特許第6971659号(P6971659)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝メディカルシステムズ株式会社の特許一覧

特許6971659磁気共鳴イメージング装置およびSAR計算方法
<>
  • 特許6971659-磁気共鳴イメージング装置およびSAR計算方法 図000004
  • 特許6971659-磁気共鳴イメージング装置およびSAR計算方法 図000005
  • 特許6971659-磁気共鳴イメージング装置およびSAR計算方法 図000006
  • 特許6971659-磁気共鳴イメージング装置およびSAR計算方法 図000007
  • 特許6971659-磁気共鳴イメージング装置およびSAR計算方法 図000008
  • 特許6971659-磁気共鳴イメージング装置およびSAR計算方法 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6971659
(24)【登録日】2021年11月5日
(45)【発行日】2021年11月24日
(54)【発明の名称】磁気共鳴イメージング装置およびSAR計算方法
(51)【国際特許分類】
   A61B 5/055 20060101AFI20211111BHJP
【FI】
   A61B5/055 390
   A61B5/055 350
【請求項の数】7
【全頁数】15
(21)【出願番号】特願2017-125351(P2017-125351)
(22)【出願日】2017年6月27日
(65)【公開番号】特開2019-5363(P2019-5363A)
(43)【公開日】2019年1月17日
【審査請求日】2020年4月17日
(31)【優先権主張番号】15/628,742
(32)【優先日】2017年6月21日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】594164542
【氏名又は名称】キヤノンメディカルシステムズ株式会社
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100103034
【弁理士】
【氏名又は名称】野河 信久
(74)【代理人】
【識別番号】100075672
【弁理士】
【氏名又は名称】峰 隆司
(74)【代理人】
【識別番号】100153051
【弁理士】
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100179062
【弁理士】
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100189913
【弁理士】
【氏名又は名称】鵜飼 健
(72)【発明者】
【氏名】冨羽 貞範
(72)【発明者】
【氏名】シン チェン
【審査官】 後藤 順也
(56)【参考文献】
【文献】 特開2011−120873(JP,A)
【文献】 特開2009−082331(JP,A)
【文献】 特開2015−134152(JP,A)
【文献】 特表2007−509686(JP,A)
【文献】 米国特許出願公開第2003/0098687(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/055
G01R 33/20−33/64
(57)【特許請求の範囲】
【請求項1】
高周波磁場を発生する送信コイルと、
前記高周波磁場が印加される撮像空間に配置された物体により発生された磁気共鳴信号を受信する受信コイルと、
前記送信コイルに固有であって前記高周波磁場の発生に関する特性を示す第1補正係数と、前記高周波磁場の発生期間における前記受信コイルと前記高周波磁場との電磁的結合により前記受信コイルが前記高周波磁場に及ぼす特性を示す第2補正係数とを用いて、SAR(Specific Absorption Rate)を計算するSAR計算部と、
を具備する磁気共鳴イメージング装置。
【請求項2】
前記SAR計算部は、
前記送信コイルに供給される電力に対する被検体に蓄積される電力の割合を示す電力比と前記被検体の体表面積との相関関係をさらに用いて、前記SARを計算する、
請求項1に記載の磁気共鳴イメージング装置。
【請求項3】
前記SAR計算部は、前記第1補正係数および前記第2補正係数を、前記送信コイルに供給される電力に乗算することにより、前記SARを計算する、
請求項1または2に記載の磁気共鳴イメージング装置。
【請求項4】
前記送信コイルに供給される複数の電力を計測する計測器と、
前記計測された複数の電力にそれぞれ対応する複数の磁気共鳴信号のうち最大の磁気共鳴信号に対応する電力を特定し、前記最大の磁気共鳴信号の発生に関する設計電力と前記特定された電力とを用いて前記第1補正係数および前記第2補正係数を決定する補正係数決定部と、をさらに具備する、
請求項1乃至3のうちいずれか一項に記載の磁気共鳴イメージング装置。
【請求項5】
前記受信コイルは、前記撮像空間の外部に配置され、
前記送信コイルは、
前記磁気共鳴信号を受信可能な送受信コイルであって、
前記複数の電力の供給に応じて、前記撮像空間に配置された負荷ファントムまたは無負荷ファントムにより発生された前記複数の磁気共鳴信号を受信し、
前記補正係数決定部は、前記特定された電力と前記設計電力とを用いて、前記第1補正係数を決定する、
請求項4に記載の磁気共鳴イメージング装置。
【請求項6】
前記受信コイルは、
前記撮像空間の内部に配置され、
前記複数の電力の供給に応じて、前記撮像空間に配置された負荷ファントムまたは無負荷ファントムにより発生された前記複数の磁気共鳴信号を受信し、
前記補正係数決定部は、前記特定された電力と前記第1補正係数とを用いて、前記第2補正係数を決定する、
請求項4に記載の磁気共鳴イメージング装置。
【請求項7】
送信コイルに固有であって高周波磁場の発生に関する特性を示す第1補正係数と、前記高周波磁場の発生期間における受信コイルと前記高周波磁場との電磁的結合により前記受信コイルが前記高周波磁場に及ぼす特性を示す第2補正係数と、前記送信コイルに供給される電力に対する被検体に蓄積される電力の割合を示す電力比と、所定の時間幅における前記高周波磁場の発生回数と、前記送信コイルに供給される電力とを乗ずることにより、乗算値を計算し、
前記乗算値を、前記被検体における撮像部位の質量と前記所定の時間幅とで除することにより、除算値を計算し、
前記除算値を、前記所定の時間幅に亘って積分することにより、SAR(Specific Absorption Rate)を計算する、
SAR計算方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、磁気共鳴イメージング装置およびSAR計算方法に関する。
【背景技術】
【0002】
磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)は、静磁場中に置かれた被検体の原子核におけるスピンを、この原子核のラーモア(Larmor)周波数のRF(Radio Frequency)パルスで磁気的に励起し、励起に伴い発生する磁気共鳴信号のデータから画像を生成する撮像法である。磁気共鳴イメージングでは、被検体の生体組織に吸収されるRFパルスのエネルギーの指標であるSAR(Specific Absorption Rate:比吸収率)が、制限値以下に抑えられることが求められている。SARは、例えば、パルスエネルギー法に基づく計算などにより求められる。SARは被検体の安全に係わる指標である。
【0003】
SARの計算においてパルスエネルギー法を用いた場合、SARが過大評価されることもある。SARの過大評価は、MRI装置の動作を制約することとなり、MRI装置のユーザビリティが低下する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許第7355404号明細書
【特許文献2】米国特許第6762605号明細書
【特許文献3】米国特許第8531184号明細書
【特許文献4】米国特許出願公開第2016/0178711号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
目的は、磁気共鳴イメージング装置の動作において過大な制約を設けることなくユーザビリティを向上させることにある。
【課題を解決するための手段】
【0006】
本実施形態に係る磁気共鳴イメージング装置によれば、送信コイルと、受信コイルと、SAR計算部とを有する。前記送信コイルは、高周波磁場を発生する。前記受信コイルは、前記高周波磁場が印加される撮像空間に配置された物体により発生された磁気共鳴信号を受信する。前記SAR計算部は、前記送信コイルに固有であって前記高周波磁場の発生に関する特性を示す第1補正係数と、前記高周波磁場の発生期間における前記受信コイルと前記高周波磁場との電磁的結合により前記受信コイルが前記高周波磁場に及ぼす特性を示す第2補正係数とを用いて、specific absorption rateを計算する。
【図面の簡単な説明】
【0007】
図1図1は、本実施形態に係る磁気共鳴イメージング装置の構成の一例を示すブロック図である。
図2図2は、本実施形態において、送信コイルID(または送受信コイルID)に対する第1補正係数の対応の一例を示す図である。
図3図3は、本実施形態において、受信コイルID(または送受信コイルID)に対する第2補正係数の対応の一例を示す図である。
図4図4は、本実施形態において、SARの計算に関する処理手順の一例を示すフローチャートである。
図5図5は、本実施形態において、SARの計算に関する処理手順の一例を示すフローチャートである。
図6図6は、本実施形態において、複数の電力に対するMR信号の強度の変化の一例を示す図である。
【発明を実施するための形態】
【0008】
以下、図面を参照して、実施形態に係る磁気共鳴イメージング装置(以下、MRI(Magnetic Resonance Imaging)装置と呼ぶ)を説明する。以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
【0009】
図1は、実施形態に係るMRI装置100の構成を示すブロック図である。図1に示すように、MRI装置100は、静磁場磁石101と、傾斜磁場コイル103と、傾斜磁場電源104と、寝台装置105と、寝台制御回路(寝台制御部)106と、送信コイル107と、送信回路108と、受信コイル109と、受信回路110と、シーケンス制御回路(シーケンス制御部)111と、入力装置(入力部)112と、表示装置(表示部)113と、記憶回路(記憶部)114と、計測器115、処理回路(処理部)116とを含む。MRI装置100に、被検体P(例えば、人体)は含まれない。また、図1に示す構成は一例に過ぎない。例えば、寝台制御回路106、シーケンス制御回路111、及び処理回路116は、適宜統合若しくは分離して構成されても良い。例えば、寝台制御回路106、シーケンス制御回路111、及び処理回路116のそれぞれの機能を兼ね備える1つの処理回路を設けて本実施形態を実施しても構わない。また逆に、処理回路116を4つの独立した処理回路に分け、それぞれの処理回路がシステム制御機能1161、データ処理機能1163、補正係数決定機能1165、及びSAR(Specific Absorption Rate:比吸収率)計算機能1167を実行するように構成しても構わない。
【0010】
静磁場磁石101は、中空の略円筒形状(円筒の中心軸に直交する断面が楕円状となるものを含む)に形成された磁石であり、内部の空間に静磁場を発生する。以降の実施形態で中空の略円筒形状と述べる場合には、円筒の中心軸に直交する断面が楕円状になるものを含むものとする。なお、静磁場磁石101は、略円筒形状に限らず、開放型の形状で構成されてもよい。静磁場磁石101は、例えば超伝導磁石であり、静磁場電源から電流の供給を受けて励磁する。静磁場電源は、静磁場磁石101に電流を供給する電源装置である。なお、静磁場磁石101には、永久磁石を用いることも可能である。この場合、MRI装置100は、MRI装置100とは別体にて備えられる静磁場電源を備える必要は無い。
【0011】
傾斜磁場コイル103は、中空の略円筒形状に形成されたコイルであり、静磁場磁石101の内側に配置される。傾斜磁場コイル103は、互いに直交するX、Y、及びZの各軸に対応する3つのコイルが組み合わされて形成される。これら3つのコイルは、傾斜磁場電源104から個別に電流の供給を受けて、X、Y、及びZの各軸に沿って変化する強度で傾斜磁場を発生する。傾斜磁場コイル103によって発生するX、Y、及びZの各軸に沿った傾斜磁場は、例えばスライスエンコード用傾斜磁場Gs、位相エンコード用傾斜磁場Ge、及び読み出しエンコード用傾斜磁場Grである。また、傾斜磁場電源104は、傾斜磁場コイル103に電流を供給する電源装置である。
【0012】
寝台装置105は、被検体Pが載置される天板105a、及び図示しない基台と寝台駆動装置を備えている。基台は、寝台駆動装置によって天板105aを上下方向(被検体Pの体軸方向と直交する方向)に移動することが可能なモータ或いはアクチュエータを持つ筐体である。寝台駆動装置は、被検体Pが載置された天板105aを、MRI装置100に設けられる略円筒形状の開口領域内に挿抜するモータ或いはアクチュエータである。天板105aは、寝台駆動装置によって被検体Pの体軸方向に沿って、及び体軸方向に直交する方向に沿って移動することが可能な被検体Pを載置する板状装置である。
【0013】
寝台制御回路106は、寝台装置105に接続される。寝台制御回路106は、制御用の電気信号を寝台装置105へ出力することで、寝台装置105の動作を制御する。例えば、寝台制御回路106は、入力装置112を介して天板105aを長手方向、上下方向、又は左右方向へ移動させる指示が入力されると、受け付けた指示信号に従って天板105aを移動するように、天板105aの駆動機構を動作させる。
【0014】
送信コイル107は、中空の略円筒形状に形成されたコイルであり、傾斜磁場コイル103の内側に配置される。送信コイル107は、送信回路108からRF(Radio Frequency)パルスの供給を受けて、高周波磁場を発生する。送信コイル107は、例えば、撮像空間を包含する全身(Whole Body:WB)コイルである。WBコイルは、磁気共鳴信号(Magnetic Resonance:MR信号)を受信可能なコイルとしても機能する送受信コイルである。送信コイルは、WBコイルに限定されず、例えば、撮像部位に応じた送信専用コイルや、高周波磁場の送信とMR信号の受信とを兼用する送受信コイルであってもよい。
【0015】
送信回路108は、対象とする核種及び静磁場磁石101によって発生される磁場の強度によって決定される共鳴周波数(ラーモア周波数)に対応するRFパルスを、送信コイル107に供給する電気回路である。送信回路108は、病院等への本MRI装置100の据え付け時、種々のファントムを用いたキャリブレーション時、および本MRI装置100のメンテナンス時等において、複数の電力に対応する複数のRFパルスを、送信コイル107に出力してもよい。
【0016】
受信コイル109は、傾斜磁場コイル103の内側に配置され、高周波磁場の影響によって撮像空間に配置された被検体Pまたはファントムなどの物体から発せられるMR信号を受信するコイルである。受信コイル109は、MR信号を受信すると、受信した信号を受信回路110へ出力する。受信コイル109は、例えば、複数のコイル素子を有するコイルアレイである。なお、受信コイル109は、撮像部位に応じた高周波磁場を発生する機能、すなわち送信コイル107としての機能を有していてもよい。
【0017】
受信回路110は、受信コイル109から出力されたMR信号をデジタルのMRデータに変換する。受信回路110は、MRデータをシーケンス制御回路111へ送信する。
【0018】
シーケンス制御回路111は、各種パルスシーケンスを実行する。具体的には、シーケンス制御回路111は、処理回路116から出力されるシーケンス実行データを読み込んで傾斜磁場電源104、送信回路108及び、受信回路110を駆動することで、各種パルスシーケンスを実行する。シーケンス実行データとは、MRデータを収集するための手順を示すパルスシーケンスを定義した情報である。具体的には、シーケンス実行データは、傾斜磁場電源104が傾斜磁場コイル103に電流を供給するタイミング及び供給される電流の強さ、送信回路108が送信コイル107に供給するRFパルス電流の強さや供給タイミング、受信回路110がMR信号を検出する検出タイミング等を定義した情報である。シーケンス制御回路111は、各種パルスシーケンスが実行された結果として、受信回路110から受信したMRデータを記憶回路114に出力する。
【0019】
入力装置112は、オペレータからの各種指示や情報入力を受け付ける。入力装置112は、例えば、マウス等のポインティングデバイス、モード切替スイッチ等の選択デバイス、キーボード等の入力デバイスである。また、入力装置112は、GUI(Graphical User Interface)を用いることにしてもよい。
【0020】
表示装置113は、処理回路116におけるシステム制御機能1161による制御の下、撮像条件の入力を受け付けるためのGUIや、処理回路116におけるデータ処理機能1163によって生成された画像等を表示する。また、表示装置113は、SAR計算機能1167により計算されたSARを表示する。なお、表示装置113は、SARが制限値を超える場合、警告を表示してもよい。表示装置113は、例えば液晶ディスプレイなど各種ディスプレイにより構成される。なお、表示装置113はMRI装置100の本体である架台装置側に設けられても構わないし、架台装置とは別室に設けられMRI装置100の操作を行うコンソール装置側に設けても構わない。
【0021】
記憶回路114は、各種データを記憶する。例えば、記憶回路114は、RAM(Random Access memory)、フラッシュメモリ等の半導体メモリ素子や、ハードディスク、光ディスク等によって実現される。記憶回路114は、シーケンス制御回路111及び受信回路110を介して入力されたMRデータを記憶する。また、記憶回路114は、SARに関する制限値を記憶する。SARに関する制限値とは、SAR計算機能1167により計算されたSARが安全限界を超えているか否かを判定するための値である。
【0022】
記憶回路114は、撮像空間に他のコイルが配置されていない状態で最大の磁気共鳴信号の発生させるために送信コイル107に供給される設計上の電力(以下、設計電力と呼ぶ)を記憶する。具体的には、設計電力は、被検体Pまたは各種ファントムにおける原子核のスピンを180°に倒す高周波磁場を発生させるために必要な設計上の電力(パワー)である。設計電力は、例えば、シミュレーション等により予め決定される。設計電力は、いわゆる180°条件と称される電力である。なお、設計電力は、送信コイル毎、送受信コイル毎に記憶されてもよい。記憶回路114は、SARの計算式を記憶する。記憶回路114は、補正係数決定機能1165により決定された第1補正係数及び第2補正係数を記憶する。SARの計算式、第1補正係数および第2補正係数については、後程詳述する。
【0023】
計測器115は、例えば、送信回路108における不図示のRFアンプから送信コイル107に出力される電力を計測する。計測器115は、例えば、送信コイル107に供給される複数の電力を計測する電力計により実現される。計測器115は、計測された複数の電力を、処理回路116に出力する。
【0024】
処理回路116は、システム制御機能1161と、データ処理機能1163と、補正係数決定機能1165とSAR計算機能1167とを有する。例えば、処理回路116はプロセッサによって実現される。
【0025】
上記説明において用いた「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphical Processing Unit)或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA)等の回路を意味する。
【0026】
プロセッサは、記憶回路114に保存されたプログラムを読み出し実行することで各種機能を実現する。なお、記憶回路114にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで各種機能を実現する。なお、寝台制御回路106、送信回路108、受信回路110、シーケンス制御回路111等も同様に、上記のプロセッサなどの電子回路を有していてもよい。
【0027】
システム制御機能1161を実現する処理回路116は、MRI装置100における各構成要素及び機能を制御することで、MRI装置100の全体制御を行う。処理回路116は、入力装置112を介してオペレータからパルスシーケンスに関する各種のパラメータの入力を受け付け、受け付けたパラメータを読み込んでシーケンス実行データを生成する。次いで、処理回路116は、生成したシーケンス実行データをシーケンス制御回路111に送信することで、シーケンス制御回路111に各種のパルスシーケンスを実行させる。システム制御機能1161を実現する処理回路116は、システム制御部の一例である。
【0028】
データ処理機能1163を実現する処理回路116は、記憶回路114からMRデータを読み込んで、フーリエ変換等の再構成処理を施すことによって、被検体P内における所望の核スピンのスペクトラムデータ或いは画像データを生成する。データ処理機能1163を実現する処理回路116は、データ処理部の一例である。
【0029】
以上、本実施形態に係る磁気共鳴イメージング装置100の構成等について説明した。このような構成のもと、本実施形態に係る磁気共鳴イメージング装置100では、送信コイル107に固有であって高周波磁場の発生に関する特性を示す第1補正係数と、高周波磁場の発生期間における受信コイル109と高周波磁場との電磁的結合により受信コイル109が高周波磁場に及ぼす特性を示す第2補正係数とを用いて、SARを計算する。以下、本実施形態における磁気共鳴イメージング装置100について詳述する。
【0030】
補正係数決定機能1165を実現する処理回路116は、送信コイル107に固有であって高周波磁場の発生に関する特性を示す第1補正係数と、高周波磁場の発生期間における受信コイル109と高周波磁場との電磁的結合により受信コイル109が高周波磁場に及ぼす特性を示す第2補正係数とを決定する。以下、第1補正係数と第2補正係数とについて説明する。第1補正係数と第2補正係数との決定に係る処理手順については、後程フローチャート等を用いて詳述する。
【0031】
第1補正係数は、電力(以下、第1送信パワーとよぶ)と設計電力との差異に相当する。第1送信パワーは、本MRI装置100の病院等への設置後であって撮像空間内での任意のコイルなしで、180°条件に対応する高周波磁場を発生させるための電力である。すなわち、第1補正係数は、設計電力による設計上の高周波磁場のパワーを、本MRI装置100の設置後において発生される高周波磁場のパワーに補正する係数である。処理回路116は、設計電力と第1送信パワーとに基づいて、第1補正係数を決定する。
【0032】
第1送信パワーは、例えば、本MRI装置100の病院等への設置時において、架台における設計上の位置に対するRFシールドおよびWBコイルの取り付け位置の誤差、RFシールドの設計形状に対する誤差、および設計上のWBコイルの性能に基づくWBコイルの調整等に起因して変動する。このため、第1補正係数は、病院等に設置されたMRI装置100の送信コイル107に固有であって高周波磁場の発生に関する特性を示す値となる。すなわち、第1補正係数は、複数のMRI装置各々で異なる値となり、複数のMRI装置各々における被検体Pへの高周波磁場の送信効率に相当する。送信効率は第1送信パワーに比例するため、例えば、処理回路116は、設計電力に対する第1送信パワーの割合を、第1補正係数として決定する。なお、上記第1補正係数の説明において、送信コイル107はWBコイルとして説明したが、被検体の撮像部位に応じて局所的な送信コイル用いられる場合、第1補正係数は、WBコイルおよび局所的な送信コイルごとに異なる値となる。
【0033】
第2補正係数は、本MRI装置100の病院等への設置後であって撮像空間内に配置された任意のコイルで、180°条件に対応する高周波磁場を発生させるための電力(以下、第2送信パワーとよぶ)と、第1送信パワーとの差異に相当する。すなわち、第2補正係数は、第1送信パワーを、撮像空間内に配置された受信コイル109または送受信コイルなどの各種コイルによる高周波磁場への影響を加えた高周波磁場のパワーに補正する係数である。処理回路116は、第1送信パワーと第2送信パワーとに基づいて、第2補正係数を決定する。
【0034】
第2送信パワーは、撮像空間に配置された各種コイルと送信コイル107とが高周波磁場を介して電磁的に結合すること、例えば、撮像空間に配置された受信コイル109による高周波磁場のエネルギーの吸収(送信効率の低減)およびこの吸収による受信コイル109での励磁(送信効率の増加)に起因して変動する。このため、第2補正係数は、高周波磁場の発生期間において、撮像空間に配置された各種コイルと高周波磁場との電磁的結合により受信コイルが高周波磁場に及ぼす特性を示す値となる。すなわち、第2補正係数は、撮像空間に設置可能な各種コイルごとで異なる値となり、撮像空間に設置された各種コイルによる高周波磁場への影響を加味した、被検体Pへの高周波磁場の送信効率に相当する。送信効率は第2送信パワーに比例するため、例えば、処理回路116は、第1送信パワーに対する第2送信パワーの割合を、第2補正係数として決定する。
【0035】
補正係数決定機能1165を実現する処理回路116は、第1補正係数及び第2補正係数の決定を、病院等への本MRI装置100の据え付け時において実行する。なお、処理回路116は、第1補正係数及び第2補正係数の決定を、各種ファントムを用いたキャリブレーション時、本MRI装置100のメンテナンス時等に実行してもよい。処理回路116は、決定された第1補正係数及び第2補正係数を、コイルIDに対応付けて記憶回路114に記憶させる。補正係数決定機能1165を実現する処理回路116は、補正係数決定部に対応する。
【0036】
図2は、送信コイルID(または送受信コイルID)に対する第1補正係数の対応の一例を示す図である。図2に示すように、本MRI装置100において使用される送信コイルIDおよび送受信コイルIDに、第1補正係数がそれぞれ対応付けられている。図3は、受信コイルID(または送受信コイルID)に対する第2補正係数の対応の一例を示す図である。図3に示すように、本MRI装置100において使用される受信コイルIDおよび送受信コイルIDに、第2補正係数がそれぞれ対応付けられている。
【0037】
SAR計算機能1167を実現する処理回路116は、記憶回路114に記憶されたSARの計算式を読み出す。以下の式(1)は、本実施形態におけるSARの計算式の一例を示している。
【0038】
【数1】
【0039】
式(1)の左辺におけるSARpart(t)は、時刻tにおいて、被検体Pの撮像部位に対するSAR値を示している。式(1)の右辺におけるtは、所定の時間幅であってSARの計算に関する最小の単位に相当する。所定の時間幅は、例えば、パルスシーケンスにおける繰り返し時間(repetition time:TR)に相当する。なお、SARの計算対象におけるパルスシーケンスが心電同期、呼吸同期等の生体信号に同期する撮像シーケンスであって、かつこれらの同期の周期が変動する場合、式(1)の右辺におけるtは、周期の変動に応じて変化させてもよい。
【0040】
式(1)の右辺におけるMは、被検体Pの質量、すなわち全体重である。式(1)の右辺におけるWRpartは、被検体Pの質量Mに対する被検体Pにおける撮像対象の質量の割合(以下、質量割合と呼ぶ)である。式(1)の右辺におけるPrealout(t´)は、所定の時間幅tでの時刻t´において送信コイル107に供給されるRFパルスの電力である。式(1)の右辺におけるWBPRは、送信コイルに供給される電力に対する被検体Pに蓄積される電力の割合(以下、電力比と呼ぶ)である。電力比WBPRは、送信コイル107に対する被検体Pの配置を反映し、被検体Pの体表面積に対して強い線形関係を示す。このため、電力比WBPRは、以下の式(2)に示すように体表面積BSA(Body surface Area)に比例する。
【0041】
【数2】
式(2)において、aは傾き、bは切片である。
【0042】
式(1)の右辺におけるRFRpartは、所定の時間幅tにおいて、送信コイル107に供給されるRFパルスの数(パルス数)、すなわち高周波磁場の発生回数であって、デューティーとも称される。式(1)の右辺において、Fは第1補正係数、Fは第2補正係数である。
【0043】
SAR計算機能1167を実現する処理回路116は、SARの計算に先立って、例えば、シーケンス実行データに基づいて、RFパルスの電力Prealout(t´)と、デューティーRFRpartと、所定の時間幅tと、質量割合WRpartとを決定する。なお、被検体Pに対するMR撮像の実行中においてSARの計算を行う場合、処理回路116は、RFパルスの電力Prealout(t´)を計測器115から取得し、所定の時間幅tを生体信号同期撮影に関する心電計、呼吸センサ等の係る各種生体信号検出器から取得してもよい。
【0044】
SAR計算機能1167を実現する処理回路116は、被検体Pに関する患者情報等に基づいて、被検体Pの質量Mと体表面積BSAとを決定する。処理回路116は、メモリに記憶された傾きaおよび切片bと、決定された体表面積BSAとを用いて、電力比WBPRを決定する。なお、処理回路116は、傾きaおよび切片bを用いた体表面積BSAに対する電力比WBPRの対応表(Look Up Table)と、決定された体表面積BSAとを用いて、電力比WBPRを決定してもよい。
【0045】
SAR計算機能1167を実現する処理回路116は、SARの計算に先立って、例えば、シーケンス実行データに基づいて、第1補正係数Fと、第2補正係数Fとを記憶回路114から読み出す。例えば、シーケンス実行データにより実行されるMR撮像において、送信コイル107としてWBコイルが用いられる場合、処理回路116は、図2示すように、WBコイルのIDに対応する第1補正係数WB1を、記憶回路114から読み出す。シーケンス実行データにより実行されるMR撮像において、受信コイル109として腹部コイルが用いられる場合、処理回路116は、図3示すように、腹部コイルのIDに対応する第2補正係数Abを、記憶回路114から読み出す。
【0046】
SAR計算機能1167を実現する処理回路116は、RFパルスの電力Prealout(t´)と、デューティーRFRpartと、電力比WBPRと、第1補正係数Fと、第2補正係数Fとを乗ずることにより、乗算値を計算する。処理回路116は、計算された乗算値を、被検体Pにおける撮像部位の質量(M×WRpart)と所定の時間幅tとで除することにより、除算値を計算する。この除算値は、式(1)における被積分対象である。処理回路116は、時刻tから所定の時間幅tだけ過去の時刻(t−t)から時刻tまで、所定の時間幅tに亘って、除算値を積分することにより、SARを計算する。
【0047】
SAR計算機能1167を実現する処理回路116は、計算されたSARが制限値を超えているか否かを判定する。SARが制限値を超える場合、システム制御機能1161を実現する処理回路116は、被検体Pに対して撮像を実行しないように、MRI装置100を制御する。なお、MR撮像の実行中にSARの計算が実行されている場合においてSARが制限値を超える場合、システム制御機能1161を実現する処理回路116は、被検体に対するMR撮像を中止するために、MRI装置100を制御してもよい。また、SARが制限値を超える場合、SAR計算機能1167を実現する処理回路116は、警告を表示するために、表示装置113を制御する。SAR計算機能1167を実現する処理回路116は、SAR計算部に対応する。
【0048】
(動作)
本実施形態における処理動作について説明する。図4および図5は、本実施形態におけるSARの計算の処理手順の一例を示すフローチャートである。
【0049】
(ステップS101)
病院等への本MRI装置100の据え付け時、各種ファントムを用いたキャリブレーション時、または本MRI装置100のメンテナンス時等において、撮像空間内に負荷ファントムが設置される。なお、無負荷ファントムが、用いられてもよい。このとき、第1補正係数の決定に関連しない任意のコイルは、第1補正係数の決定に関する送信コイル107の内側の撮像空間には配置されない。以下、説明を簡単にするため、送信コイル107は、WBコイルであるものとして説明する。なお、WBコイルの代わりに任意の送受信コイルが用いられてもよい。また、WBコイルの代わりに送信専用コイルが用いられてもよい。
【0050】
(ステップS102)
WBコイルに複数の電力が、それぞれ供給される。WBコイルは、複数の電力に対応する複数の高周波磁場をそれぞれ発生する。負荷ファントムは、高周波磁場の印加に応じて、MR信号を発生する。WBコイルは、高周波磁場に対応するMR信号を受信する。
【0051】
(ステップS103)
WBコイルおよび受信回路110によるMR信号の受信により、複数の電力にそれぞれ対応する複数のMR信号が取得される。複数のMR信号は、処理回路116に出力される。複数のMR信号の強度は、複数の電力に対して、例えば上に凸に分布する。
【0052】
(ステップS104)
補正係数決定機能1165を実現する処理回路116により、複数のMR信号の強度うち、最大のMR信号の強度(以下、第1最大強度と呼ぶ)が特定される。次いで、複数の電力のうち、第1最大強度に対応する電力(以下、第1電力と呼ぶ)が特定される。図6は、複数の電力に対するMR信号の強度の変化の一例を示す図である。図6に示すように、本ステップにおいて、第1最大強度PMAXと第1電力Pとが特定される。
【0053】
(ステップS105)
補正係数決定機能1165を実現する処理回路116により、設計電力が記憶回路114から読み出される。設計電力と第1電力とに基づいて、第1補正係数が決定される。なお、図2に示すように、WBコイルの他に本MRI装置100で使用される送受信コイルがあれば、ステップS101乃至ステップS105の処理が繰り返される。ステップS101乃至ステップS105の処理により、WBコイル等の送受信コイル、送信専用コイルに関する第1補正係数が決定される。第1補正係数は、図2に示すように、例えば対応表として、記憶回路114に記憶される。
【0054】
(ステップS106)
負荷ファントム近傍または負荷ファントムに接触させて、受信コイル109が撮像空間内に配置される。なお、受信コイル109の代わりに、送受信コイルが配置されてもよい。
【0055】
(ステップS107)
ステップS102における処理と同様に、WBコイルに複数の電力各々が供給され、複数の電力に対応する複数の高周波磁場が、WBコイルによりそれぞれ発生される。
【0056】
(ステップS108)
受信コイル109および受信回路110によるMR信号の受信により、複数の電力にそれぞれ対応する複数のMR信号が取得される。複数のMR信号は、処理回路116に出力される。複数のMR信号の強度は、図6と同様に、複数の電力に対して上に凸に分布する。
【0057】
(ステップS109)
ステップS104における処理と同様に、補正係数決定機能1165を実現する処理回路116により、複数のMR信号の強度うち、最大のMR信号の強度(以下、第2最大強度と呼ぶ)が特定される。次いで、複数の電力のうち、第2最大強度に対応する電力(以下、第2電力と呼ぶ)が特定される。
【0058】
(ステップS110)
補正係数決定機能1165を実現する処理回路116により、第1補正係数が記憶回路114から読み出される。第1補正係数と第2電力とに基づいて、第2補正係数が決定される。図3に示すように、複数の受信コイルに対して、ステップS106乃至ステップS110の処理が繰り返される。ステップS106乃至ステップS110の処理により、複数の受信コイル109、送受信コイルに関する第2補正係数が決定される。第2補正係数は、図3に示すように、例えば対応表として、記憶回路114に記憶される。
【0059】
(ステップS111)
入力装置112を介して撮像条件が入力されると、処理回路116によりシーケンス実行データが生成される。シーケンス実行データおよび撮像条件等に基づいて、SARの計算式(1)における左辺の被積分に関する各種パラメータが設定される。例えば、被検体Pに対するMR撮像に用いられる送信コイル107と受信コイル109の種別に従って、第1補正係数Fおよび第2補正係数Fが、処理回路116により記憶回路114から読み出される。SAR計算機能1167を実現する処理回路116により、SARが計算される。
【0060】
(ステップS112)
記憶回路114から読み出された制限値と、計算されたSARとが比較される。SARが制限値以下であれば(ステップS112のNo)、本処理手順は終了する。SARが制限値を超えていれば(ステップS112のYes)、ステップS113の処理が実行される。
【0061】
(ステップS113)
被検体Pに対してMR撮像を実行しないために、MRI装置100における各構成要素が、制御される。このとき、SARが制限値を超えていることを示すメッセージが、ディスプレイに表示されてもよい。上記ステップS111乃至ステップS113は、被検体Pに対するMR撮像前に実行される。なお、上記ステップS111乃至ステップS113は、被検体Pに対するMR撮像中に実行されてもよい。
【0062】
以上に述べた構成によれば、以下に示す効果を得ることができる。
本実施形態におけるMRI装置100によれば、高周波磁場を発生する送信コイル107の高周波磁場の発生に関する固有の特性を示す第1補正係数Fと、高周波磁場の発生期間における受信コイル109と高周波磁場との電磁的結合により受信コイル109が高周波磁場に及ぼす特性を示す第2補正係数Fと、送信コイル107に供給される電力に対する被検体Pに蓄積される電力の割合を示す電力比WBPRと被検体Pの体表面積BSAとの相関関係と、送信コイル107に供給される電力Prealout(t´)とを用いて、SARを計算することができる。
【0063】
また、本実施形態におけるMRI装置100によれば、送信コイル107に供給される複数の電力を計測し、計測された複数の電力にそれぞれ対応する複数の磁気共鳴信号のうち最大の磁気共鳴信号に対応する電力を特定し、最大の磁気共鳴信号の発生に関する設計電力と特定された電力とを用いて、第1補正係数Fおよび第2補正係数Fを決定することができる。具体的には、本MRI装置100によれば、撮像空間の外部に受信コイル109を配置し、設計電力と特定された電力とを用いて、第1補正係数Fを決定することができる。また、本MRI装置100によれば、送信コイル107への複数の電力の供給に応じて、撮像空間に配置された負荷ファントムまたは無負荷ファントムにより発生された複数の磁気共鳴信号を撮像空間の内部に配置された受信コイル109により受信し、特定された電力と第1補正係数Fとを用いて、第2補正係数Fを決定することができる。
【0064】
これらのことから、本実施形態におけるMRI装置100によれば、SARの計算において、MRI装置100の設置時におけるRFシールドおよびWBコイルの取り付け位置の誤差、RFシールドの設計形状に対する誤差、および設計上のWBコイルの性能に基づくWBコイルの調整等に起因して変動する高周波磁場の送信パワーを、第1補正係数Fを用いて補正することができる。加えて、本MRI装置100によれば、SARの計算において、撮像空間に配置された受信コイル109(または送受信コイル)による高周波磁場のエネルギーの吸収(送信効率の低減)と、この吸収による受信コイル109(または送受信コイル)での励磁(送信効率の増加)とに起因して変動する、被検体Pへの高周波磁場の送信効率を、第2補正係数Fを用いて補正することができる。
【0065】
以上のことから、本実施形態におけるMRI装置100によれば、パルスエネルギー法に基づくことなく、かつSARを過大評価することなく、被検体Pに吸収される高周波磁場を適切に推定することができる。これにより、本MRI装置100によれば、MRI装置100の動作において過大な制約が設けられないため、MRI装置100のユーザビリティを向上させることができる。
【0066】
以上述べた実施形態の磁気共鳴イメージング装置100によれば、SARを適切に推定し、ユーザビリティを向上させることができる。
【0067】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0068】
100…磁気共鳴イメージング装置、101…静磁場磁石、102…静磁場電源、103…傾斜磁場コイル、104…傾斜磁場電源、105…寝台装置、105a…天板、106…寝台制御回路、107…送信コイル、108…送信回路、109…受信コイル、110…受信回路、111…シーケンス制御回路、112…入力装置、113…表示装置、114…記憶回路、115…計測器、116…処理回路、123…記憶回路、1161…システム制御機能、1163…データ処理機能、1165…補正係数決定機能、1167…SAR計算機能。
図1
図2
図3
図4
図5
図6