(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0029】
以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.実施の形態
2.変形例
3.その他
【0030】
<<1.実施の形態>>
<情報処理システムの構成例>
図1は、本技術を適用した情報処理システムの一実施の形態を示すブロック図である。
【0031】
情報処理システム10は、例えば、テレマティクス技術を用いて、車両の運転支援や自動車保険等のサービスを提供するシステムである。
【0032】
情報処理システム10は、ユーザ端末部11、車両12、及び、サーバ13を備える。ユーザ端末部11と車両12は、直接又はネットワーク14を介して通信を行う。サーバ13は、ユーザ端末部11及び車両12と、ネットワーク14を介して通信を行う。
【0033】
ユーザ端末部11は、情報処理システム10を利用するユーザが持つ1以上の情報処理端末からなる。例えば、ユーザ端末部11は、モバイル端末及びウエアラブル端末を含み得る。
【0034】
車両12は、情報処理システム10を利用するユーザが運転する車両である。
【0035】
サーバ13は、ネットワーク14を介して、ユーザ端末部11及び車両12と通信を行うことにより、情報処理システム10を利用するユーザに対して、運転支援や自動車保険等のサービスを提供する。
【0036】
なお、
図1では、図を分かりやすくするために、ユーザ端末部11、車両12、及び、サーバ13を1つずつ図示しているが、2つ以上設けることが可能である。例えば、ユーザ端末部11及び車両12は、情報処理システム10を利用するユーザ数とほぼ等しい数だけ設けられる。
【0037】
また、以下、説明を簡単にするために、ユーザ端末部11、車両12、及び、サーバ13がネットワーク14を介して通信を行う場合の「ネットワーク14を介して」の記載を省略する。
【0038】
<ユーザ端末部の構成例>
図2は、ユーザ端末部11の構成例を示すブロック図である。この例では、ユーザ端末部11は、モバイル端末51及びウエアラブル端末52を備える。
【0039】
モバイル端末51は、例えば、スマートフォン、携帯電話機、タブレット、ノート型のパーソナルコンピュータ、携帯型のゲーム機、携帯型の動画又は音楽再生装置等の携帯型の情報処理端末からなる。
【0040】
モバイル端末51は、GNSS(Global Navigation Satellite System)受信機61、慣性センサ62、環境センサ63、生体センサ64、入力部65、出力部66、制御部67、及び、通信部68を備える。
【0041】
GNSS受信機61は、測位衛星からの電波を受信することにより、モバイル端末51(を持つユーザ)の現在位置を測定し、測定した現在位置を示す位置データを制御部67に供給する。
【0042】
慣性センサ62は、モバイル端末51(を持つユーザ)に関する各種の慣性データを検出し、検出した慣性データを制御部67に供給する。慣性センサ62が検出する慣性データは、例えば、加速度、角速度等のうち1以上を含む。
【0043】
環境センサ63は、モバイル端末51(を持つユーザ)の周囲の各種の環境データを検出し、検出した環境データを制御部67に供給する。環境センサ63が検出する環境データは、例えば、地磁気、大気圧、二酸化炭素濃度等のうち1以上を含む。
【0044】
生体センサ64は、ユーザの各種の生体データを検出し、検出した生体データを制御部67に供給する。生体センサ64が検出する生体データは、例えば、心拍、発汗量、血圧、血中酸素濃度、筋電、体温、体組成、呼気中アルコール濃度、最大酸素摂取量、消費カロリー、声のトーン、会話のスピード等のうちの1以上を含む。
【0045】
入力部65は、モバイル端末51に各種のデータを入力するための入力装置を備える。例えば、入力部65は、ボタン、スイッチ、キー、タッチパネル、マイクロフォン等のうち1以上を備える。入力部65は、入力データを制御部67に供給する。
【0046】
出力部66は、各種の情報やデータを出力するための出力装置を備える。例えば、出力部66は、ディスプレイ、スピーカ、ブザー、バイブレータ等のうち1以上を備える。
【0047】
制御部67は、例えば、各種のプロセッサ等の制御装置を備える。制御部67は、GNSS受信機61、慣性センサ62、環境センサ63、生体センサ64、及び、入力部65から供給されるデータ、並びに、通信部68を介して外部から受信したデータ等に基づいて、モバイル端末51の各部の制御や各種の処理を行う。また、制御部67は、各種の処理により得られたデータを出力部66に供給したり、通信部68を介して他の機器に送信したりする。
【0048】
通信部68は、所定の通信方式により他の機器(例えば、車両12、サーバ13、ウエアラブル端末52等)との通信を行う。通信部68の通信方式には、無線又は有線の任意の方式を採用することができる。また、通信部68は、複数の通信方式に対応することも可能である。
【0049】
ウエアラブル端末52は、例えば、眼鏡型、腕時計型、ブレスレット型、ネックレス型、ネックバンド型、イヤフォン型、ヘッドセット型、及び、ヘッドマウント型等の任意の形態のウエアラブル端末からなる。
【0050】
ウエアラブル端末52は、生体センサ81、入力部82、出力部83、制御部84、及び、通信部85を備える。
【0051】
生体センサ81は、モバイル端末51の生体センサ64と同様に、ユーザの各種の生体データを検出し、検出した生体データを制御部84に供給する。なお、生体センサ81が検出する生体データの種類と、モバイル端末51の生体センサ64が検出する生体データの種類とは重複していても構わない。
【0052】
入力部82は、ウエアラブル端末52に各種のデータを入力するための入力装置を備える。例えば、入力部82は、ボタン、スイッチ、キー、タッチパネル、マイクロフォン等のうち1以上を備える。入力部82は、入力データを制御部67に供給する。
【0053】
出力部83は、各種の情報やデータを出力するための出力装置を備える。例えば、出力部83は、ディスプレイ、スピーカ、ブザー、バイブレータ等のうち1以上を備える。
【0054】
制御部84は、例えば、各種のプロセッサ等の制御装置を備える。制御部84は、生体センサ81及び入力部82から供給されるデータ、並びに、通信部85を介して外部から受信したデータ等に基づいて、ウエアラブル端末52の各部の制御や各種の処理を行う。また、制御部84は、各種の処理により得られたデータを出力部83に供給したり、通信部85を介して他の機器に送信したりする。
【0055】
通信部85は、所定の通信方式により他の機器(例えば、車両12、サーバ13、モバイル端末51等)との通信を行う。通信部85の通信方式には、無線又は有線の任意の方式を採用することができる。また、通信部85は、複数の通信方式に対応することも可能である。
【0056】
<車両の構成例>
図3は、車両12の一部の構成例を示すブロック図である。車両12は、車載システム101を備える。車載システム101は、車両データ取得部111、映像音声取得部112、入力部113、出力部114、制御部115、及び、通信部116を備える。
【0057】
車両データ取得部111は、例えば、各種のセンサ、通信機器、制御装置等を備える。車両データ取得部111は、車両12に関する車両データを取得し、取得した車両データを制御部115に供給する。車両データ取得部111が取得する車両データは、例えば、車速、トルク、ステアリング角度、ヨー角、ギアの状態、サイドブレーキの状態、アクセルペダルの踏み込み量、ブレーキペダルの踏み込み量、方向指示器の状態、ライトの状態、タイヤの回転角や回転速度、OBD(On-board Diagnostics)の診断結果を示すデータ(以下、OBDデータと称する)、並びに、ミリ波レーダ及びレーザレーダ等のセンサデータ等のうち1以上を含む。
【0058】
映像音声取得部112は、例えば、カメラ及びマイクロフォン等を備える。映像音声取得部112が備えるカメラは、通常のカメラ以外にも、例えば、ToF(Time Of Flight)カメラ、ステレオカメラ、赤外線カメラ等の特殊なカメラであってもよい。映像音声取得部112は、例えば、車両12の周囲及び内部の映像及び音声を取得し、取得した映像及び音声を示す映像データ及び音声データを制御部115に供給する。
【0059】
入力部113は、車両12に各種のデータを入力するための入力装置を備える。例えば、入力部113は、ボタン、スイッチ、キー、タッチパネル等のうち1以上を備える。入力部113は、入力データを制御部115に供給する。
【0060】
出力部114は、各種の情報やデータを出力するための出力装置を備える。例えば、出力部114は、ディスプレイ(例えば、ヘッドアップディスプレイ)、スピーカ、ブザー、バイブレータ、インストルメントパネル等のうち1以上を備える。
【0061】
制御部115は、例えば、ECU(Electronic Control Unit)等の制御装置を備える。制御部115は、車両データ取得部111、映像音声取得部112、及び、入力部113から供給されるデータ、並びに、通信部116を介して外部から受信したデータ等に基づいて、車両12の各部の制御や各種の処理を行う。また、制御部115は、各種の処理により得られたデータを出力部114に供給したり、通信部116を介して他の機器に送信したりする。
【0062】
通信部116は、所定の通信方式により他の機器(例えば、サーバ13、モバイル端末51、ウエアラブル端末52等)との通信を行う。通信部116の通信方式には、無線又は有線の任意の方式を採用することができる。また、通信部116は、複数の通信方式に対応することも可能である。
【0063】
<サーバの構成例>
図4は、サーバ13の構成例を示すブロック図である。サーバ13は、通信部151、状態推定部152、周辺データ取得部153、診断部154、運転挙動検出部155、リスク予測部156、損害予測部157、提示制御部158、評価部159、学習部160、保険料算定部161、及び、記憶部162を備える。
【0064】
通信部151は、所定の通信方式により、ネットワーク14を介して、他の機器(例えば、車両12、モバイル端末51、ウエアラブル端末52、他のサーバ(不図示)等)との通信を行う。通信部151の通信方式には、無線又は有線の任意の方式を採用することができる。また、通信部151は、複数の通信方式に対応することも可能である。
【0065】
状態推定部152は、通信部151を介して、ユーザ端末部11及び車両12からユーザの状態に関するデータを取得する。状態推定部152は、ユーザの状態に関するデータのログである状態データログの生成及び更新を行い、記憶部162に記憶させる。
【0066】
また、状態推定部152は、状態データログに基づいて、記憶部162に記憶されている状態推定モデルを用いて、ユーザの状態の推定処理を行う。ここで、状態推定モデルとは、ユーザの状態の推定に用いるモデルであり、例えば、ユーザ毎に生成される。状態推定部152は、ユーザの状態の推定結果の履歴である推定状態履歴の生成及び更新を行い、記憶部162に記憶させる。
【0067】
周辺データ取得部153は、通信部151を介して、ユーザ端末部11、車両12、及び、他のサーバ(不図示)から受信したデータに基づいて、車両12の周辺の状態を示す周辺データを取得する。周辺データ取得部153は、取得した周辺データを診断部154及びリスク予測部156に供給する。
【0068】
診断部154は、ユーザの推定状態履歴、運転挙動履歴、及び、運転診断モデルを記憶部162から取得する。ここで、運転挙動履歴とは、運転中のユーザ又は車両12の挙動である運転挙動の検出結果の履歴であり、例えば、ユーザ毎に生成される。また、運転診断モデルとは、ユーザの車両の運転に対する適性を診断する運転診断に用いるモデルであり、例えば、ユーザ毎に生成される。診断部154は、取得した履歴に基づいて、運転診断モデルを用いて、ユーザの運転診断を行う。診断部154は、ユーザの運転診断結果の履歴である運転診断履歴の生成及び更新を行い、記憶部162に記憶させる。
【0069】
運転挙動検出部155は、通信部151を介して、ユーザ端末部11及び車両12からデータを受信する。また、運転挙動検出部155は、ユーザの推定状態履歴及び運転挙動検出モデルを記憶部162から取得する。ここで、運転挙動検出モデルとは、運転挙動の検出に用いるモデルであり、例えば、ユーザ毎に生成される。さらに、運転挙動検出部155は、損害予測部157から、ユーザによる車両の運転に関するリスク、及び、リスクにより発生する損害の予測結果を取得する。運転挙動検出部155は、取得した履歴及びデータ等に基づいて、運転挙動検出モデルを用いて、ユーザの運転挙動の検出処理を行う。運転挙動検出部155は、ユーザの運転挙動の検出結果の履歴である運転挙動履歴の生成及び更新を行い、記憶部162に記憶させる。
【0070】
リスク予測部156は、ユーザの推定状態履歴、運転診断履歴、運転挙動履歴、及び、リスク予測モデルを記憶部162から取得する。ここで、リスク予測モデルとは、ユーザによる車両12の運転に関するリスクの予測に用いるモデルであり、例えば、ユーザ毎に生成される。リスク予測部156は、取得した履歴に基づいて、リスク予測モデルを用いて、リスク予測を行う。リスク予測部156は、リスクの予測結果を損害予測部157に供給する。
【0071】
損害予測部157は、評価部159により評価されるユーザの従順度を必要に応じて用いながら、リスク予測部156により予測されるリスクにより発生する損害を予測する。ここで、従順度とは、サーバ13からの提案等にユーザが素直に従う度合いである。損害予測部157は、リスク及び損害の予測結果を運転挙動検出部155及び提示制御部158に供給する。
【0072】
提示制御部158は、ユーザの運転診断履歴、及び、保険料算定部161により算定された保険料を記憶部162から取得する。提示制御部158は、リスク及び損害の予測結果、並びに、ユーザの運転診断履歴及び保険料に基づいて、予測されるリスクに関する情報を含み、ユーザに提示されるフィードバック情報を生成する。提示制御部158は、生成したフィードバック情報を、通信部151を介して、ユーザのユーザ端末部11又は車両12に送信することにより、ユーザへのフィードバック情報の提示を制御する。また、提示制御部158は、フィードバック情報を評価部159に供給する。
【0073】
評価部159は、ユーザの推定状態履歴及び運転挙動履歴を記憶部162から取得する。そして、評価部159は、取得した履歴、及び、フィードバック情報に基づいて、ユーザの従順度を評価する。評価部159は、ユーザの従順度を損害予測部157に供給するとともに、記憶部162に記憶させる。
【0074】
学習部160は、ユーザの推定状態履歴を記憶部162から取得する。学習部160は、取得した推定状態履歴に基づいて、ユーザの標準的な状態のパターン(以下、標準状態パターンと称する)の学習を行い、得られた標準状態パターンを示すデータを記憶部162に記憶させる。
【0075】
また、学習部160は、所定のユーザ集合に含まれる各ユーザの推定状態履歴を記憶部162から取得する。学習部160は、取得した推定状態履歴に基づいて、ユーザ集合内のユーザの平均的な状態のパターン(以下、ユーザ集合状態パターンと称する)の学習を行い、得られたユーザ集合状態パターンを示すデータを記憶部162に記憶させる。
【0076】
さらに、学習部160は、ユーザの状態データログ、推定状態履歴、運転診断履歴、及び、運転挙動履歴を記憶部162から取得する。学習部160は、取得したログ及び履歴に基づいて、状態推定モデル、運転診断モデル、運転挙動検出モデル、及び、リスク予測モデルの学習を行い、記憶部162に記憶させる。
【0077】
保険料算定部161は、ユーザの運転診断履歴、運転挙動履歴、及び、従順度を記憶部162から取得する。保険料算定部161は、取得した履歴及び従順度に基づいて、ユーザの自動車保険の保険料の算定を行う。保険料算定部161は、算定した保険料を示すデータを記憶部162に記憶させる。
【0078】
<運転支援処理>
次に、
図5及び
図6のフローチャートを参照して、サーバ13により実行される運転支援処理について説明する。
【0079】
なお、以下、主に1人の特定のユーザ(以下、注目ユーザと称する)に対する処理を中心に説明するが、実際には注目ユーザ以外の他のユーザに対する処理が並行して行われる。
【0080】
ステップS1において、サーバ13は、非運転時のユーザ(注目ユーザ)の状態の推定処理を開始する。具体的には、例えば、以下の処理が開始される。
【0081】
状態推定部152は、通信部151が注目ユーザのユーザ端末部11から受信したデータ(例えば、慣性データ、環境データ、生体データ、入力データ等)の中から、注目ユーザの状態に関するデータを取得する。状態推定部152は、各データを取得された時刻とともに記憶部162に記憶させる。これにより、注目ユーザの状態データログが更新される。
【0082】
なお、注目ユーザの状態データログは、注目ユーザ自身の状態に関するデータだけでなく、注目ユーザの周囲の状態に関するデータも含み得る。
【0083】
状態推定部152は、直近の所定の期間内の注目ユーザの状態データログに基づいて、記憶部162に記憶されている注目ユーザの状態推定モデルを用いて、注目ユーザの現在の状態を推定する。例えば、状態推定部152は、注目ユーザの現在の状態として、注目ユーザの現在の生体状態、行動、及び、感情を推定する。
【0084】
例えば、
図7に例示されるように、状態推定部152は、注目ユーザの状態を示すセンサデータ群の時系列の変化に基づいて、所定の時間のフレーム毎に、注目ユーザの生体状態及び行動を推定する。例えば、注目ユーザの心拍及び発汗量等に基づいて、集中度、覚醒度、疲労度、ストレス度、緊張度、運動の激しさ等の注目ユーザの各種の生体状態が推定される。例えば、注目ユーザの加速度及び角速度、並びに、周囲の気圧等に基づいて、注目ユーザの行動の種類(例えば、静止、歩行、ランニング、サイクリング、階段の上り下り、食事、睡眠等)が推定される。
【0085】
また、例えば、状態推定部152は、注目ユーザの位置データ及び加速度等に基づいて、注目ユーザの移動距離、移動速度、及び、行動範囲等を推定する。
【0086】
さらに、状態推定部152は、注目ユーザの生体データ、及び、注目ユーザの生体状態の推定結果等に基づいて、注目ユーザの感情を推定する。例えば、状態推定部152は、注目ユーザの喜怒哀楽の度合い、興奮度、焦燥度、不安度等を推定する。
【0087】
なお、注目ユーザの生体状態と感情とは、必ずしも全てが明確に分かれるものではなく、重複するものもある。例えば、興奮度は、注目ユーザの生体状態及び感情のいずれでもあり得る。
【0088】
また、ユーザの状態の推定方法には、任意の方法を採用することができる。さらに、推定するユーザの状態の種類は、上述した例に限定されるものではなく、必要に応じて追加したり、削除したりすることができる。
【0089】
状態推定部152は、推定した注目ユーザの状態を、推定した時刻とともに記憶部162に記憶させる。これにより、注目ユーザの推定状態履歴が更新される。
【0090】
なお、例えば、
図7に例示されるように、推定状態履歴は、覚醒度のようにフレーム毎の数値を時系列に並べたデータや、行動のようにフレーム毎に付与された(行動の種類を示す)ラベルを時系列に並べたデータを含む。
【0091】
ステップS2において、学習部160は、ユーザ(注目ユーザ)の標準的な状態のパターン(標準状態パターン)を学習するか否かを判定する。例えば、注目ユーザの標準状態パターンの学習は、注目ユーザが情報処理システム10の利用を開始したとき、所定の時間が経過する毎、注目ユーザの推定状態履歴のデータ量が所定の量以上増加する毎等の所定のタイミングで実行される。そして、学習部160は、現在が注目ユーザの標準状態パターンの学習を行うタイミングである場合、注目ユーザの標準状態パターンを学習すると判定し、処理はステップS3に進む。
【0092】
ステップS3において、学習部160は、ユーザ(注目ユーザ)の標準的な状態のパターン(標準状態パターン)を学習する。例えば、学習部160は、
図8に例示されるように、注目ユーザの直近の比較的長期の期間内(例えば、月単位、年単位)の推定状態履歴に基づいて、注目ユーザの標準状態パターンを学習する。
【0093】
例えば、学習部160は、注目ユーザの標準状態パターンとして、以下の各項目の所定の時間(例えば、1分、10分、30分、又は、1時間)の期間毎の平均及び分散等を算出することにより、各項目の所定の期間(例えば、1日)の標準的な推移を示す推移パターンを学習する。例えば、注目ユーザの集中度、覚醒度、疲労度、ストレス度、緊張度、運動の激しさ、心拍、発汗量、運動量、喜怒哀楽の度合い、興奮度、焦燥度、不安度等の1日の標準的な推移パターンが学習される。
【0094】
また、例えば、学習部160は、注目ユーザの標準状態パターンとして、以下の各項目の1日毎(曜日毎)の平均及び分散等を算出することにより、各項目の所定の期間(例えば、1週間)あたりの標準的な推移パターンを学習する。例えば、睡眠時間、起床時刻、就寝時刻、運動量、移動範囲、食事の回数、食事時間、食事時間帯、運転時間、運転時間帯、通勤時間帯、通学時間帯等の1週間の標準的な推移パターンが学習される。
【0095】
また、学習部160は、注目ユーザの標準状態パターンの比較対象として、所定のユーザ集合内の各ユーザの推定状態履歴に基づいて、ユーザ集合内の平均的な標準状態パターン(ユーザ集合状態パターン)を学習する。
【0096】
ここで、ユーザ集合には、情報処理システム10の全てのユーザを含めるようにしてもよいし、一部のユーザのみを含めるようにしてもよい。後者の場合、例えば、注目ユーザと類似するユーザからなるユーザ集合としてもよい。ここで、注目ユーザと類似するユーザとは、例えば、注目ユーザと属性(例えば、年齢、性別、職業、住所等)、行動パターン、嗜好等が類似するユーザのことである。また、ユーザ集合に注目ユーザを含めてもよいし、含めなくてもよい。
【0097】
例えば、学習部160は、
図9に例示されるように、ユーザ集合内の各ユーザの標準状態パターンの平均を集計することにより、ユーザ集合状態パターンを学習する。例えば、各項目の1日の標準的な推移パターンの平均がユーザ集合内において集計されることにより、ユーザ集合内の各項目の平均的な1日の推移パターンが学習される。また、例えば、各項目の1週間の標準的な推移パターンの平均がユーザ集合内において集計されることにより、ユーザ集合内の各項目の平均的な1週間の推移パターンが学習される。
【0098】
学習部160は、注目ユーザの標準状態パターン、及び、ユーザ集合状態パターンの学習結果を示すデータを記憶部162に記憶させる。
【0099】
なお、注目ユーザの標準状態パターンの学習と、ユーザ集合状態パターンの学習とを行うタイミングは、必ずしも同期する必要はなく、それぞれ異なるタイミングで行われてもよい。
【0101】
一方、ステップS2において、注目ユーザの標準状態パターンを学習しないと判定された場合、ステップS3の処理はスキップされ、処理はステップS4に進む。
【0102】
ステップS4において、診断部154は、非運転時の運転診断を行う。例えば、診断部154は、注目ユーザの推定状態履歴に基づいて、上述した標準状態パターンと同じ項目について、直近の比較的短期の期間内(例えば、1日及び1週間)の推移パターン(以下、直近状態パターンと称する)を検出する。
【0103】
次に、診断部154は、例えば、
図10に例示されるように、注目ユーザの直近状態パターンと標準状態パターンとの乖離度を示す乖離度ベクトルx、及び、注目ユーザの直近状態パターンとユーザ集合状態パターンとの乖離度を示す乖離度ベクトルyを算出する。例えば、乖離度ベクトルx及び乖離度ベクトルyは、比較対象となる2つの状態パターンの項目毎の乖離度を正規化した値を含むベクトルされる。
【0104】
そして、診断部154は、次式(1)の関数fにより表される注目ユーザの運転診断モデルを用いて、注目ユーザの非運転時の運転適性度uを算出する。
【0105】
u=f(x,y,wx,wy) ・・・(1)
【0106】
なお、wxは、乖離度ベクトルxに対する重みであり、wyは、乖離度ベクトルyに対する重みである。
【0107】
運転適性度uは、乖離度ベクトルxに含まれる各項目の乖離度が小さくなるほど大きくなる。すなわち、注目ユーザの直近状態パターンが標準状態パターンに近いほど、換言すれば、注目ユーザの直近の状態と標準的な状態との差が小さいほど、より運転に適した状態であると判定される。一方、運転適性度uは、乖離度ベクトルxに含まれる各項目の乖離度が大きくなるほど小さくなる。すなわち、注目ユーザの直近状態パターンが標準状態パターンから遠いほど、換言すれば、注目ユーザの直近の状態と標準的な状態との差が大きいほど、より運転に適していない状態であると判定される。
【0108】
また、運転適性度uは、乖離度ベクトルyに含まれる各項目の乖離度が小さくなるほど大きくなる。すなわち、注目ユーザの直近状態パターンがユーザ集合状態パターンに近いほど、換言すれば、注目ユーザの直近の状態とユーザ集合における平均的な状態との差が小さいほど、より運転に適した状態であると判定される。一方、運転適性度uは、乖離度ベクトルyに含まれる各項目の乖離度が大きくなるほど小さくなる。すなわち、注目ユーザの直近状態パターンがユーザ集合状態パターンから遠いほど、換言すれば、注目ユーザの直近の状態とユーザ集合における平均的な状態との差が大きいほど、より運転に適していない状態であると判定される。
【0109】
なお、重みwxが大きくなるほど、運転適性度uに対する乖離度ベクトルx(すなわち、注目ユーザの直近状態パターンと標準状態パターンの差)の影響が大きくなる。一方、重みwyが大きくなるほど、運転適性度uに対する乖離度ベクトルy(すなわち、注目ユーザのユーザ集合状態パターンと標準状態パターンの差)の影響が大きくなる。
【0110】
また、例えば、診断部154は、運転適性度uが所定の閾値未満である場合、運転適性度uの低下要因を推定する。例えば、診断部154は、乖離度ベクトルxにおいて、重みwxと乖離度の積が所定の値以上となる項目を抽出する。また、診断部154は、乖離度ベクトルyにおいて、重みwyと乖離度の積が所定の値以上となる項目を抽出する。そして、診断部154は、抽出した各項目について、直近状態パターンと標準状態パターン又はユーザ集合平均パターンとを比較することにより、運転適性度uの低下要因を推定する。
【0111】
例えば、注目ユーザの直近状態パターンにおける睡眠時間が標準状態パターン又はユーザ集合平均パターンを大幅に下回っている場合、睡眠不足が低下要因であると推定される。
【0112】
例えば、注目ユーザの直近状態パターンにおける運動時間、心拍、及び、発汗量のうち1つ以上が標準状態パターン又はユーザ集合平均パターンを大幅に上回っている場合、激しい運動による肉体疲労が低下要因であると推定される。
【0113】
例えば、注目ユーザの直近状態パターンにおけるストレス度、緊張度、及び、焦燥度のうち1つ以上が、標準状態パターン又はユーザ集合平均パターンを大幅に上回っている場合、注目ユーザの焦りが低下要因であると推定される。
【0114】
なお、運転適性度uが所定の閾値以上の場合、例えば、運転適性度uの低下要因は、特になしとなる。
【0115】
診断部154は、運転適性度u、及び、推定される低下要因を、診断した時刻とともに、注目ユーザの運転の適性の診断結果として記憶部162に記憶させる。これにより、注目ユーザの運転診断履歴が更新される。
【0116】
ステップS5において、リスク予測部156は、リスク予測を行う。具体的には、リスク予測部156は、注目ユーザの運転診断履歴及びリスク予測モデルを記憶部162から取得する。リスク予測部156は、注目ユーザの運転診断履歴に基づいて、注目ユーザのリスク予測モデルを用いて、現時点で注目ユーザが運転を行った場合のリスクを予測する。
【0117】
例えば、運転適性度uの低下要因が睡眠不足又は肉体疲労である場合、居眠り運転のリスクがあると推定される。
【0118】
例えば、運転適性度uの低下要因が注目ユーザの焦りである場合、例えば、速度オーバーや無理な追い越し等による他車両との衝突又は接触、並びに、注目ユーザの不注意による障害物(例えば、他車両、自転車、歩行者等)との衝突や接触等のリスクがあると推定される。
【0119】
また、リスク予測部156は、予測されるリスクの発生確率を推定する。例えば、注目ユーザの睡眠時間が短いほど、居眠り運転の推定発生確率は高くなる。
【0120】
なお、一般的に、運転適性度uが低くなるほど、予測されるリスク及び発生確率が大きくなる。
【0121】
リスク予測部156は、リスクの予測結果を損害予測部157に供給する。このリスクの予測結果には、予測されるリスク、リスクを予測した根拠(例えば、運転適性度uの低下要因)、及び、リスクの発生確率が含まれる。
【0122】
ステップS6において、損害予測部157は、損害予測を行う。具体的には、損害予測部157は、リスク予測部156により予測されるリスクにより発生する損害(例えば、リスク/ペナルティ値)を予測する。このとき、リスクの発生確率が加味される。すなわち、発生確率が高いほど、予測される損害が大きくなり、発生確率が低いほど、予測される損害が小さくなる。損害予測部157は、リスク及び損害の予測結果を運転挙動検出部155及び提示制御部158に供給する。
【0123】
ステップS7において、運転挙動検出部155は、運転挙動の検出パラメータを調整する。例えば、運転挙動検出部155は、予測されるリスク及び損害に応じて、各種の運転挙動のうち、危険運転の検出用のパラメータを調整する。
【0124】
ここで、危険運転の検出に関わる運転挙動とは、例えば、急発進、急加速、急ブレーキ、及び、急ステアリング等の急操作、蛇行運転、居眠り運転、覚醒度や集中力の低下、脇見運転、前方不注意、速度オーバー、無理な追い越し、車間距離の不足、並びに、障害物への接近等の危険な運転挙動のことである。
【0125】
また、推定されるリスク及び損害が大きくなるほど、検出対象となる危険運転のレベル(危険度)がより低くなるように、検出パラメータが調整される。これにより、より早期かつより軽微な段階から危険運転が検出されるようになる。
【0126】
例えば、居眠り運転の発生が予測される場合、より早くユーザの眠気を検出するように、眠気判定における瞬きの回数の閾値が小さくされる。例えば、脇見運転、前方不注意、速度オーバー等の発生が予測される場合、急加速や急ブレーキが検出されやすくなるように、急加速や急ブレーキの検出用の閾値が小さくされる。
【0127】
さらに、検出対象となる危険運転のレベルが低くなるほど、予測対象となるリスクのレベル(危険度)が低くなる。すなわち、より早期かつより軽微な段階のリスクが予測されるようになる。
【0128】
ここで、注目ユーザの運転適性度uにより、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが変化する。例えば、上述したように、一般的に運転適性度uが低くなるほど、予測されるリスク及び損害発生確率が大きくなり、予測される損害も大きくなる。従って、検出対象となる危険運転のレベルがより低くなるように、検出パラメータが調整される。その結果、運転適性度uが低くなるほど、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが低くなる。
【0129】
ステップS8において、提示制御部158は、ユーザ(注目ユーザ)へのフィードバックを行うか否かを判定する。注目ユーザへのフィードバックは、所定のタイミングで実行される。例えば、注目ユーザのユーザ端末部11からフィードバックの要求が送信されてきたとき、所定の時間が経過する毎、又は、重大なリスクが予測されるとき等のタイミングで、フィードバックが実行される。そして、提示制御部158は、現在が注目ユーザへのフィードバックを行うタイミングである場合、注目ユーザへのフィードバックを行うと判定し、処理はステップS9に進む。
【0130】
ステップS9において、サーバ13は、ユーザ(注目ユーザ)へのフィードバックを行う。具体的には、提示制御部158は、注目ユーザに提示するフィードバック情報を生成する。このフィードバック情報は、例えば、注目ユーザの運転診断の結果、予測されるリスクの内容、運転診断結果の根拠又はリスクを予測した根拠、及び、リスクを避けるための提案(以下、リスク回避案と称する)のうち1つ以上を含む。提示制御部158は、生成したフィードバック情報を、通信部151を介して、注目ユーザのユーザ端末部11に送信する。
【0131】
例えば、注目ユーザのモバイル端末51がフィードバック情報を受信した場合、モバイル端末51の出力部66は、視覚情報(例えば、映像)及び聴覚情報(例えば、音声)のうち少なくとも1つを用いてフィードバック情報を注目ユーザに提示する。また、例えば、注目ユーザのウエアラブル端末52がフィードバック情報を受信した場合、ウエアラブル端末52の出力部83は、視覚情報及び聴覚情報のうち少なくとも1つを用いてフィードバック情報を注目ユーザに提示する。
【0132】
例えば、注目ユーザの睡眠不足が推定されている場合、「寝不足状態です。少し睡眠を取ってから運転することをお勧めします。」のような音声メッセージが出力される。
【0133】
また、例えば、注目ユーザの運転診断結果として、運転適性度uが所定の段階(例えば、10段階)の値により提示されるともに、その根拠が提示される。
【0134】
さらに、例えば、注目ユーザの状態の推定結果が提示されてもよい。例えば、注目ユーザの喜怒哀楽、興奮度、攻撃性等の感情指数が所定の段階(例えば、10段階)の値より提示されてもよい。
【0135】
その後、処理はステップS10に進む。
【0136】
一方、ステップS8において、注目ユーザへのフィードバックを行わないと判定された場合、ステップS9の処理はスキップされ、処理はステップS10に進む。
【0137】
ステップS10において、状態推定部152は、ユーザ(注目ユーザ)が運転を開始したか否かを判定する。具体的には、状態推定部152は、通信部151を介して、注目ユーザのユーザ端末部11及び車両12のうち少なくとも1つから受信したデータに基づいて、注目ユーザが運転を開始したか否かを判定する。
【0138】
運転開始の判定処理は、ユーザ端末部11、車両12、及び、サーバ13のいずれで行ってもよい。例えば、モバイル端末51が、注目ユーザの運転認識処理を行ったり、車両12とビーコン同期を行ったりすることにより、運転開始の判定処理を実行するようにしてもよい。また、例えば、車両12の車載表示デバイス等と一体化した計測機器が、運転開始の判定処理を実行するようにしてもよい。
【0139】
なお、ユーザ端末部11又は車両12で判定処理を行う場合、ユーザ端末部11又は車両12から送信されるデータにその判定結果が含まれ、状態推定部152は、その判定結果に基づいて、注目ユーザが運転を開始したか否かを判定する。
【0140】
そして、注目ユーザが運転を開始していないと判定された場合、処理はステップS2に戻る。その後、ステップS10において、注目ユーザが運転を開始したと判定されるまで、ステップS2乃至ステップS10の処理が繰り返し実行される。これにより、注目ユーザの運転診断、リスク予測、及び、損害予測が適宜行われ、その結果に基づいて、危険運転の検出パラメータの調整や注目ユーザへのフィードバックが行われる。また、注目ユーザの標準状態パターン、及び、ユーザ集合状態パターンが適宜更新される。
【0141】
一方、ステップS10において、注目ユーザが運転を開始したと判定された場合、処理はステップS11に進む。
【0142】
ステップS11において、サーバ13は、運転時のユーザ(注目ユーザ)の状態の推定処理を開始する。この推定処理は、ステップS1の推定処理と比較して、注目ユーザのユーザ端末部11に加えて、車両12から送信されてくるデータに基づいて、推定処理が行われる点が大きく異なる。
【0143】
例えば、車両12からの映像データに基づいて、注目ユーザの視線、瞬き、表情等が検出され、注目ユーザの集中度、覚醒度、疲労度、感情等の推定に用いられる。また、例えば、車両12からの車両データに基づいて、注目ユーザの運転操作の内容等が推定される。
【0144】
さらに、例えば、車両12の走行ルートや注目ユーザが運転している時間帯に基づいて、注目ユーザの状態が推定される。例えば、注目ユーザの心拍数や運動量が急速に上昇した後、通常とは異なる時間帯(例えば、深夜や早朝)に注目ユーザが運転したり、車両12が注目ユーザの日常の生活範囲の圏外を走行したりしている場合、注目ユーザが何らかの緊急事態により焦っていると推定される。
【0145】
また、状態推定部152は、ステップS1の処理と同様に、注目ユーザの状態データログ及び推定状態履歴の更新を適宜行う。
【0146】
ステップS12において、周辺データ取得部153は、車両12の周辺データの取得を開始する。例えば、周辺データ取得部153は、ユーザ端末部11又は車両12から送信されてくる位置情報、並びに、通信部151を介して他のサーバ等から受信した地図情報等に基づいて、注目ユーザの車両12の周辺の構造物、道路、渋滞、天候等の状態の検出を行う。また、例えば、周辺データ取得部153は、ユーザ端末部11又は車両12から送信されてくる映像データ、音声データ、及び、センサデータ等に基づいて、車両12周辺の物体(例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等)の検出を行う。なお、ユーザ端末部11又は車両12が、車両12の周辺の物体の検出処理を行い、検出結果をサーバ13に送信するようにしてもよい。
【0147】
周辺データ取得部153は、取得した車両12の周辺データを診断部154及びリスク予測部156に供給する。
【0148】
ステップS13において、サーバ13は、運転挙動の検出処理を開始する。具体的には、例えば、以下の処理が開始される。
【0149】
運転挙動検出部155は、通信部151が注目ユーザのユーザ端末部11及び車両12から受信したデータのうち、運転挙動(例えば、運転中の注目ユーザ又は車両12の挙動)に関するデータを通信部151から取得する。また、運転挙動検出部155は、取得した運転挙動に関するデータ、記憶部162に記憶されている注目ユーザの推定状態履歴、及び、周辺データ取得部153から取得した車両12の周辺データに基づいて、記憶部162に記憶されている注目ユーザの運転挙動検出モデルを用いて、運転挙動を検出する。すなわち、運転中の注目ユーザの挙動と車両12の挙動が検出される。例えば、車両12の速度、加速度、減速度、ブレーキ操作、ステアリング角度、走行ルート等が検出される。
【0150】
なお、運転中の注目ユーザの挙動の一部は、ステップS11において、状態推定部152により検出(推定)されてもよい。
【0151】
また、運転挙動の検出は、ユーザ端末部11、車両12、及び、サーバ13のいずれで行われてもよいし、ユーザ端末部11、車両12、及び、サーバ13が分担して行ってもよい。
【0152】
次に、運転挙動検出部155は、検出した運転挙動、注目ユーザの推定状態履歴、及び、車両12の周辺データに基づいて、危険運転の検出処理を行う。
【0153】
例えば、OBD情報等に基づく車両12の速度、ステアリング角度、若しくは、トルク等の急変動、又は、ユーザ端末部12により検出される加速度又は角速度等の急変動により、急操作が検出される。
【0154】
例えば、OBD情報等に基づく車両12の速度、ステアリング角度、若しくは、トルク等の周期的変動、又は、ユーザ端末部12により検出される加速度又は角速度等の周期的変動により、蛇行運転が検出される。
【0155】
例えば、ステレオカメラ、レーザレーダ、ミリ波レーダを用いて検出される先行車の位置により、車間距離の不足が検出される。
【0156】
ここで、上述したステップS7又は後述するステップS20において調整される検出パラメータが、危険運転の検出処理に用いられる。従って、上述したように、注目ユーザの運転適性度uが低くなるほど、検出対象となる危険運転のレベルが低くなり、より早期かつより軽微な段階から検出対象が危険運転として検出されるようになる。
【0157】
運転挙動検出部155は、運転挙動の検出結果を、検出した時刻とともに記憶部162に記憶させる。これにより、注目ユーザの運転挙動履歴が更新される。
【0158】
ステップS14において、診断部154は、運転時の運転診断を行う。例えば、診断部154は、運転開始後の注目ユーザの推定状態履歴、及び、運転挙動履歴に基づいて、記憶部162に記憶されている注目ユーザの運転診断モデルを用いて、運転適性度uを補正する。
【0159】
例えば、注目ユーザの集中度又は覚醒度の低下や、注目ユーザの疲労度、ストレス度、又は、緊張度の上昇が発生している場合、運転適性度uが下げられる。一方、例えば、注目ユーザの集中度又は覚醒度の上昇や、注目ユーザの疲労度、ストレス度、又は、緊張度の低下が発生している場合、運転適性度uが上げられる。また、例えば、危険運転が検出されている場合、検出頻度に応じて運転適性度uが下げられる。一方、危険運転が検出されない状態が継続している場合、継続時間に応じて、運転適性度uが上げられる。
【0160】
なお、ブレーキやアクセルペダルの踏み方の滑らかさ、コーナリングの際のステアリングホイールのさばき方、加速及び減速の滑らかさ等の注目ユーザの運転操作の良し悪しに基づいて、運転適性度uが補正されてもよい。
【0161】
診断部154は、補正後の運転適性度u、及び、推定される低下要因を、診断した時刻とともに、注目ユーザの運転の適性の診断結果として記憶部162に記憶させる。これにより、注目ユーザの運転診断履歴が更新される。
【0162】
ステップS15において、リスク予測部156は、リスク予測を行う。ここで、リスク予測部156は、ステップS5の処理と異なり、注目ユーザの運転診断履歴に加えて、記憶部162に記憶されている注目ユーザの推定状態履歴及び運転挙動履歴をさらに用いて、リスク予測を行う。例えば、注目ユーザの運転適性度uが高くても、危険運転の検出頻度が高くなるほど、及び、検出された危険運転の危険度が高くなるほど、予測されるリスクが大きくなる。一方、例えば、注目ユーザの運転適性度uが低くても、危険運転が検出されない場合、予測されるリスクが小さくなる。このように、実際の注目ユーザの運転中の状態や運転挙動をさらに用いて、リスク予測が行われるため、ステップS5の処理と比較して、リスク予測の精度が向上する。
【0163】
また、リスク予測部156は、リスク及びその発生確率だけでなく、今後リスクの発生確率が高くなる時刻(以下、リスク上昇時刻と称する)を予測することも可能である。例えば、リスク予測部156は、注目ユーザの集中度、緊張度、又は、覚醒度の時系列の変化に基づいて、それらが所定の閾値を下回る時刻を、リスク上昇時刻として推定する。
【0164】
リスク予測部156は、リスクの予測結果を損害予測部157に供給する。このリスクの予測結果には、予測されるリスクの内容、リスクを予測した根拠(例えば、運転適性度uの低下要因や危険運転の検出結果)、及び、リスクの発生確率が含まれる。また、必要に応じて、リスク上昇時刻が含まれる。
【0165】
ステップS16において、ステップS6の処理と同様に、損害予測が行われる。ただし、損害予測部157は、ステップS6の処理と異なり、注目ユーザの従順度をさらに用いて、損害予測を行う。すなわち、注目ユーザの従順度が高いほどリスクを回避する可能性が高くなり、従順度が低いほどリスクを回避する可能性が低くなる。従って、従順度が高いほど、予測される損害が小さくなり、従順度が低いほど、予測される損害が大きくなる。損害予測部157は、リスク及び損害の予測結果を運転挙動検出部155及び提示制御部158に供給する。
【0166】
ここで、注目ユーザの従順度により、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが変化する。例えば、上述したように、注目ユーザの従順度が低くなるほど、予測されるリスクの損害が大きくなる。従って、検出対象となる危険運転のレベルがより低くなるように、検出パラメータが調整される。その結果、従順度が低くなるほど、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが低くなる。
【0167】
ステップS17において、提示制御部158は、ユーザ(注目ユーザ)へのフィードバックを行うか否かを判定する。例えば、提示制御部158は、注目ユーザに通知する必要があるリスクの発生が予測されている場合、注目ユーザへのフィードバックを行うと判定し、処理はステップS18に進む。
【0168】
ステップS18において、ステップS8の処理と同様に、注目ユーザへのフィードバックが行われる。ここで、注目ユーザに提示されるフィードバック情報の具体例について説明する。
【0169】
例えば、注目ユーザの睡眠不足が推定されている場合に、急操作又は蛇行運転が検出されたとき、危険運転に対する注意喚起が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「寝不足状態です。注意して運転してください。」のような音声メッセージが出力される。例えば、「注意して運転してください」の部分がリスク回避案となり、「寝不足状態です」の部分が、リスク回避案を提示する根拠となる。
【0170】
例えば、注目ユーザが日常生活の圏外にいると推定される場合、又は、強いストレスを感じていると推定される場合に、前方車両への接近が検出されたとき、危険運転に対する注意喚起が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「急いでいませんか?落ち着いて運転しましょう。」のような音声メッセージが出力される。例えば、「落ち着いて運転しましょう」の部分がリスク回避案となり、「急いでいませんか?」の部分が、リスク回避案を提示する根拠となる。
【0171】
例えば、注目ユーザが運転前に激しい運動をしていたと推定される場合に、注目ユーザの視線の一点集中が検出されたとき、又は、車両12周辺に多数の歩行者が検出されたとき、危険運転のおそれに対する注意喚起が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「眠くなっていませんか?周囲に注意して運転してください。」のような音声メッセージが出力される。例えば、「周囲に注意して運転してください」の部分がリスク回避案となり、「眠くなっていませんか?」の部分が、リスク回避案を提示する根拠となる。
【0172】
例えば、注目ユーザが日常生活の圏外にいると推定される場合に、又は、注目ユーザの睡眠不足が推定される場合に、高速道路を走行中に急操作又は蛇行運転が検出されたとき、危険運転に対する注意喚起が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「次のサービスエリアで休憩してはいかがでしょうか?あなたは昨日寝不足で、現在蛇行運転しています。」のような音声メッセージが出力される。例えば、「次のサービスエリアで休憩してはいかがでしょうか?」の部分がリスク回避案となり、「あなたは昨日寝不足で、現在蛇行運転しています」の部分が、リスク回避案を提示する根拠となる。
【0173】
例えば、注目ユーザの睡眠不足又は極度の緊張状態が推定される場合に、危険運転が頻繁に検出されたとき、自動車保険の保険料上昇の注意喚起、及び、その原因の提示が行われる。例えば、注目ユーザのユーザ端末部11又は車両12において、「寝不足(又は、緊張)による危険運転が頻発しています。あとx回の危険運転が検出されると、保険料のキャッシュバックの権利を失います。」のような音声メッセージが出力される。例えば、「あとx回の危険運転が検出されると、保険料のキャッシュバックの権利を失います」の部分が注目ユーザへの警告となり、「寝不足(又は、緊張)による危険運転が頻発しています」の部分が、警告を行う根拠となる。
【0174】
例えば、注目ユーザが日常生活の圏外の慣れない道を走行していると推定され、疲労によるリスク上昇時刻が推定された場合、「疲れていませんか?サービスエリアAで休憩してはいかがでしょうか?」のような音声メッセージが出力される。なお、サービスエリアAは、リスク上昇時刻になるまでの間に、注目ユーザの車両12が到達可能であると推定されるサービスエリアである。例えば、「サービスエリアAで休憩してはいかがでしょうか?」の部分がリスク回避案となり、「疲れていませんか?」の部分が、リスク回避案を提示する根拠となる。
【0175】
なお、リスク回避案は、例えば、「60km/hまでスピードを落としてください。」や「すぐに正面を向いてください。」等のように、より具体的な内容にすることも可能である。
【0176】
また、提示制御部158は、フィードバック情報を評価部159に供給する。
【0177】
ステップS19において、評価部159は、ユーザ(注目ユーザ)の従順度を評価する。具体的には、評価部159は、注目ユーザに対するフィードバックが行われた後の注目ユーザの推定状態履歴及び運転挙動履歴を記憶部162から取得する。そして、評価部159は、取得した履歴に基づいて、フィードバックに対する注目ユーザの反応(例えば、運転の内容)を検出する。
【0178】
また、評価部159は、注目ユーザの反応に基づいて、注目ユーザの従順度の評価値を更新する。例えば、今回提示されたフィードバック情報にリスク回避案が含まれており、そのリスク回避案に注目ユーザが従った場合、注目ユーザの従順度は上昇する。また、注目ユーザがリスク回避案に従うまでの時間が短いほど(反応速度が速いほど)、又は、注目ユーザの反応とリスク回避案との差が小さいほど、注目ユーザの従順度の上げ幅が大きくなる。逆に、注目ユーザがリスク回避案に従うまでの時間が長いほど(反応速度が遅いほど)、又は、注目ユーザの反応とリスク回避案との差が大きいほど、注目ユーザの従順度の上げ幅は小さくなる。
【0179】
一方、注目ユーザがリスク回避案に従わなかった場合、例えば、注目ユーザがリスク回避案を無視した場合、又は、注目ユーザがリスク回避案とは異なる反応を示した場合、注目ユーザの従順度は低下する。特に、注目ユーザがリスク回避案に従わずに危険運転を行った場合、注目ユーザの従順度の下げ幅は大きくなる。
【0180】
評価部159は、更新した注目ユーザの従順度を損害予測部157に供給するとともに、記憶部162に記憶させる。
【0181】
その後、処理はステップS20に進む。
【0182】
一方、ステップS17において、注目ユーザへのフィードバックを行わないと判定された場合、ステップS18及びステップS19の処理はスキップされ、処理はステップS20に進む。
【0183】
ステップS20において、ステップS7の処理と同様に、運転挙動の検出パラメータが調整される。
【0184】
ステップS21において、状態推定部152は、ユーザが運転を停止したか否かを判定する。すなわち、状態推定部152は、ステップS10の運転開始の判定処理と同様に、通信部151を介して注目ユーザのユーザ端末部11及び車両12のうち少なくとも1つから受信したデータに基づいて、注目ユーザが運転を停止したか否かを判定する。
【0185】
そして、注目ユーザが運転を停止していないと判定された場合、処理はステップS14に戻る。その後、ステップS21において、注目ユーザが運転を停止したと判定されるまで、ステップS14乃至ステップS21の処理が繰り返し実行される。これにより、注目ユーザの運転診断、リスク予測、及び、損害予測が適宜行われ、その結果に基づいて、危険運転の検出パラメータの調整や注目ユーザへのフィードバックが行われる。また、注目ユーザの従順度が適宜更新される。
【0186】
一方、ステップS21において、注目ユーザが運転を停止したと判定された場合、処理はステップS22に進む。
【0187】
ステップS22において、ステップS1の処理と同様に、非運転時の注目ユーザの状態の推定処理が開始される。
【0188】
ステップS23において、周辺データ取得部153は、車両12の周辺のデータの取得を停止する。
【0189】
ステップS24において、運転挙動検出部155は、運転挙動の検出処理を停止する。
【0190】
ステップS25において、学習部160は、学習処理を行う。例えば、学習部160は、記憶部162に記憶されている注目ユーザの状態データログ、推定状態履歴、運転診断履歴、及び、運転挙動履歴に基づいて、状態推定モデル、運転診断モデル、運転挙動検出モデル、及び、リスク予測モデルの学習を行う。
【0191】
例えば、運転適性度uが低く評価されたにも関わらず、安全運転が行われた場合、上述した運転診断モデルを表す式(1)の重みwx及び重みwyが小さく設定される。これにより、注目ユーザの運転適性度uが、これまでより高く評価されるようになる。逆に、運転適性度uが高く評価されたにも関わらず、危険運転が頻繁に行われた場合、式(1)の重みwx及び重みwyが大きく設定される。これにより、注目ユーザの運転適性度uが、これまでより低く評価されるようになる。
【0192】
また、例えば、注目ユーザの直近状態パターンとユーザ集合状態パターンとの差が大きく、運転適性度uが低く評価されたにも関わらず、安全運転が行われた場合、上述した式(1)の重みwxが大きくされ、重みwyが小さくされる。すなわち、運転診断において、より注目ユーザの直近状態パターンと標準状態パターンとの差が重視されるようになる。
【0193】
なお、例えば、注目ユーザがサービスの利用を開始した当初は、事前の実験等により得られた平均的なユーザに対応するモデルが使用される。その後、学習処理により、各モデルが、より注目ユーザに適したモデルに更新されていく(個人化される)。
【0194】
なお、この学習処理は、必ずしも注目ユーザの運転が終了する毎に行う必要はなく、例えば、所定の期間毎、運転が所定の回数行われる毎、運転時間が所定の時間以上増加する毎等の任意のタイミングで行われるようにしてもよい。また、必ずしも全てのモデルの学習処理を同時に行う必要はなく、モデル毎に異なるタイミングで学習処理を行うようにしてもよい。
【0195】
また、例えば、学習部160は、推定状態履歴に示される運転前及び運転中の注目ユーザの疲労度の推移に基づいて、注目ユーザの疲労度を予測する疲労度推定モデルの学習を行ってもよい。例えば、状態推定部152は、疲労度推定モデルを用いて、走行予定ルートの各地点における注目ユーザの疲労度を推定することができる。さらに、例えば、学習部160は、時間帯、天候、渋滞の状況、道路の種類(例えば、一般道又は高速道)等の車両12の周囲の状態を加味して、疲労度推定モデルの学習を行うことにより、疲労度の推定精度を向上させることができる。
【0196】
また、学習処理の方法には、例えば、ニューラルネットワーク等の機械学習やその他の任意の方法を用いることができる。
【0197】
ステップS26において、保険料算定部161は、ユーザ(注目ユーザ)の保険料の算定を行う。例えば、保険料算定部161は、注目ユーザの自動車保険の保険料又は保険料に対するキャッシュバック金額がリアルタイムに変動する場合、記憶部162に記憶されている注目ユーザの運転診断履歴、運転挙動履歴、及び、従順度に基づいて、保険料又はキャッシュバック金額を更新する。保険料算定部161は、更新した注目ユーザの保険料又はキャッシュバック金額を記憶部162に記憶させる。
【0198】
例えば、運転適性度uの平均値がより低いほど、保険料が上がり(又は、キャッシュバック金額が下がり)、運転適性度uの平均値がより高いほど、保険料が下がる(又は、キャッシュバック金額が上がる)。
【0199】
また、例えば、危険運転の頻度又は累積回数が大きいほど、保険料が上がり(又は、キャッシュバック金額が下がり)、危険運転の頻度又は累積回数が小さいほど、保険料が下がる(又は、キャッシュバック金額が上がる)。さらに、例えば、危険運転に対して予測される損害の平均又は合計が高いほど、保険料が上がり(又は、キャッシュバック金額が下がり)、危険運転に対して予測される損害の平均又は合計が低いほど、保険料が下がる(又は、キャッシュバック金額が上がる)。
【0200】
また、例えば、従順度が低いほど、リスクの低下が期待できないため、保険料が上がり(又は、キャッシュバック金額が下がり)、従順度が高いほど、リスクの低下が期待できるため、保険料が下がる(又は、キャッシュバック金額が上がる)。特に、注目ユーザがリスク回避案に従わずに危険運転を行った場合、例えば、ペナルティとして、保険料の上げ幅(又は、キャッシュバック金額の下げ幅)が大きくなる。
【0201】
なお、この保険料算定処理は、必ずしも注目ユーザの運転が終了する毎に行う必要はなく、例えば、所定の期間毎、運転が所定の回数行われる毎、運転時間が所定の時間以上増加する毎等の任意のタイミングで行われるようにしてもよい。
【0202】
また、この保険料算定処理は、例えば、次回の保険の更新時に、保険料の見積もり金額を算定するために実行されてもよい。
【0203】
さらに、例えば、1回の運転毎又は1日単位の自動車保険の場合、この保険料算定処理を運転前に実行することにより、保険料を算定してもよい。この場合、例えば、注目ユーザの運転適性度u及び従順度のうち少なくとも1つを用いて、保険料が算定される。
【0204】
また、算定した保険料又はキャッシュバック金額が、フィードバック情報として注目ユーザに提示されてもよい。
【0205】
その後、処理はステップS2に戻り、ステップS2以降の処理が実行される。
【0206】
例えば、運転挙動は、運転中のユーザの状態だけでなく、運転前のユーザの状態(例えば、行動、生体状態、感情等)に影響される。これに対して、以上のように、ユーザの運転中の状態や運転挙動に加えて、運転前のユーザの状態を複合的に考慮することにより、より適切に運転適性度uが評価される。また、運転適性度uの精度が向上することにより、リスク予測及び損害予測の精度が向上する。その結果、より適切なタイミングで適切なフィードバック情報を提示することができ、安全性が向上し、事故の発生を防止することができる。
【0207】
また、フィードバック情報に、運転診断の結果の根拠又はリスクを予測した根拠が示されるため、ユーザの納得感が向上し、ユーザがリスク回避案に従う確率が高くなる。また、提示された根拠が誤っている場合、例えば、ユーザがサーバ13に訂正を指示し、学習処理に反映することにより、運転診断モデルやリスク予測モデルの精度が向上する。
【0208】
さらに、ユーザの従順度を評価し、従順度に基づいて、検出対象となる危険運転のレベル、及び、予測対象となるリスクのレベルが変化することにより、ユーザがより確実にリスクを回避することができるようになる。
【0209】
また、ユーザの運転挙動だけでなく、運転適性度u及び従順度に基づいて、自動車保険の保険料(キャッシュバック金額を含む)を算定することにより、ユーザ毎により適切な保険料を設定することができる。これにより、例えば、ユーザがリスク回避案に従う動機づけを行うことができ、ユーザがより確実にリスクを回避することができるようになる。
【0210】
<<2.変形例>>
以下、上述した本開示に係る技術の実施の形態の変形例について説明する。
【0211】
<システムの構成に関する変形例>
図1乃至
図4の情報処理システム10の構成例は、その一例であり、必要に応じて変更することが可能である。
【0212】
例えば、以上の説明では、サーバ13が、ユーザ端末部11及び車両12(車載システム101)から取得したデータに基づいて、ほとんどの処理を行う例を示したが、例えば、ユーザ端末部11、車両12、及び、サーバ13で処理を分担したり、ユーザ端末部11又は車両12が単独で処理を行ったりすることも可能である。
【0213】
例えば、ユーザ端末部11及び車両12の少なくとも一方が、サーバ13の処理の一部又は全部を行うようにすることが可能である。
【0214】
例えば、ユーザ端末部11及び車両12の少なくとも一方が、状態推定部152、運転挙動検出部155、及び、評価部159の処理の一部又は全部を行い、推定結果及び検出結果をサーバ13に送信するようにしてもよい。
【0215】
例えば、ユーザ端末部11及び車両12の少なくとも一方が、周辺データ取得部153の処理の一部又は全部を行い、取得した周辺データをサーバ13に送信するようにしてもよい。
【0216】
例えば、ユーザ端末部11及び車両12の少なくとも一方が、診断部154、リスク予測部156、及び、損害予測部157の処理の一部又は全部を行い、診断結果及び予測結果をサーバ13に送信するようにしてもよい。
【0217】
また、例えば、運転支援に関する処理をユーザ端末部11で行うようにしてもよい。この場合、ユーザ端末部11は、複数の装置で構成してもよいし、1つの装置で構成してもよい。また、ユーザ端末部11が、車両12から各種のデータ(例えば、車両データ、映像データ、音声データ等)を取得し、処理に用いるようにしてもよいし、車両12からのデータを処理に用いないようにしてもよい。また、運転診断処理にユーザ集合状態パターンを用いてもよいし、用いなくてもよい。ユーザ集合状態パターンを用いる場合、例えば、サーバ13は、各ユーザのユーザ端末部11から取得した各ユーザの標準状態パターンに基づいて、ユーザ集合状態パターンの学習を行う。そして、サーバ13は、ユーザ集合状態パターンを示すデータを各ユーザのユーザ端末部11に送信する。
【0218】
この場合、保険料の算定処理は、ユーザ端末部11及びサーバ13のいずれで行ってもよい。ユーザ端末部11が行う場合、例えば、保険料の算定処理を行うアプリケーションプログラムが、サーバ13から提供される。一方、サーバ13が行う場合、例えば、保険料の算定に必要なデータがユーザ端末部11からサーバ13に提供される。
【0219】
さらに、例えば、運転支援に関する処理のうち、非運転時のユーザの状態の推定処理及び標準状態パターンの学習処理を除くほぼ全ての処理を車両12(車載システム101)で行うようにしてもよい。この場合、例えば、ユーザ端末部11が、非運転時のユーザの状態の推定処理及び標準状態パターンの学習処理を行い、その結果得られる推定状態履歴及び標準状態パターンを示すデータを運転前に車両12に送信する。そして、車両12が、残りの処理を実行する。この場合、運転診断処理にユーザ集合状態パターンを用いてもよいし、用いなくてもよい。ユーザ集合状態パターンを用いる場合、ユーザ集合状態パターンを用いる場合、例えば、サーバ13は、各ユーザのユーザ端末部11から取得した各ユーザの標準状態パターンに基づいて、ユーザ集合状態パターンの学習を行う。そして、サーバ13は、ユーザ集合状態パターンを示すデータを各ユーザのユーザ端末部11又は車両12に送信する。
【0220】
この場合、保険料の算定処理は、ユーザ端末部11、車両12、及び、サーバ13のいずれで行ってもよい。ユーザ端末部11又は車両12が行う場合、例えば、保険料の算定処理を行うアプリケーションプログラムが、サーバ13から提供される。一方、サーバ13が行う場合、例えば、保険料の算定に必要なデータがユーザ端末部11及び車両12からサーバ13に提供される。
【0221】
また、例えば、ユーザ端末部11とサーバ13で分担して処理を行うようにしてもよい。この場合、車両12からのデータを処理に用いてもよいし、用いなくてもよい。
【0222】
さらに、例えば、車両12とサーバ13で分担して処理を行うようにしてもよい。この場合、例えば、ユーザ端末部11から車両12及びサーバ13に処理に必要なデータ(例えば、ユーザの標準状態パターン及び直近状態パターン等)が提供される。
【0223】
また、例えば、複数のサーバで処理を分担してもよい。例えば、運転支援に関する処理と保険料算定に関する処理を異なるサーバで行ってもよい。
【0224】
さらに、例えば、車両12とサーバ13との間の通信を、ユーザ端末部11を介して行うようにしてもよい。この場合、例えば、車両12からのデータが、いったんユーザ端末部11に送信された後、ユーザ端末部11からサーバ13に転送される。また、サーバ13からのデータが、いったんユーザ端末部11に送信された後、ユーザ端末部11から車両12に転送される。
【0225】
また、例えば、ユーザ端末部11とサーバ13との間の通信を、車両12を介して行うようにしてもよい。この場合、例えば、ユーザ端末部11からのデータが、いったん車両12に送信された後、車両12からサーバ13に転送される。また、サーバ13からのデータが、いったん車両12に送信された後、車両12からユーザ端末部11に転送される。
【0226】
さらに、例えば、推定状態履歴の代わりに、ユーザの状態を推定する前の状態データログを直接用いて、診断部154の運転診断、リスク予測部156のリスク予測、及び、運転挙動検出部155の運転挙動の検出が行われてもよい。この場合、状態推定部152を削除することが可能である。
【0227】
<その他の変形例>
例えば、ユーザの直近状態パターンと標準状態パターン又はユーザ集合平均パターンとの乖離度に加えて、現在のユーザの状態を用いて、運転適性度uを算出するようにしてもよい。例えば、ユーザの直近状態パターンと標準状態パターンとの差が小さくても、例えば、ユーザの覚醒度が低かったり、興奮したり、落ち込んだりしている場合、危険運転が行われる可能性が高い。そこで、例えば、ユーザの状態を示す各項目のうち、運転への影響が大きい項目については、それらの項目の現在の状態(例えば、覚醒度、興奮度、落ち込み度)を、運転適性度uの算出に用いるようにしてもよい。
【0228】
また、推定するユーザの状態は、上述した生体状態、行動、及び、感情の3種類に限定されるものではない。例えば、上記の3種類のうち1種類又は2種類のみ推定するようにしてもよいし、他の種類の状態を推定するようにしてもよい。
【0229】
さらに、例えば、通常は運転に直接影響しないと想定されるユーザの行動を、運転適性度uの算出に用いるようにしてもよい。例えば、ユーザの購買履歴に基づいて、ユーザが通常と異なる傾向のショッピングをした場合(例えば、非常に高価な買い物をした場合)、ユーザの状態(例えば、感情)が通常とは異なることが想定される。そこで、例えば、運転適性度uの算出に、ユーザの購買履歴を用いてもよい。
【0230】
また、例えば、運転適性度uの算出に、非運転時のユーザの状態に基づいて検出されるユーザの能力であって、運転にも影響する能力を用いてもよい。例えば、日常生活の判断能力が高いユーザの運転適性度uが高く設定され、判断能力が低いユーザの運転適性度uが低く設定されるようにしてもよい。
【0231】
なお、この場合、例えば、判断能力が高いユーザと低いユーザが同じように車線変更を高頻度に繰り返していても、判断能力が高いユーザに対して予測されるリスクは低くなり、判断能力が低いユーザに対して予測されるリスクは高くなる。ただし、判断能力が高いユーザであっても、車線変更を減らすようにリスク回避案が提示されたにも関わらず、無視して車線変更を繰り返す場合、従順度が低く評価されるため、予測されるリスクは高くなる。
【0232】
さらに、例えば、ユーザの状態の推定結果、運転診断の結果、及び、運転挙動の検出結果のうち1つ又は2つのみに基づいて、リスク予測が行われるようにしてもよい。また、例えば、運転診断の結果を用いてリスク予測が行われる場合、運転前の運転適性度u及び運転中の運転適性度uのうち一方のみを用いるようにしてもよい。
【0233】
また、例えば、運転前及び運転中の一方のユーザの状態のみに基づいて、運転診断が行われるようにしてもよい。
【0234】
さらに、例えば、事故の発生原因の究明に、推定状態履歴、運転診断履歴、及び、運転挙動履歴を用いることが可能である。例えば、ドライブレコーダに、推定状態履歴、運転診断履歴、及び、運転挙動履歴を記録することにより、事故発生時のユーザ(運転者)の状態や挙動に加えて、運転前のユーザの状態に基づいて、事故の発生原因を究明することが可能になる。
【0235】
また、例えば、ユーザ端末部11又は車両12が、他のユーザの運転適性度uやリスクの予測結果等を、他のユーザのユーザ端末部11若しくは車両12、又は、サーバ13から取得できるようにしてもよい。これにより、例えば、運転適性度uが低いユーザが運転する危険車両が近くに存在する場合、例えば、ユーザは、事前にその情報を取得することにより、危険車両による事故に巻き込まれることを回避することができる。
【0236】
さらに、状態推定モデル、運転診断モデル、運転挙動検出モデル、及び、リスク予測モデルの個人化は、必ずしも行う必要はなく、所定のアルゴリズム等を用いたモデルを用いるようにしてもよい。また、例えば、上記のモデルの学習をユーザ毎に行わずに、例えば、ユーザ集合全体で行い、各ユーザで共通のモデルを用いるようにしてもよい。
【0237】
また、例えば、ユーザの従順度に基づいて、フィードバック情報の提示方法、提示頻度、及び、提示内容等を変更してもよい。
【0238】
<適用例>
本技術の運転支援処理は、先に例示した車両以外にも、(例えば、本技術は、自動二輪車、自転車、パーソナルモビリティ、飛行機、船舶、建設機械、農業機械(トラクター)等の各種の移動体の運転を行う場合にも適用することができる。すなわち、運転前及び運転中のユーザの状態の推定結果を用いて、運転診断、リスク予測、損害予測、ユーザへのフィードバック等を行うことができる。なお、本技術が適用可能な移動体には、場所を移動するもの以外にも、一部の建設機械等(例えば、固定式のクレーン等)の、固定された場所において作業を行う部分等が移動する移動体も含まれる。また、本技術が適用可能な移動体には、例えば、ドローン、ロボット等のユーザが搭乗せずにリモートで運転(操作)する移動体も含まれる。
【0239】
また、本技術は、自動車保険以外にも、生命保険、損害保険、医療保険等の各種の保険を提供するシステム及び装置等に適用することができる。例えば、ユーザの推定状態履歴及び従順度に基づいて、各種の保険料(キャッシュバック金額を含む)を算定することができる。具体的には、例えば、生命保険又は医療保険の場合、ユーザ端末部11又はサーバ13が、ユーザの状態推定処理を行い、推定状態履歴を蓄積する。また、ユーザ端末部11又はサーバ13が、推定状態履歴に基づくユーザの生活習慣及び生体状態等に基づいて、病気等のリスクを避けるための提案(リスク回避案)をユーザに提示し、その反応に基づいて、ユーザの従順度を評価する。そして、ユーザ端末部11又はサーバ13が、ユーザの生活習慣及び生体状態、並びに、従順度等に基づいて、生命保険又は医療保険の保険料を算定する。
【0240】
例えば、生活習慣及び生体状態が良いユーザほど、保険料が安くなり、生活習慣及び生体状態が悪いユーザほど、保険料が高くなる。また、従順度が高いユーザほど、保険料が安くなり、従順度が低いユーザほど、保険料が高くなる。このように、ユーザの生活習慣及び生体状態だけでなく、ユーザの従順度を考慮することにより、上述した自動車保険の場合と同様に、ユーザ毎により適切な保険料を設定することができる。
【0241】
<<3.その他>>
<コンピュータの構成例>
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
【0242】
図11は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
【0243】
コンピュータにおいて、CPU(Central Processing Unit)401,ROM(Read Only Memory)402,RAM(Random Access Memory)403は、バス404により相互に接続されている。
【0244】
バス404には、さらに、入出力インターフェース405が接続されている。入出力インターフェース405には、入力部406、出力部407、記録部408、通信部409、及びドライブ410が接続されている。
【0245】
入力部406は、入力スイッチ、ボタン、マイクロフォン、撮像素子などよりなる。出力部407は、ディスプレイ、スピーカなどよりなる。記録部408は、ハードディスクや不揮発性のメモリなどよりなる。通信部409は、ネットワークインターフェースなどよりなる。ドライブ410は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体411を駆動する。
【0246】
以上のように構成されるコンピュータでは、CPU401が、例えば、記録部408に記録されているプログラムを、入出力インターフェース405及びバス404を介して、RAM403にロードして実行することにより、上述した一連の処理が行われる。
【0247】
コンピュータ(CPU401)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体411に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
【0248】
コンピュータでは、プログラムは、リムーバブル記録媒体411をドライブ410に装着することにより、入出力インターフェース405を介して、記録部408にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部409で受信し、記録部408にインストールすることができる。その他、プログラムは、ROM402や記録部408に、あらかじめインストールしておくことができる。
【0249】
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
【0250】
また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
【0251】
さらに、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
【0252】
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
【0253】
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
【0254】
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
【0255】
<構成の組み合わせ例>
本技術は、以下のような構成をとることもできる。
【0256】
(1)
予め取得された移動体を運転するユーザの運転前の状態、及び、運転中に取得される当該運転するユーザの状態に基づいて、前記ユーザの運転に対する適性の診断を行う診断部と、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御部と
を備える情報処理装置。
(2)
運転中の前記ユーザ又は前記移動体の挙動である運転挙動を検出する運転挙動検出部を
さらに備え、
前記運転挙動検出部の検出対象となる危険運転のレベルが、前記診断の結果に基づいて変化する
前記(1)に記載の情報処理装置。
(3)
前記診断部は、さらに前記運転挙動の検出結果に基づいて、前記診断を行う
前記(2)に記載の情報処理装置。
(4)
前記診断部は、運転前の前記ユーザの状態に基づいて、運転前の前記ユーザの運転に対する適性を診断し、運転中の前記ユーザの状態及び前記運転挙動の検出結果に基づいて、運転中の前記ユーザの運転に対する適性を診断する
前記(3)に記載の情報処理装置。
(5)
前記診断の結果、及び、前記運転挙動の検出結果のうち少なくとも1つに基づいて、前記ユーザによる前記移動体の運転に関するリスクを予測するリスク予測部を
さらに備える前記(2)乃至(4)のいずれかに記載の情報処理装置。
(6)
前記フィードバック情報は、前記リスクの内容、及び、前記リスクが予測された根拠を含む
前記(5)に記載の情報処理装置。
(7)
前記リスクが予測された根拠は、前記診断の結果に基づく
前記(6)に記載の情報処理装置。
(8)
前記フィードバック情報は、前記リスクの回避案を含む
前記(5)乃至(7)のいずれかに記載の情報処理装置。
(9)
前記診断に基づく前記ユーザの運転の適性度が低くなるほど、前記運転挙動検出部の検出対象となる危険運転のレベルが低くなる
前記(2)乃至(8)のいずれかに記載の情報処理装置。
(10)
前記診断の結果、及び、前記運転挙動の検出結果に基づいて、前記診断を行うモデルの学習を行う学習部を
さらに備える前記(2)乃至(9)のいずれかに記載の情報処理装置。
(11)
前記診断部は、前記ユーザの直近の状態と前記ユーザの標準的な状態との差に基づいて、前記診断を行う
前記(1)乃至(10)のいずれかに記載の情報処理装置。
(12)
前記診断部は、さらに、前記ユーザの直近の状態と、複数のユーザを含むユーザ集合におけるユーザの平均的な状態との差に基づいて、前記診断を行う
前記(11)に記載の情報処理装置。
(13)
運転前及び運転中の前記ユーザの状態を推定する状態推定部を
さらに備え、
前記診断部は、前記ユーザの状態の推定結果に基づいて、前記診断を行う
前記(1)乃至(12)のいずれかに記載の情報処理装置。
(14)
前記ユーザの状態は、前記ユーザの生体状態、行動、及び、感情のうち少なくとも1つを含む
前記(13)に記載の情報処理装置。
(15)
前記診断部は、前記ユーザの運転前及び運転中に取得された前記ユーザの状態を示すデータに基づいて、前記診断を行う
前記(1)乃至(12)のいずれかに記載の情報処理装置。
(16)
予め取得された移動体を運転するユーザの運転前の状態、及び、運転中に取得される当該運転するユーザの状態に基づいて、前記ユーザの運転に対する適性の診断を行う診断ステップと、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御ステップと
を含む情報処理方法。
(17)
予め取得された移動体を運転するユーザの運転前の状態、及び、運転中に取得される当該運転するユーザの状態に基づいて、前記ユーザの運転に対する適性の診断を行う診断ステップと、
前記診断部で得られる診断に基づいて、フィードバック情報を生成する提示制御ステップと
を含む処理をコンピュータに実行させるためのプログラム。
【0257】
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。