【実施例】
【0059】
以下、本発明を実施例に基づいてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
【0060】
〔実施例1〕
実施例1は、無極性高分子多孔質体として、PVDFで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。
【0061】
(ThT溶液の調製)
ThT(ウルトラピュアグレード,AAT Bioquest Inc.社製。本明細書における粗ThTに該当する。)を蒸留水に溶解し、1mM ThT溶液を得た。
【0062】
(ThT溶液のろ過精製)
1mM ThT溶液2mLを、シリンジ(テルモ製)及びメンブレンフィルターMillex−GV(材質:親水性PVDF,ポアサイズ:0.22μm,フィルター径:33mm,メルクミリポア社製)を用いてろ過してろ液を回収した。
【0063】
(蛍光の測定)
得られたろ液10μLに蒸留水990μLを添加して希釈し、マイクロセル(光路長:5mm)に充填した。試料を充填したマイクロセルを蛍光分光光度計RF−5000(株式会社島津製作所製)に設置し、励起波長350nmにて蛍光スペクトルを測定した。また、観測波長440nmにて励起スペクトルを測定した。
【0064】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図1(A)に示す。
図1(A)に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。また、励起スペクトル(観測波長440nm)の測定結果を
図1(B)に示す。
図1(B)に示されるように、ろ過により蛍光性不純物由来の波長350nm付近をピークとする蛍光の消失が認められる。すなわち、PVDFで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0065】
〔実施例2〕
実施例2は、無極性高分子多孔質体として、セルロース混合エステル(酢酸セルロースとニトロセルロースの混合物:MCE)で形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。ThT溶液の調製、及び蛍光の測定は、実施例1と同様に実施した。
【0066】
(ThT溶液のろ過精製)
1mM ThT溶液2mLを、シリンジ(テルモ製)及びメンブレンフィルターVented−Millex−GS(材質:MCE,ポアサイズ:0.22μm,フィルター径:25mm,メルクミリポア社製)を用いてろ過してろ液を回収した。
【0067】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図2(A)に示す。
図2(A)に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。また、励起スペクトル(観測波長440nm)の測定結果を
図2(B)に示す。
図2(B)に示されるように、ろ過により蛍光性不純物由来の波長350nm付近をピークとする蛍光の消失が認められる。すなわち、MCEで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0068】
〔実施例3〕
実施例3は、無極性高分子多孔質体として、酢酸セルロースで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。
【0069】
(ThT溶液の調製)
ThT(ウルトラピュアグレード,AAT Bioquest Inc.社製。本明細書における粗ThTに該当する。)を蒸留水に溶解し、10mM ThT溶液を得た。
【0070】
(ThT溶液のろ過精製)
10mM ThT溶液1mLを、シリンジ(テルモ製)及びシリンジフィルターアズフィル(材質:酢酸セルロース,ポアサイズ:0.45μm,フィルター径:25mm,アズワン社製)を用いてろ過してろ液を回収した。
【0071】
(蛍光の測定)
得られたろ液2μLに蒸留水1998μLを添加して希釈し、希釈液1000μLをマイクロセル(光路長:5mm)に充填した。試料を充填したマイクロセルを蛍光分光光度計RF−5000(株式会社島津製作所製)に設置し、励起波長350nmにて蛍光スペクトルを測定した。
【0072】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図3に示す。
図3に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、酢酸セルロースで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0073】
〔実施例4〕
実施例4は、無極性高分子多孔質体として、ナイロンで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。ThT溶液の調製、及び蛍光の測定は、実施例3と同様に実施した。
【0074】
(ThT溶液のろ過精製)
10mM ThT溶液1mLを、シリンジ(テルモ製)及びシリンジフィルターアズフィル(材質:ナイロン,ポアサイズ:0.45μm,フィルター径:25mm,アズワン社製)を用いてろ過してろ液を回収した。
【0075】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図4に示す。
図4に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、ナイロンで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0076】
〔実施例5〕
実施例5は、無極性高分子多孔質体として、ポリスルホンで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。ThT溶液の調製、及び蛍光の測定は、実施例3と同様に実施した。
【0077】
(ThT溶液のろ過精製)
10mM ThT溶液1mLを、シリンジ(テルモ製)及びフィルターエキクロディスク25(材質:ポリスルホン,ポアサイズ:0.2μm,フィルター径:25mm,島津社製)を用いてろ過してろ液を回収した。
【0078】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図5に示す。
図5に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、ポリスルホンで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0079】
〔実施例6〕
実施例6は、無極性高分子多孔質体として、ポリエーテルスルホンで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。ThT溶液の調製、及び蛍光の測定は、実施例3と同様に実施した。
【0080】
(ThT溶液のろ過精製)
10mM ThT溶液1mLを、シリンジ(テルモ製)及びシリンジフィルターアズフィル(材質:ポリエーテルスルホン,ポアサイズ:0.45μm,フィルター径:25mm,アズワン社製)を用いてろ過してろ液を回収した。
【0081】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図6に示す。
図6に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、ポリエーテルスルホンで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0082】
〔実施例7〕
実施例7は、無極性高分子多孔質体として、ポリテトラフルオロエチレンで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。
【0083】
(ThT溶液の調製)
ThT(ウルトラピュアグレード,AAT Bioquest Inc.社製。本明細書における粗ThTに該当する。)を蒸留水に溶解し、100μM ThT溶液を得た。
【0084】
(ThT溶液のろ過精製)
100μM ThT溶液2mLを、シリンジ(テルモ製)及びシリンジフィルターアズフィル(材質:親水性ポリテトラフルオロエチレン,ポアサイズ:0.45μm,フィルター径:25mm,アズワン社製)を用いてろ過してろ液を回収した。
【0085】
(蛍光の測定)
得られたろ液100μLに蒸留水900μLを添加して希釈し、マイクロセル(光路長:5mm)に充填した。試料を充填したマイクロセルを蛍光分光光度計RF−5000(株式会社島津製作所製)に設置し、励起波長350nmにて蛍光スペクトルを測定した。
【0086】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図7に示す。
図7に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、ポリテトラフルオロエチレンで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0087】
〔実施例8〕
実施例8は、無極性高分子多孔質体として、アクリル共重合体で形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。ThT溶液の調製、及び蛍光の測定は、実施例3と同様に実施した。
【0088】
(ThT溶液のろ過精製)
10mM ThT溶液0.25mLを、シリンジ(テルモ製)及びフィルターエキクロディスク13(材質:アクリル共重合体,ポアサイズ:0.2μm,フィルター径:13mm,島津社製)を用いてろ過してろ液を回収した。
【0089】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図8に示す。
図8に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、アクリル共重合体で形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0090】
〔実施例9〕
実施例9は、無極性高分子多孔質体として、ポリプロピレンで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。ThT溶液の調製、及び蛍光の測定は、実施例7と同様に実施した。
【0091】
(ThT溶液のろ過精製)
100μM ThT溶液1mLを、シリンジ(テルモ製)及びシリンジフィルタープラディスク25(材質:ポリプロピレン,ポアサイズ:0.45μm,フィルター径:25mm,GEヘルスケア社製)を用いてろ過してろ液を回収した。
【0092】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図9に示す。
図9に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、ポリプロピレンで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0093】
〔実施例10〕
実施例10は、無極性高分子多孔質体として、再生セルロースで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。ThT溶液の調製、及び蛍光の測定は、実施例7と同様に実施した。
【0094】
(ThT溶液のろ過精製)
100μM ThT溶液1mLを、シリンジ(テルモ製)及びフィルターミニザルトRC15(材質:再生セルロース,ポアサイズ:0.2μm,フィルター径:15mm,ミニザルト社製)を用いてろ過してろ液を回収した。
【0095】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図10に示す。
図10に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、再生セルロースで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。
【0096】
〔実施例11〕
実施例11は、無極性高分子多孔質体として、グラスファイバーで形成された膜形状の多孔質構造体(ろ過膜)を適用して、純粋なThTを精製した例である。ThT溶液の調製、及び蛍光の測定は、実施例7と同様に実施した。
【0097】
(ThT溶液のろ過精製)
100μM ThT溶液1mLを、シリンジ(テルモ製)及びシリンジフィルターGF(材質:グラスファイバー,ポアサイズ:1.0μm,フィルター径:25mm,アズワン社製)を用いてろ過してろ液を回収した。
【0098】
(評価)
蛍光スペクトル(励起波長350nm)の測定結果を
図11に示す。
図11に示されるように、ろ過により蛍光性不純物由来の波長440nm付近をピークとする蛍光が消失し、ThT本来の蛍光である波長480nm付近をピークとする蛍光のみが残っていることが分かる。すなわち、グラスファイバーで形成されたろ過膜を用いたろ過操作により、粗ThTに含まれる蛍光性不純物の除去が可能である。