続的に劣化させてしまう恐れがあるためである。なお、水素ガスに一酸化炭素が混入しているケースがある。この場合には、燃料電池スタック106の触媒の一酸化炭素による被毒により、燃料電池スタック106に一時的な特性低下が生じ、発電の継続が不能となってしまう恐れがある。
【0032】
発電制御部126Dは、水素燃焼利用率演算部126Cで演算された水素燃焼利用率が所定値、例えば上述の80%になるように調整部122を制御する。この発電制御部126Dは、水素燃焼利用率が所定値よりも高い場合には、調整部122を制御して燃料電池スタック106の発電量を減少させる。一方で、発電制御部126Dは、水素燃焼利用率が所定値よりも低い場合には、調整部122を制御して燃料電池スタック106の発電量を増加させる。
(作用)
【0033】
次に、制御部126の制御動作例について説明する。
【0034】
図3は、制御部126の制御動作の一例を示すフローチャートである。ここでは、制御部126の制御に従い燃料遮断弁112、及びアノードオフガス遮断弁118が共に開状態となり、副生水素母管2から水素ガスが燃料電池発電システム100内に引き込まれている場合の制御例を説明する。
【0035】
水素流量演算部126Aは、予め設定された水素比率と燃料流量計114から入力された流量の値に基づき、燃料供給配管102内を流れる水素流量を演算する(ステップS100)。次に、水素消費量演算部126Bは、直流電流計124の測定値に基づき、燃料電池スタック106が消費する水素ガスの量を演算する(ステップS102)。次に、水素燃焼利用率演算部126Cは、水素流量演算部126Aが演算した水素流量と、水素消費量演算部126Bが演算した水素消費量とに基づき、水素燃焼利用率を演算する(ステップS104)。
【0036】
次に、発電制御部126Dは、水素燃焼利用率演算部126Cが演算した水素燃焼利用率と、予め定められた水素燃焼利用率との差分を演算し、差分の絶対値が所定値未満であるか否かを判定する(ステップS106)。差分の絶対値が所定値以上である場合(ステップS106:No)、発電制御部126Dは、水素燃焼利用率が予め定められた水素燃焼利用率未満であるか否かを判定する(ステップS108)。水素燃焼利用率が予め定められた水素燃焼利用率未満である場合(ステップS108:Yes)、発電制御部126Dは、調整部122に対して交流電力への変換量を増加させる制御を行い(ステップS110)、後述のステップS114の処理を行う。一方で、水素燃焼利用率が予め定められた水素燃焼利用率以上である場合(ステップS108:No)、発電制御部126Dは、調整部122に対して交流電力への変換量を減少させる制御を行い(ステップS112)、後述のステップS114の処理を行う。
【0037】
一方で、差分の絶対値が所定値未満である場合(ステップS106:Yes)、発電制御部126Dは、調整部122に対して現在の発電量を維持させる制御を行う。次に、発電制御部は、運転員により燃料電池発電システム100の停止指示が出されたか否かを判定し(ステップS114)、停止指示が出されていない場合(ステップS114:No)、制御部は、ステップS100からの制御動作を繰り返す。一方で、停止指示が出されている場合(ステップS114:Yes)、制御部は、燃料遮断弁112、及びアノードオフガス遮断弁118を共に閉状態にして制御動作を終了する。
【0038】
このように、制御部126は、燃料電池スタック106に供給される水素ガスの水素比率及び流量と、燃料電池スタック106が出力する直流電流とに基づき、水素燃焼利用率を演算し、この水素燃焼利用率に基づき、燃料電池スタック106の発電量を制御する。
(効果)
【0039】
以上のように、本実施形態に係る燃料電池発電システム100は、排出部120がアノード106Aから排出された排出ガスを、定常的に燃料供給配管102の外に排出することにした。これにより、燃料電池発電システム100の定常運転時において、アノード106Aに供給される水素ガスの水素比率の低下を抑制できる。このため、制御部126が、アノード106Aに供給される水素ガスの水素比率及び流量に基づき、調整部122を制御することで、燃料電池スタック106の水素燃焼利用率が上限値を超えないように燃料電池スタック106の発電量を制御でき、燃料電池スタック106の劣化を抑制できる。
(第2実施形態)
【0040】
上述した第1実施形態に係る燃料電池発電システム100では、燃料供給配管102の入口の気圧と、燃料排出配管108の出口の気圧との差圧に応じて、燃料電池スタック106のアノード106Aに水素ガスが供給されていたが、第2実施形態に係る燃料電池発電システム100では、水素ブロワ128を燃料供給配管102に設け、水素ブロワ128によりアノード106Aに水素ガスを供給する点で相違する。以下に第1実施形態と相違する点を説明する。なお、以下の説明において、第1実施形態に係る燃料電池発電システム100と同等の機能及び構成を有する構成要素については、同一符号を付し、必要な場合を除き説明を省略する。
(構成)
【0041】
図4は、第2実施形態に係る燃料電池発電システム100の構成を説明するブロック図である。図4に示すように、本実施形態に係る燃料電池発電システム100は、水素ブロワ128と、燃料圧力計130と、流量調整弁132とを、更に備えることで、第1実施形態に係る燃料電池発電システム100と相違する。すなわち、燃料供給配管102における燃料遮断弁112の下流側に水素ブロワ128、及び燃料圧力計130が設けられている。
【0042】
水素ブロワ128は、燃料供給配管102内の水素ガスを燃料電池スタック106に向けて圧送する。水素ブロワ128は、例えば、羽根車の回転運動により、水素ガスを燃料電池スタック106に向けて圧風する。なお、本実施形態に係る送風装置は、水素ブロワ128により構成されている。
【0043】
燃料圧力計130は、燃料供給配管102内の水素ガスの圧力を測定し、測定値を制御部126に出力する。なお、水素ブロワ128を副生水素引込管4内に設置してもよい。この場合にも、燃料供給配管102に水素ブロワ128を設けた場合と同等の効果が得られる。
【0044】
流量調整弁132は、例えば燃料排出配管108の除湿器116と排出部120との間に設けられている。この流量調整弁132は、弁の開度を変化させることで、燃料供給配管102内及び燃料排出配管108内を流れるガスの流量を調整する。すなわち、この流量調整弁132は、燃料電池スタック106のアノード106Aに供給される水素ガスの流量を調整する。
【0045】
制御部126は、燃料圧力計130で測定された圧力値と、直流電流計124で測定された直流電流値とに基づき、水素ブロワ128を制御する。また、制御部126は、流量調整弁132における弁の開度を制御する。
【0046】
なお、本実施形態においても、燃料排出配管108からアノード106Aの排出ガスの一部を燃料供給配管102に戻す循環流路を設けてもよい。また、本実施形態に係る副生水素戻し管6には逆止弁14が設けられており、水素ガスの逆流が防止されている。さらにまた、大気供給配管104及び大気排出配管110のうちの少なくとも一方に、送風機能を有するブロワを設けてもよい。
(作用)
【0047】
ここでは、副生水素母管2から供給される副生水素ガスの水素比率が一定値で安定している場合に、水素燃焼利用率を所定値に保つための制御について説明する。すなわち、副生水素ガスの水素比率は一定値で安定しているので、水素燃焼利用率を所定値に保つためには、燃料電池スタック106のアノード106Aに供給される水素ガスの量と、燃料電池スタック106の発電量とを比例させればよい。
【0048】
より具体的には、制御部126は、燃料供給配管内102の水素ガスの流量が、燃料電池スタック106の出力電流に比例するように、水素ブロワ128及び調整部122の内の少なくとも一方の制御を行う。例えば、制御部126は、燃料流量計114で測定された流量の値に水素比率を乗算した値と、直流電流計124で測定された直流電流値とが第1定数に従って比例するように、水素ブロワ128及び調整部122の内の少なくとも一方の制御を行う。この第1定数は、水素燃焼利用率に基づき定まる定数である。これらから分かるように、水素比率が低下するに従い、燃料電池スタック106の発電量も低下する。
【0049】
また、制御部126は、燃料圧力計130で測定された燃料供給配管内102の圧力値に水素比率を乗算した値と、直流電流計124で測定された直流電流値とが第2定数に従って比例するように、水素ブロワ128及び調整部122の内の少なくとも一方の制御を行ってもよい。燃料供給配管内102の水素ガスの圧力値と、燃料供給配管内102の水素ガスの流量とは、比例するためである。この第2定数も、水素燃焼利用率に基づき定まる定数である。
【0050】
このように、本実施形態に係る燃料電池発電システム100は、水素ブロワ128を設けたので、水素燃焼利用率を所定値にするためには、水素ブロワ128の送風量及び燃料電池スタック106の発電量の内の少なくとも一方の制御を行えばよい。
(効果)
【0051】
以上のように、本実施形態に係る燃料電池発電システム100は、制御部126が、燃料電池スタック106のアノード106Aに供給される水素量と、燃料電池スタック106の発電量とが比例するように、燃料供給配管102に配置される水素ブロワ128及び調整部122の内の少なくとも一方の制御を行うこととした。これにより、燃料電池スタック106の水素燃焼利用率が所定値になるように制御できるので、燃料電池スタック106の劣化を抑制できる。
(第3実施形態)
【0052】
上述した第2実施形態に係る燃料電池発電システム100は、水素ブロワ128及び燃料圧力計130を燃料供給配管102に設けていたが、第3実施形態に係る燃料電池発電システム100は、水素ブロワ128及び燃料圧力計130を燃料排出配管108に設けた点で相違する。以下に第2実施形態と相違する点を説明する。なお、以下の説明において、第2実施形態に係る燃料電池発電システム100と同等の機能及び構成を有する構成要素については、同一符号を付し、必要な場合を除き説明を省略する。
(構成)
【0053】
図5は、第3実施形態に係る燃料電池発電システム100の構成を説明するブロック図である。図5に示すように、本実施形態に係る燃料電池発電システム100は、水素ブロワ128、及び燃料圧力計130が燃料排出配管108に設けられている。
【0054】
制御部126は、燃料圧力計130で測定された圧力値と、直流電流計124で測定された直流電流値とに基づき、水素ブロワ128を制御する。
【0055】
なお、水素ブロワ128を副生水素戻し管6内に設けてもよい。この場合にも、燃料排出配管108に水素ブロワ128を設けた場合と同等の効果が得られる。さらにまた、本実施形態においても、燃料排出配管108からアノード106Aの排出ガスの一部を燃料供給配管102に戻す循環流路を設けてもよい。
(作用)
【0056】
ここでは、第2実施形態と同様に、副生水素母管2から供給される副生水素ガスの水素比率が一定値で安定している場合に、水素燃焼利用率を所定値に保つための制御について説明する。すなわち、副生水素ガスの水素比率は一定値で安定しているので、水素燃焼利用率を所定値に保つため、燃料電池スタック106のアノード106Aに供給される水素量と、燃料電池スタック106の発電量とを比例させる制御を行う。
【0057】
より具体的には、制御部126は、燃料排出配管内108の排出ガスの流量が、燃料電池スタック106の出力電流に比例するように、水素ブロワ128及び調整部122の内の少なくとも一方の制御を行う。例えば、制御部126は、燃料流量計114で測定された流量の値と、直流電流計124で測定された直流電流値とが第3定数に従って比例するように、水素ブロワ128及び調整部122の内の少なくとも一方の制御を行う。この第3定数は、水素燃料利用率に基づき定まる定数である。これらから分かるように、水素比率が低下するに従い、燃料電池スタック106の発電量も低下する。
【0058】
また、制御部126は、燃料圧力計130で測定された燃料排出配管108内の排出ガスの圧力値と、直流電流計124で測定された直流電流値とが第4定数に従って比例するように、水素ブロワ128及び調整部122の内の少なくとも一方の制御を行ってもよい。燃料排出配管108内の排出ガスの圧力値と、燃料供給配管内102の水素ガスの流量とは、比例するためである。この第4定数も、水素燃料利用率に基づき定まる定数である。
【0059】
このように、本実施形態に係る燃料電池発電システム100は、燃料排出配管108に水素ブロワ128を設けたので、水素燃焼利用率を所定値にするために、燃料排出配管108の水素ブロワ128の送風量及び燃料電池スタック106の発電量の内の少なくとも一方の制御を行なえばよい。
(効果)
【0060】
以上のように、本実施形態に係る燃料電池発電システム100は、制御部126が、燃料電池スタック106のアノード106Aに供給される水素量と、燃料電池スタック106の発電量とが比例するように、燃料排出配管108に配置される水素ブロワ128及び調整部122の内の少なくとも一方の制御を行うこととした。これにより、燃料電池スタック106の水素燃焼利用率が所定値になるように制御できるので、燃料電池スタック106の劣化を抑制できる。
(第4実施形態)
【0061】
上述した第2実施形態に係る燃料電池発電システム100は、循環経路を設けていなかったが、第4実施形態に係る燃料電池発電システム100は、循環経路を設け、アノード106Aから排出されたガスを再びアノード106Aに供給する点で相違する。以下に第2実施形態と相違する点を説明する。なお、以下の説明において、第2実施形態に係る燃料電池発電システム100と同等の機能及び構成を有する構成要素については、同一符号を付し、必要な場合を除き説明を省略する。
(構成)
【0062】
図6は、第4実施形態に係る燃料電池発電システム100の構成を説明するブロック図である。図6に示すように、本実施形態に係る燃料電池発電システム100は、循環配管134と、循環量調整弁136とを更に備えることで、第2実施形態に係る燃料電池発電システム100と相違する。
【0063】
循環配管134は、燃料排出配管108からアノード106Aの排出ガスの一部を燃料供給配管102に戻す循環流路を構成する。すなわち、循環配管134は、燃料供給配管102と、燃料排出配管108とを接続し、燃料排出配管108内を流れる排出ガスの一部を燃料供給配管102に戻す管である。
【0064】
循環量調整弁136は、燃料電池スタック106におけるアノード106Aの排出ガスの中から燃料供給配管102に戻す排出ガスの量を調整する。例えば、副生水素母管2から供給される水素ガスの水素比率が上がるに従い、開度が上がるように制御部126により制御される。また、副生水素母管2から供給される水素ガスの水素比率が所定値以下の場合には閉状態にしてもよい。
(作用)
【0065】
本実施形態に係る排出部120は、アノード106Aの排出ガスの少なくとも一部を定常的に燃料供給配管102の外に排出する。このため、定常運転時において、排出ガスを排出しない場合と比較し、不純物の増加を抑制させることが可能である。
【0066】
また、制御部126は、副生水素母管2から供給される水素ガスの水素比率に基づき、流量調整弁132、及び循環量調整弁136の制御を行う。例えば、制御部126は、水素比率が低くなるに従い、流量調整弁132の開度を大きくし、循環量調整弁136の開度を小さくする制御を行う。これにより、水素比率が低くなるに従い、排出ガスの中から燃料供給配管102に戻す排出ガスの割合を低下させることが可能となる。このように、排出部120から排出する排出ガスの量と、循環経路を戻す排出ガスの量とを調整することで、燃料電池スタック106のアノード106Aに供給される水素ガスの水素比率を所定値に収束させることも可能である。この場合、副生水素母管2から供給される水素ガスの水素比率よりもアノード106Aに供給される水素ガスの水素比率は低下するが、燃料電池発電システム100に供給される水素ガスの中で発電に使用させる水素ガスの割合は増加する。
【0067】
(効果)
以上のように、本実施形態に係る燃料電池発電システム100は、循環経路を設けた場合に、排出部120がアノード106Aから排出された排出ガスの少なくとも一部を、定常的に燃料供給配管102の外に排出することにした。これにより、定常運転時において、排出ガスを排出しない場合と比較し、不純物の増加を抑制させることが可能である。このため、定常運転時において、制御部126は、排出ガスを排出しない場合と比較し、燃料電池スタック106の水素燃焼利用率が所定値になるようにより安定的に制御でき、燃料電池スタック106の劣化をより抑制できる。
【0068】
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0069】
100:燃料電池発電システム、102:燃料供給配管、106:燃料電池スタック、106A:アノード、106B:カソード、108:燃料排出配管、112:燃料遮断弁、
114:燃料流量計、116:除湿器、118:アノードオフガス遮断弁、120:排出部、122:調整部、124:直流電流計、126制御部、128:水素ブロワ、130:燃料圧力計、132:流量調整弁、134:循環配管
図1
図2
図3
図4
図5
図6