(58)【調査した分野】(Int.Cl.,DB名)
前記コントローラは、前記作業機センサからのセンサ信号により前記作業機が積荷状態であるか否かにより、前記バケットの前記積荷状態を判定する、請求項1に記載の作業車両。
前記コントローラは、前記作業機が排土したことを示す排土信号を前記作業機センサから受け取り、かつ前記排土信号に基づいて前記積載重量を出力する、請求項1または請求項2に記載の作業車両。
車体と、前記車体に取り付けられかつバケットを有する作業機と、前記車体に取り付けられかつ前記車体を走行させる走行装置と、前記作業機の状態を検知する作業機センサと、前記走行装置の走行状態を検知する走行センサとを備える作業車両の積載重量算出方法であって、
前記バケットの積荷状態を判定する工程と、
前記積荷状態において前記走行装置が後進状態から前記後進状態以外の他の状態へ移行する操作をしたことを示す後進状態切換信号を前記走行センサから受け取ったときに、前記後進状態切換信号に基づいて前記バケットの積載重量を前記作業機センサの検出値から算出する工程とを備えた、作業車両の積載重量算出方法。
【発明を実施するための形態】
【0011】
以下、実施形態について図に基づいて説明する。以下の説明では、同一部品には、同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
【0012】
<全体構成>
実施形態においては、作業車両の一例としてホイールローダ1について説明する。
図1は、実施形態に係る作業車両の一例としてのホイールローダ1の側面図である。
【0013】
図1に示すように、ホイールローダ1は、車体フレーム2と、作業機3と、走行装置4と、キャブ5とを備えている。車体フレーム2、キャブ5などからホイールローダ1の車体が構成されている。ホイールローダ1の車体には、作業機3および走行装置4が取り付けられている。
【0014】
走行装置4は、ホイールローダ1の車体を走行させるものであり、走行輪4a、4bを含んでいる。ホイールローダ1は、走行輪4a、4bが回転駆動されることにより自走可能であり、作業機3を用いて所望の作業を行うことができる。
【0015】
車体フレーム2は、前フレーム11と後フレーム12とを含んでいる。前フレーム11と後フレーム12とは、互いに左右方向に揺動可能に取り付けられている。前フレーム11と後フレーム12とには、ステアリングシリンダ13が取り付けられている。ステアリングシリンダ13は、油圧シリンダである。ステアリングシリンダ13がステアリングポンプ(図示せず)からの作動油によって伸縮することによって、ホイールローダ1の進行方向が左右に変更される。
【0016】
本明細書中において、ホイールローダ1が直進走行する方向を、ホイールローダ1の前後方向という。ホイールローダ1の前後方向において、車体フレーム2に対して作業機3が配置されている側を前方向とし、前方向と反対側を後方向とする。ホイールローダ1の左右方向とは、平面視において前後方向と直交する方向である。前方向を見て左右方向の右側、左側が、それぞれ右方向、左方向である。ホイールローダ1の上下方向とは、前後方向および左右方向によって定められる平面に直交する方向である。上下方向において地面のある側が下側、空のある側が上側である。
【0017】
前後方向とは、キャブ5内の運転席に着座した作業者の前後方向である。左右方向とは、運転席に着座した作業者の左右方向である。左右方向とは、ホイールローダ1の車幅方向である。上下方向とは、運転席に着座した作業者の上下方向である。運転席に着座した作業者に正対する方向が前方向であり、運転席に着座した作業者の背後方向が後方向である。運転席に着座した作業者が正面に正対したときの右側、左側がそれぞれ右方向、左方向である。運転席に着座した作業者の足元側が下側、頭上側が上側である。
【0018】
前フレーム11には、作業機3および走行輪(前輪)4aが取り付けられている。作業機3は、ブーム14と、バケット6とを含んでいる。ブーム14の基端部は、ブームピン10によって前フレーム11に回転自在に取付けられている。バケット6は、ブーム14の先端に位置するバケットピン17によって、回転自在にブーム14に取付けられている。前フレーム11とブーム14とは、ブームシリンダ16により連結されている。ブームシリンダ16は、油圧シリンダである。ブームシリンダ16が作業機ポンプ25(
図2参照)からの作動油によって伸縮することによって、ブーム14が昇降する。ブームシリンダ16は、ブーム14を駆動する。
【0019】
作業機3は、ベルクランク18と、チルトシリンダ19と、チルトロッド15とをさらに含んでいる。ベルクランク18は、ブーム14のほぼ中央に位置する支持ピン18aによって、ブーム14に回転自在に支持されている。チルトシリンダ19は、ベルクランク18の基端部と前フレーム11とを連結している。チルトロッド15は、ベルクランク18の先端部とバケット6とを連結している。チルトシリンダ19は、油圧シリンダである。チルトシリンダ19が作業機ポンプ25(
図2参照)からの作動油によって伸縮することによって、バケット6が上下に回動する。チルトシリンダ19は、バケット6を駆動する。
【0020】
後フレーム12には、キャブ5および走行輪(後輪)4bが取り付けられている。キャブ5は、ブーム14の後方に配置されている。キャブ5は、車体フレーム2上に載置されている。キャブ5内には、オペレータが着座するシートおよび操作装置などが配置されている。
【0021】
図2は、ホイールローダ1の構成を示す概略ブロック図である。ホイールローダ1は、エンジン20、動力取り出し部22、動力伝達機構23、シリンダ駆動部24、第1角度検出器29、第2角度検出器48、および第1処理装置30(コントローラ)を備えている。
【0022】
エンジン20は、たとえばディーゼルエンジンである。エンジン20の出力は、エンジン20のシリンダ内に噴射する燃料量を調整することにより制御される。
【0023】
動力取り出し部22は、エンジン20の出力を、動力伝達機構23とシリンダ駆動部24とに振り分ける装置である。
【0024】
動力伝達機構23は、エンジン20からの駆動力を前輪4aおよび後輪4bに伝達する機構であり、たとえばトランスミッションである。動力伝達機構23は、入力軸21の回転を変速して出力軸23aに出力する。
【0025】
動力伝達機構23の出力軸23aには、ホイールローダ1の車速を検出するための車速検出部27が取り付けられている。ホイールローダ1は、車速検出部27を含んでいる。車速検出部27はたとえば車速センサである。車速検出部27は、出力軸23aの回転速度を検出することにより、走行装置4(
図1)によるホイールローダ1の移動速度を検出する。車速検出部27は、出力軸23aの回転速度を検出するための回転センサとして機能する。車速検出部27は、走行装置4による移動を検出する移動検出器として機能する。車速検出部27は、ホイールローダ1の車速を示す検出信号を第1処理装置30に出力する。
【0026】
シリンダ駆動部24は、作業機ポンプ25および制御弁26を有している。エンジン20の出力は、動力取り出し部22を介して、作業機ポンプ25に伝達される。作業機ポンプ25から吐出された作動油は、制御弁26を介して、ブームシリンダ16およびチルトシリンダ19に供給される。
【0027】
ブームシリンダ16には、ブームシリンダ16の油室内の油圧を検出するための第1油圧検出器28a、28bが取り付けられている。ホイールローダ1は、第1油圧検出器28a、28bを含んでいる。第1油圧検出器28a、28bは、たとえばヘッド圧検出用の圧力センサ28aと、ボトム圧検出用の圧力センサ28bとを有している。
【0028】
圧力センサ28aは、ブームシリンダ16のヘッド側に取り付けられている。圧力センサ28aは、ブームシリンダ16のシリンダヘッド側油室内の作動油の圧力(ヘッド圧)を検出することができる。圧力センサ28aは、ブームシリンダ16のヘッド圧を示す検出信号を第1処理装置30に出力する。
【0029】
圧力センサ28bは、ブームシリンダ16のボトム側に取り付けられている。圧力センサ28bは、ブームシリンダ16のシリンダボトム側油室内の作動油の圧力(ボトム圧)を検出することができる。圧力センサ28bは、ブームシリンダ16のボトム圧を示す検出信号を第1処理装置30に出力する。
【0030】
第1角度検出器29は、たとえば、ブームピン10に取り付けられたポテンショメータである。第1角度検出器29は、ブーム14の持ち上がり角度(チルト角度)を表すブーム角度を検出する。第1角度検出器29は、ブーム角度を示す検出信号を第1処理装置30に出力する。
【0031】
具体的には、
図1に示すように、ブーム角度θは、ブームピン10の中心から前方に延びる水平線に対する、ブームピン10の中心からバケットピン17の中心に向かう方向に延びる直線LBの角度である。直線LBが水平である場合をブーム角度θ=0°と定義する。直線LBが水平線よりも上方にある場合にブーム角度θを正とする。直線LBが水平線よりも下方にある場合にブーム角度θを負とする。
【0032】
なお第1角度検出器29は、ブームシリンダ16に配置されたストロークセンサであってもよい。
【0033】
第2角度検出器48は、たとえば、支持ピン18aに取り付けられたポテンショメータである。第2角度検出器48は、ブーム14に対するベルクランク18の角度(ベルクランク角度)を検出することにより、ブーム14に対するバケット6のチルト角度を表すバケット角度を検出する。第2角度検出器48は、バケット角度を示す検出信号を第1処理装置30に出力する。バケット角度はたとえば、バケットピン17の中心とバケット6の刃先6aとを結ぶ直線と、直線LBとの成す角度である。
【0034】
なお第2角度検出器48は、チルトシリンダ19に配置されたストロークセンサであってもよい。
【0035】
図2に示されるように、ホイールローダ1は、キャブ5内に、オペレータによって操作される操作装置を備えている。操作装置は、前後進切換装置49、アクセル操作装置51、ブーム操作装置52、変速操作装置53、バケット操作装置54、およびブレーキ操作装置58を含んでいる。
【0036】
前後進切換装置49は、前後進切換操作部材49aと、前後進切換検出センサ49bとを含んでいる。前後進切換操作部材49aは、車両の前進および後進の切り換えを指示するためにオペレータによって操作される。前後進切換操作部材49aは、前進(F)、中立(N)、および後進(R)の各位置に切り換えられることができる。前後進切換検出センサ49bは、前後進切換操作部材49aの位置を検出する。前後進切換検出センサ49bは、前後進切換操作部材49aの位置によって表される前後進指令の検出信号(前進、中立、後進)を第1処理装置30に出力する。前後進切換装置49は、前進(F)、中立(N)および後進(R)を切り換え可能なFNR切換レバーを含む。
【0037】
アクセル操作装置51は、アクセル操作部材51aと、アクセル操作検出部51bとを含んでいる。アクセル操作部材51aは、エンジン20の目標回転速度を設定するためにオペレータによって操作される。アクセル操作検出部51bは、アクセル操作部材51aの操作量(アクセル操作量)を検出する。アクセル操作検出部51bは、アクセル操作量を示す検出信号を第1処理装置30に出力する。
【0038】
ブレーキ操作装置58は、ブレーキ操作部材58aと、ブレーキ操作検出部58bとを含んでいる。ブレーキ操作部材58aは、ホイールローダ1の減速力を操作するために、オペレータによって操作される。ブレーキ操作検出部58bは、ブレーキ操作部材58aの操作量(ブレーキ操作量)を検出する。ブレーキ操作検出部58bは、ブレーキ操作量を示す検出信号を第1処理装置30に出力する。ブレーキ操作量としてブレーキオイルの圧力が用いられてもよい。
【0039】
ブーム操作装置52は、ブーム操作部材52aと、ブーム操作検出部52bとを含んでいる。ブーム操作部材52aは、ブーム14を上げ動作または下げ動作させるためにオペレータによって操作される。ブーム操作検出部52bは、ブーム操作部材52aの位置を検出する。ブーム操作検出部52bは、ブーム操作部材52aの位置によって表されるブーム14の上げ指令または下げ指令の検出信号を、第1処理装置30に出力する。
【0040】
変速操作装置53は、変速操作部材53aと、変速操作検出部53bとを含んでいる。変速操作部材53aは、動力伝達機構23における入力軸21から出力軸23aへの変速を制御するためにオペレータによって操作される。変速操作検出部53bは、変速操作部材53aの位置を検出する。変速操作検出部53bは、変速操作部材53aの位置によって表される変速の検出指令を、第1処理装置30に出力する。
【0041】
バケット操作装置54は、バケット操作部材54aと、バケット操作検出部54bとを含んでいる。バケット操作部材54aは、バケット6を掘削動作またはダンプ動作させるためにオペレータによって操作される。バケット操作検出部54bは、バケット操作部材54aの位置を検出する。バケット操作検出部54bは、バケット操作部材54aの位置によって表されるバケット6のチルトバック方向またはダンプ方向への動作指令の検出信号を、第1処理装置30に出力する。
【0042】
第1角度検出器29、第2角度検出器48、第1油圧検出器28a、28b、ブーム操作検出部52bおよびバケット操作検出部54bは、作業機センサに含まれる。作業機センサは、作業機3の状態を検知するものである。また作業機センサの検出値から、バケット6内の積載重量Wを算出することができる。この作業機センサは、圧力センサまたはひずみセンサの少なくとも一方を含む。作業機センサは作業機位置センサを含む。作業機位置センサは、たとえば第1角度検出器29、第2角度検出器48、ブーム操作検出部52bおよびバケット操作検出部54bである。
【0043】
また前後進切換装置49、車速検出部27、アクセル操作検出部51bおよびブレーキ操作検出部58bは、走行センサに含まれる。走行センサは、走行装置4の走行状態を検知するものである。
【0044】
第1処理装置30は、RAM(Random Access Memory)、ROM(Read Only Memory)などの記憶装置と、CPU(Central Processing Unit)などの演算装置を含むマイクロコンピュータで構成されている。第1処理装置30は、エンジン20、作業機3(ブームシリンダ16、チルトシリンダ19など)、動力伝達機構23などの動作を制御する、ホイールローダ1のコントローラの機能の一部として実現されてもよい。第1処理装置30には、前後進切換装置49によって検出される前後進指令の信号と、車速検出部27によって検出されるホイールローダ1の車速の信号と、第1角度検出器29によって検出されるブーム角度の信号と、圧力センサ28aによって検出されるブームシリンダ16のヘッド圧の信号と、圧力センサ28bによって検出されるブームシリンダ16のボトム圧の信号とが主に入力される。第1処理装置30は、入力された上記の信号に基づいて、バケット6の荷の運搬作業情報を積算する。運搬作業情報は、たとえばバケット6内の荷の積載重量を含む。
【0045】
ホイールローダ1は、表示部40および出力部45をさらに有している。表示部40は、キャブ5に配置された、オペレータが視認するモニタである。表示部40は、第1処理装置30によって計数された運搬作業情報を表示する。
【0046】
出力部45は、ホイールローダ1の外部に設置されたサーバ(第2処理装置70)に、運搬作業情報を出力する。出力部45は、たとえば、無線通信などの通信機能を有し、第2処理装置70の入力部71と通信してもよい。または、出力部45は、たとえば、第2処理装置70の入力部71がアクセス可能な携帯記憶装置(メモリカードなど)のインタフェースであってもよい。第2処理装置70は、モニタ機能にあたる表示部75を有しており、出力部45から出力された運搬作業情報を表示することができる。
【0047】
<第1処理装置30内の機能ブロック>
図2に示される第1処理装置30は、バケット6の積荷状態を判定し、かつ積荷状態において走行装置4が後進状態から後進状態以外の他の状態へ移行する操作をしたことを示す後進状態切換信号を走行センサから受け取ったときに、後進状態切換信号に基づいてバケット6の積載重量を作業機センサの検出値から算出する。以下、上記機能を有する第1処理装置30の機能ブロックについて説明する。
【0048】
図3は、第1処理装置内の機能ブロックを示す図である。
図3に示されるように、第1処理装置30は、たとえば積荷状態判定部30aと、後進切換検知部30bと、積載重量算出部30cと、排土検知部30dと、積載重量出力部30eと、積載重量積算部30fと、積算値出力部30gと、ブーム角検知部30hと、差圧検知部30iと、記憶部30jとを主に有している。
【0049】
積荷状態判定部30aは、バケット6が積荷状態か空荷状態かを判定する。積荷状態判定部30aは、第1角度検出器29から出力されたブーム角度を示す検出信号と、第2角度検出器48から出力されたバケット角度を示す検出信号とに基づいて作業機3が掘削動作を行ったのか、かき上げ動作を行ったのかを判定する。掘削動作を行った場合には、バケット6は内部に土砂などの荷(掘削対象物)を積んだ積荷状態となっている。一方、かき上げ動作を行った場合には、バケット6は内部が空の空荷状態となっている。積荷状態判定部30aによる判定信号は、後進切換検知部30bに出力される。
【0050】
後進切換検知部30bは、前後進切換装置49から出力された前後進指令の検出信号(前進、中立、後進)と、車速検出部27から出力されたホイールローダ1の車速を示す検出信号との少なくとも1つの信号に基づいて走行装置4の走行状態を検知する。後進切換検知部30bは、積荷状態判定部30aからの判定信号を受けた後に、走行装置4が後進状態から前進状態に切り換えられたのか、または後進状態から中立状態に切り換えられたのかを検知する。後進切換検知部30bの走行状態の検知信号は、積載重量算出部30cに出力される。
【0051】
積載重量算出部30cは、ブーム角検知部30hから出力されたブーム角度信号と、差圧検知部30iから出力された差圧信号とに基づいてバケット6内の積載重量Wを算出する。
【0052】
ブーム角検知部30hは、第1角度検出器29から出力されたブーム角度を示す検出信号を受けてブーム角度を算出し、その算出したブーム角度の信号を積載重量算出部30cへ出力する。
【0053】
差圧検知部30iは、圧力センサ28aから出力されたブームシリンダ16のヘッド圧を示す検出信号と、圧力センサ28bから出力されたブームシリンダ16のボトム圧を示す検出信号とに基づいて、ブームシリンダ16のヘッド圧とボトム圧との差圧を算出し、その算出した差圧の信号を積載重量算出部30cへ出力する。
【0054】
積載重量算出部30cにおける積載重量Wの算出方法は、以下に詳細に説明される。積載重量算出部30cにて算出されたバケット6内の積載重量Wの信号は、排土検知部30dに出力される。
【0055】
排土検知部30dは、積載重量算出部30cからの積載重量信号を受けた後、バケット6の荷(土砂など)がバケット6内から排出されたか否かを判定する。排土検知部30dは、第1角度検出器29から出力されたブーム角度を示す検出信号と、第2角度検出器48から出力されたバケット角度を示す検出信号とに基づいて作業機3が排土動作を行ったか否かを判定する。排土動作を行った場合には、バケット6は内部が空の空荷状態となっている。一方、排土動作を行っていない場合には、バケット6は内部に土砂などの荷を積んだ積荷状態を維持している。排土検知部30dによる判定信号は、積載重量出力部30eに出力される。
【0056】
積載重量出力部30eは、排土検知部30dからの判定信号を受けて、積載重量算出部30cで算出された積載重量信号を積載重量積算部30f、記憶部30jおよび表示部40に出力する。記憶部30jは、積載重量出力部30eから出力された積載重量Wを記憶する。表示部40は、積載重量Wを画面などに表示する。また積載重量出力部30eは、積載重量信号を出力部45(
図2)に出力してもよい。出力部45に出力された積載重量信号は、第2処理装置70に出力され、第2処理装置70の表示部75に表示されてもよい。
【0057】
積載重量積算部30fは、積載重量出力部30eからの積載重量信号を受けて、記憶部30jに記憶されたこれまでの積載重量に今回の積載重量を積算する。積載重量積算部30fは、積算した積載重量の積算値の信号を積算値出力部30gに出力する。
【0058】
積算値出力部30gは、積載重量積算部30fからの積算値信号を受けて、積載重量積算部30fで積算された積算値信号を記憶部30jおよび表示部40に出力する。記憶部30jは、積算値出力部30gから出力された積載重量Wの積算値を記憶する。表示部40は、積載重量Wの積算値を画面などに表示する。また積算値出力部30gは、積算値信号を出力部45(
図2)に出力してもよい。出力部45に出力された積算値信号は、第2処理装置70に出力され、第2処理装置70の表示部75にて表示されてもよい。
【0059】
<瞬時荷重Wの算出方法>
次に、瞬時荷重Wの算出方法について、まず概略を説明する。
【0060】
図4に、瞬時荷重Wごとのブーム角θと差圧Pτとの関係の一例を示す。
図4において、カーブA、B、Cはそれぞれ、バケット6が空、1/2積載、満杯積載の場合を示している。予め計測された2個以上の瞬時荷重Wにおけるブーム角θと差圧Pτとの関係のグラフに基づき、
図5に示すようにブーム角θごとの瞬時荷重Wと差圧Pτとの関係のグラフを求めることができる。従って、ブーム角θと差圧Pτとが判明すると、各差圧サンプリング時における瞬時荷重WNを求めることができる。
【0061】
たとえば、
図4に示されるように、ある時刻mkにおいてブーム角θ=θk、差圧Pτ=Pτkであったとすると、
図5から瞬時荷重WNを求めることが可能となる。すなわち、
図5は、ブーム角θ=θkにおける、差圧と瞬時荷重Wとの関係を示すグラフである。ここで、PτAとは、ブーム角θ=θkにおける、バケット6が空の場合の差圧である。WAとは、ブーム角θ=θkにおける、空荷の瞬時荷重である。また、PτCとは、ブーム角θ=θkにおける、バケット6が満杯積載の場合の差圧である。WCとは、ブーム角θ=θkにおける、満杯積載の瞬時荷重である。PτkがPτAとPτCとの間に位置する場合、線形補間を行うことにより、瞬時荷重WNを決定する。あるいは、このような関係を予め記憶した数値テーブルに基づいて、瞬時荷重WNを求めることも可能である。
【0062】
<掘削積込動作とその判定>
本実施形態のホイールローダ1は、土砂などの掘削対象物をバケット6に掬い取る掘削動作と、バケット6内の荷(掘削対象物100)をダンプトラック200などの運搬機械に積み込む積込動作とを実行する。
図6は、実施形態に基づくホイールローダ1の掘削動作および積込動作を構成する一連の工程の例を示す模式図である。ホイールローダ1は、次のような複数の工程を順次に行うことを繰り返して、掘削対象物100を掘削し、ダンプトラック200などの運搬機械に掘削対象物100を積み込んでいる。
【0063】
図6(A)に示されるように、ホイールローダ1は、掘削対象物100に向かって前進する。この空荷前進工程において、オペレータは、ブームシリンダ16およびチルトシリンダ19を操作して、作業機3をブーム14の先端が低い位置にありバケット6が水平を向いた掘削姿勢にして、ホイールローダ1を掘削対象物100に向けて前進させる。
【0064】
図6(B)に示されるように、バケット6の刃先6aが掘削対象物100に食い込むまで、オペレータはホイールローダ1を前進させる。この掘削(突込み)工程において、バケット6の刃先6aが掘削対象物100に食い込む。
【0065】
図6(C)に示されるように、その後オペレータは、ブームシリンダ16を操作してバケット6を上昇させるとともに、チルトシリンダ19を操作してバケット6をチルトバックさせる。この掘削(掬込み)工程により、図中の曲線矢印のようにバケット軌跡Lに沿ってバケット6が上昇し、バケット6内に掘削対象物100が掬い込まれる。これにより、掘削対象物100を掬い取る掘削作業が実行される。
【0066】
掘削対象物100の種類によって、バケット6を1回チルトバックさせるだけで掬込み工程が完了する場合がある。または、掬込み工程において、バケット6をチルトバックさせ、中立にし、再びチルトバックさせるという動作を繰り返す場合もある。
【0067】
図6(D)に示されるように、バケット6に掘削対象物100が掬い込まれた後、オペレータは、積荷後進工程にて、ホイールローダ1を後進させる。オペレータは、後退しながらブーム上げをしてもよく、
図6(E)にて前進しながらブーム上げをしてもよい。
【0068】
図6(E)に示されるように、オペレータは、バケット6を上昇させた状態を維持しながら、またはバケット6を上昇させながら、ホイールローダ1を前進させてダンプトラック200に接近させる。この積荷前進工程により、バケット6はダンプトラック200の荷台のほぼ真上に位置する。
【0069】
図6(F)に示されるように、オペレータは、所定位置でバケット6をダンプして、バケット6内の荷(掘削対象物)をダンプトラック200の荷台上に積み込む。この工程は、いわゆる排土工程である。この後、オペレータは、ホイールローダ1を後進させながらブーム14を下げ、バケット6を掘削姿勢に戻す。
【0070】
以上が、掘削積込作業の1サイクルをなす典型的な工程である。
図7は、ホイールローダ1の掘削作業および積込作業を構成する一連の工程の判定方法を示すテーブルである。
【0071】
図7に示したテーブルにおいて、一番上の「作業工程」の行には、
図6(A)〜
図6(F)に示した作業工程の名称が示されている。その下の「前後進切換レバー」、「作業機操作」および「作業機シリンダ圧力」の行には、現在の作業工程がどの工程であるかを判定するために第1処理装置30(
図2、
図3)が使用する、各種の判断条件が示されている。
【0072】
より詳細には、「前後進切換レバー」の行には、前後進切換レバーについての判定条件が丸印で示されている。
【0073】
「作業機操作」の行には、作業機3に対するオペレータの操作についての判定条件が丸印で示されている。より詳細には、「ブーム」の行にはブーム14に対する操作に関する判定条件が示されており、「バケット」の行にはバケット6に対する操作に関する判定条件が示されている。
【0074】
「作業機シリンダ圧力」の行には、作業機3のシリンダの現在の油圧、たとえばブームシリンダ16のシリンダボトム室の油圧、についての判定条件が示されている。ここで、油圧に関して、4つの基準値A、B、C、Pが予め設定され、これら基準値A、B、C、Pにより複数の圧力範囲(基準値P未満の範囲、基準値AからCの範囲、基準値BからPの範囲、基準値C未満の範囲)が定義され、これらの圧力範囲が上記判断条件として設定されている。4つの基準値A、B、C、Pの大きさは、A>B>C>Pとなっている。
【0075】
以上のような各作業工程ごとの「前後進切換レバー」、「ブーム」、「バケット」「作業機シリンダ圧力」の判定条件の組み合わせを用いることにより、第1処理装置30は、現在行われている工程がどの工程なのかが判別可能である。
【0076】
図7に示した制御を行う場合の第1処理装置30の具体的動作を以下に説明する。
図7に示した各作業工程に対応する「前後進切換レバー」、「ブーム」、「バケット」および「作業機シリンダ圧力」の判定条件の組み合わせが、記憶部30j(
図2)に予め格納されている。第1処理装置30は、前後進切換装置49からの信号に基づいて、現在選択されている前後進切換レバー(F、N、R)を把握する。第1処理装置30は、ブーム操作検出部52bからの信号に基づいて、ブーム14に対する現在の操作の種類(下げ、中立または上げ)を把握する。第1処理装置30は、バケット操作検出部54bからの信号に基づいて、バケット6に対する現在の操作の種類(ダンプ、中立またはチルトバック)を把握する。さらに、第1処理装置30は、
図2に示した圧力センサ28bからの信号に基づいて、ブームシリンダ16のシリンダボトム室の現在の油圧を把握する。
【0077】
第1処理装置30は、把握された現在の前後進切換レバー、ブーム操作種類、バケット操作種類およびリフトシリンダ油圧の組み合わせ(つまり現在の作業状態)を、予め記憶してある各作業工程に対応する「前後進切換レバー」、「ブーム」、「バケット」および「作業機シリンダ圧力」の判定条件の組み合わせと対照する。この対照する処理の結果として、第1処理装置30は、現在の作業状態に最も良く一致する判定条件の組み合わせがどの作業工程に対応するのかを判定する。
【0078】
ここで、
図6に示す掘削積込動作に対応する判定条件の組み合わせは、具体的には次のとおりである。
【0079】
空荷前進工程においては、前後進切換レバーがFであり、ブーム操作とバケット操作とがともに中立であり、作業機シリンダ圧力が基準値P未満である。
【0080】
掘削(突込み)工程においては、前後進切換レバーがF、ブーム操作とバケット操作とが共に中立、作業機シリンダ圧力が基準値AからCの範囲である。
【0081】
掘削(掬込み)工程においては、前後進切換レバーがFまたはR、ブーム操作が上げまたは中立、バケット操作がチルトバック、作業機シリンダ圧力が基準値AからCの範囲である。バケット操作については、チルトバックと中立とが交互に繰り返される判定条件をさらに追加してもよい。掘削対象物の状態によっては、バケット6をチルトバックさせ、中立にし、再びチルトバックさせるという動作を繰り返す場合があるからである。
【0082】
積荷後進工程においては、前後進切換レバーがR、ブーム操作が中立または上げ、バケット操作が中立、作業機シリンダ圧力が基準値BからPの範囲である。
【0083】
積荷前進工程においては、前後進切換レバーがF、ブーム操作が上げまたは中立、バケット操作が中立、作業機シリンダ圧力が基準値BからPの範囲である。
【0084】
排土工程においては、前後進切換レバーがF、ブーム操作が上げまたは中立、バケット操作がダンプ、作業機シリンダ圧力が基準値BからPの範囲である。
【0085】
後進・ブーム下げ工程においては、前後進切換レバーがR、ブーム操作が下げ、バケット操作がチルトバック、作業機シリンダ圧力が基準値P未満である。
【0086】
<積載重量Wの計測フロー>
本実施形態のホイールローダ1は、上記の掘削積込動作において、バケット6内の積載重量Wを計測し、かつ積載重量Wの積算値を算出する。
【0087】
図8は、上記掘削積込動作における積載重量の計測方法を含む作業車両の制御方法を示すフロー図である。
【0088】
図6、
図7に示されるように、掘削積込動作においてホイールローダ1は掘削対象物に向けて前進する。このホイールローダ1の前進は、
図6(A)、(B)に示されるように、掘削対象物100に向かうように行われ、かつバケット6の刃先6aが掘削対象物100に食い込むまで行われる。
【0089】
この後、
図6(C)で示されるように、ブーム14が上昇されるとともに、バケット6がチルトバックされる。これにより、バケット6内に掘削対象物100が掬い込まれる。これにより掘削が行われる。
【0090】
ここで、
図8に示されるように、掘削が行われたか否かが判定される(ステップS1)。
【0091】
図8に示されるように、この後、積荷後進判定が行われる(ステップS2)。具体的には、バケット6内に掘削対象物100が掬い込まれた後であってホイールローダ1が後進する前に、バケット6がダンプされた場合には、かき上げ動作などが行われ、ホイールローダ1が空荷後進であると判定される。一方、バケット6内に掘削対象物100が掬い込まれた後に、バケット6がダンプされずにホイールローダ1が後進する場合には、バケット積込動作が行われ、バケット6が積荷であると判定される。ここで「積荷」とはバケット6内に荷が入っている状態を指し、「空荷」とはバケット6内に荷が入っていない状態を指す。
【0092】
この積荷後進判定は、
図3に示される第1処理装置30の積荷状態判定部30aおよび後進切換検知部30bにて行われる。バケット6がダンプされたか否かの判定(積荷状態か否かの判定)は、作業機センサである第2角度検出器48から出力されるバケット角度を示す検出信号(センサ信号)に基づいて行われる。この際、バケット6がダンプされていれば、かき上げ動作などが行われたと判定される。またバケット6がダンプされずにホイールローダ1が後進していれば、バケット積荷後進動作が行われたと判定される。
【0093】
図8に示されるように、かき上げ動作などのダンプ操作が行われたと判定された場合には、積載重量Wの計測フローは終了する。一方、バケット積込動作が行われたと判定された場合には、ホイールローダ1は、バケット6が積荷状態のまま後進する。この際、
図6(D)に示されるように、ホイールローダ1は後進する。
【0094】
図8に示されるように、ホイールローダ1が所定位置まで後進した時点で、オペレータがホイールローダ1を後進状態から、後進以外の他の状態へ移行させたか否かが判定される(ステップS3)。後進以外の他の状態とは、前進または中立(停止)の状態である。後進状態から後進以外の他の状態への移行の検知は、
図3に示される後進切換検知部30bにより行われる。
【0095】
後進状態から後進以外の他の状態への移行の検知は、たとえばオペレータが
図2に示す前後進切換装置49の前後進切換操作部材49aを後進(R)の位置から前進(F)の位置または中立(N)の位置へ操作したか否かにより行われる。後進状態が他の状態へ切り換えられた場合、
図3に示される前後進切換装置49(前後進切換検出センサ49b)から後進状態切換信号(前進または中立を示す信号)が後進切換検知部30bに出力される。このため後進切換検知部30bはこの後進状態切換信号に基づいて後進状態が他の状態(前進または停止)へ切り換えられたことを検知することができる。
【0096】
また後進状態から後進以外の他の状態への移行の検知は、たとえば
図2に示す車速検出部27により検知されたホイールローダ1の移動速度の検知により行われてもよい。後進状態が他の状態へ切り換えられた場合、車速検出部27により検知されるホイールローダ1の移動速度は後進方向の速度から前進方向の速度になるか、または0になる。このため
図3に示される後進切換検知部30bは、車速検出部27から出力される前進または停止を示すホイールローダ1の移動速度の信号(後進状態切換信号)に基づいて後進状態が他の状態(前進または停止)へ切り換えられたことを検知することができる。
【0097】
図8に示されるように、後進状態から後進以外の他の状態へ移行されていないと判定された場合には、ホイールローダ1は引き続き後進する。
【0098】
図8に示されるように、後進状態から後進以外の他の状態へ移行されたと判定された場合には、ホイールローダ1が前進または停止するとともに、バケット6内の積載重量Wが算出される(ステップS4)。積載重量Wの算出は、
図3に示される積載重量算出部30cにより行われる。積載重量算出部30cは、上記のとおり、第1角度検出器29の検出値に基づいてブーム角検知部30hから出力されたブーム角度信号と、第1油圧検出器28a、28bの検出値に基づいて差圧検知部30iから出力された差圧信号とに基づいてバケット6内の積載重量Wを算出する。
【0099】
上記のとおり、
図8に示す上記ステップS3およびS4により、
図3に示す第1処理装置30は、後進状態から後進状態以外の他の状態へ移行する操作をしたことを示す後進状態切換信号を走行センサ(前後進切換検出センサ49b、車速検出部27)から受け取ったときに、その後進状態切換信号に基づいてバケット6の積載重量Wを作業機センサ(第1油圧検出器28a、28b、第1角度検出器29)の検出値から算出することができる。
【0100】
図8に示されるように、ホイールローダ1が前進または停止してから所定時間経過後に、作業機3が排土動作を行ったか否かが検知される(ステップS5)。この作業機3の排土動作は、
図6(F)に示されるように、バケット6をダンプさせることにより行われる。バケット6がダンプされたか否かの判定は、
図2に示される第2角度検出器48から出力されるバケット角度を示す検出信号に基づいて行われる。このため
図3に示されるように、第2角度検出器48から出力されるバケット角度の信号に基づいて、排土検知部30dが排土されたか否かを検知することができる。
【0101】
図8に示されるように、作業機3の排土動作が検知されない場合には、排土動作の検知が引き続き行われる。一方、作業機3の排土動作が検知された場合には、バケット6内の荷の積載重量Wが出力される(ステップS6)。この積載重量Wの出力は、
図3に示される第1処理装置30の積載重量出力部30eが積載重量Wの信号を記憶部30jまたは表示部40に出力することにより行われる。これにより積載重量Wの信号が記憶部30jに記憶され、また表示部40に表示され、また第2処理装置70の表示部75にて表示される。
【0102】
上記のとおり、
図8に示すステップS5およびS6により、
図3に示されるように第2角度検出器48(作業機センサ)から出力されるバケット角度を示す検出信号が排土を示す信号(排土信号)である場合に、その排土信号に基づいて第1処理装置30の積載重量出力部30eが積載重量Wを出力する。
【0103】
図8に示されるように、出力された積載重量Wに基づいて、積載重量Wが積算される(ステップS7)。積載重量Wの積算は、
図3に示されるように第1処理装置30の積載重量積算部30fが記憶部30jに記憶された前回までの積載重量に今回の積載重量を自動で積算する(つまり複数の積載重量を自動で積算する)ことにより行われる。積算された積算値は、積載重量積算部30fから出力され、積算値出力部30gへ入力される。積算された積算値は、積算値出力部30gにより記憶部30jに記憶され、表示部40に表示され、また第2処理装置70の表示部75にて表示される。
【0104】
以上のように、本実施形態の掘削積込動作における積載重量の計測および積算を含む作業車両の制御は行われる。
【0105】
<ブーム角度、ブームボトム圧、瞬時荷重および積載重量の変化>
本発明者は、本実施形態に係るホイールローダ1の掘削積込の一連の動作におけるブーム角度、ブームシリンダ差圧、瞬時荷重および積載重量の変化について調べた。その結果を、
図9に示す。
【0106】
図9の結果から、ブーム角度、ブームシリンダ差圧および瞬時荷重の各々は、掘削時および排土時には大きく変化することが分かる。またブーム角度、ブームシリンダ差圧および瞬時荷重の各々は、積荷後進時の前半においても大きく変化することが分かる。これに対して積荷後進時の後半および積荷前進時の各々においては、ブーム角度、ブームシリンダ差圧および瞬時荷重の各々の経時的な変化は小さく抑えられている。特に積荷後進から積荷前進に切り換わる直前には、ブームシリンダ差圧および瞬時荷重の各々の経時的な変化が極めて小さく、ブームシリンダ差圧および瞬時荷重の各々が安定していることが分かる。
【0107】
<実施形態の効果>
図9に示されるように、積荷状態において後進状態(積荷後進)から前進状態(積荷前進)に切り換わる前後にはブームシリンダ差圧および瞬時荷重の各々の経時的な変化が極めて小さい。本実施形態においては、
図3および
図6に示されるように、積荷状態において走行装置4が後進状態から後進状態以外の他の状態へ移行する操作をしたことを示す後進状態切換信号に基づいてバケット6の積載重量が算出される。このように本実施形態では、後進状態から前進状態に切り換わる前後のタイミングで積載重量Wの計測が行われる。この後進状態から前進状態に切り換わる前後のタイミングでは、ブームシリンダ差圧および瞬時荷重の各々が安定しているため、積載重量Wを正確に計測することが可能となる。ゆえに、積載重量を計算するに当たり、前後進切換レバーが後進から前進に切り換えられた直後の瞬時荷重に基づき、積載重量が計算されるとよい。
【0108】
また、積載重量の計算は、前述の通り、前後進切換レバーが後進から前進に切り換えられたことに基づいて行われることに代えて、実際の車速が0km/hになったことに基づいて行われてもよいし、実際の車速が前進となったことに基づいて行われてもよい。または、これらの組合せによって行われてもよい。
【0109】
さらに、積載重量の計算は、車速が0km/hとなるまでに行われるのが好ましいが、車速が所定速度以下である間に行われてもよい。
【0110】
また、ホイールローダのバケットのサイズまたは積載する対象物の種類によって、ブームシリンダ差圧および瞬時荷重の経時的な変化の少ない時間領域が前後する場合がある。よって、積載重量を計算するタイミングが変更可能であってもよい。
【0111】
また本実施形態においては、
図3および
図6に示されるように、作業機センサからのセンサ信号により作業機がかき上げ状態であるか否かにより、バケット6の積荷状態が判定される。これによりバケット6が空荷状態で積載重量Wを積算することが防止でき、正確な積載重量Wの積算値を得ることが可能となる。
【0112】
また本実施形態においては、
図3および
図6に示されるように、作業機3が排土したことを示す排土信号を作業機センサ(たとえば第2角度検出器48)から受け取り、かつその排土信号に基づいて積載重量Wを出力する。これにより排土前に積載重量が出力されることを防止することができ、排土後の積載重量Wの積算値を正確に得ることが可能となる。
【0113】
また本実施形態においては、
図3および
図6に示されるように、第1処理装置30は、複数の積載重量Wを自動で積算する。これにより正確な積載重量Wの積算値を得ることが可能となる。
【0114】
また本実施形態においては、
図3および
図6に示されるように、作業機センサは、圧力センサまたはひずみセンサの少なくとも一方を含む。これによりセンサ選択の自由度が高くなる。
【0115】
また本実施形態においては、
図3および
図6に示されるように、作業機センサは、作業機位置センサをさらに含む。これにより作業機の位置を検出することも可能となる。
【0116】
また本実施形態においては、
図3および
図6に示されるように、走行センサは、前後進切換検出センサ49bおよび車速検出部27の少なくとも一方を含む。これにより前後進切換装置49における前後進切換操作部材49aの位置と、車速検出部27により検知される車速との少なくとも一方により、後進状態から後進以外の他の状態への移行の操作を検知することが可能となる。
【0117】
走行センサとしては、たとえばGPS(Global Positioning System)による車速検出、ステレオカメラを用いた車速検出、トランスミッション出力軸の回転センサを用いた車速検出、トランスミッション入力軸の回転センサとトランスミッション変速比とを用いた車速検出などが用いられてもよい。また走行センサは、上記に限定されず、要するに車体の進行方向が検出できるものであればよい。
【0118】
なお上記実施形態においては積載重量Wがブームシリンダ16のヘッド圧およびボトム圧の差圧とブーム角度とから算出される場合について説明したが、積載重量Wはブームシリンダ16のボトム圧とブーム角度とから算出されてもよい。この場合、
図2における圧力センサ28aは不要である。
【0119】
また上記実施の形態においては
図3に示す機能ブロック30a〜30jが第1処理装置30に含まれる場合について説明したが、これらの機能ブロック30a〜30jは
図2に示す第2処理装置70に含まれていてもよい。この場合、前後進切換装置49、車速検出部27、第1油圧検出器28a、28b、第1角度検出器29および第2角度検出器48の各々の検知信号は、
図2に示す出力部45を通じて第2処理装置70へ出力されてもよい。
【0120】
またブーム操作装置52とバケット操作装置54とは、互いに一体化された操向レバー(モノレバー)であってもよい。この場合、1つの操向レバーがブーム操作装置52とバケット操作装置54とを兼ねる。
【0121】
また
図2に示される第2処理装置70は、CAN(Controller Area Network)、LAN(Local Area Network)、無線LANなどにより出力部45との間で電気/電波信号の送受信を行ってもよい。
【0122】
また第2処理装置70は、第1処理装置30の入力情報を受け取って演算を行ってもよい。
【0123】
また上記実施の形態においては、上記の実施の形態の構成が適用される作業車両として
図1に示すホイールローダ1について説明したが、上記の実施の形態の構成が適用される作業車両はホイールローダ1以外に、バケット6を有しかつ前後進可能な作業車両であってもよく、たとえばバックホーローダーなどであってもよい。
【0124】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均などの意味および範囲内でのすべての変更が含まれることが意図される。