(58)【調査した分野】(Int.Cl.,DB名)
一面に断面半円形のランプ収容凹所が形成されたブロック状の金属ビームと、当該金属ビームにおけるランプ収容凹所の内面に押圧された状態に保持された、互いに同軸上に配置された外側管および内側管を有する二重管構造の放電容器を備えたエキシマランプとを備えており、
前記エキシマランプの内側管の内部空間によって絶縁性の液体冷媒が流通される冷媒流路が形成されていると共に、前記金属ビームに冷媒流通路が設けられており、液体冷媒を前記エキシマランプの内側管内に流通させると共に前記金属ビームにおける冷媒流通路に流通させる冷却機構を有し、
前記金属ビームにおける冷媒流通路が前記エキシマランプの内側管の内部空間と連通しており、前記冷媒流路及び前記冷媒流通路の一方が冷媒供給部に接続されると共に他方が冷媒排出部に接続されることを特徴とするランプユニット。
【背景技術】
【0002】
現在、例えば半導体素子や液晶基板の製造工程において、例えばデスミア処理などを行う方法として、紫外線を用いた方法が知られている。特に、エキシマランプから放射される真空紫外線により生成されるオゾン等の活性酸素を利用した方法は、効率よく短時間で所定の処理を行うことができることから、好適に利用されている。
近年では、例えばプロセスの処理時間短縮などの観点から、光照射装置に対して高照度化の要請があり、光源として用いられるエキシマランプにおいて、高い照度の光を放出することが求められている。
【0003】
エキシマランプを高照度化するためには、例えば大きな電力をエキシマランプに投入する必要がある。しかしながら、エキシマランプに投入する電力が大きくなると、エキシマランプの温度が上昇し、内部の放電用ガスの温度も上昇する。この場合、高温となった放電用ガスがエキシマの生成を阻害するため、ある電力値を境界に照度はむしろ低下する。
このような理由から、エキシマランプの温度上昇を抑制するため、エキシマランプを冷却する構造を有するランプユニットが知られている。例えば特許文献1には、複数のエキシマランプが、冷却水流通路が形成されたアルミニウム製の冷却ブロックによって保持された構造とされ、冷却水を冷却水流通路内に流通させることにより冷却ブロックを介してエキシマランプを冷却することが記載されている。また、例えば特許文献2には、外側管および内側管を有する二重管構造の放電容器における内側管内に冷却水を流通させることによりエキシマランプを冷却することが記載されている。
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載のエキシマランプの冷却方法では、エキシマランプを冷却ブロックを介して間接的に冷却するため、エキシマランプを効率的に冷却することが困難である。一方、特許文献2に記載のエキシマランプの冷却方法においては、エキシマランプを直接的に冷却することができるため、エキシマランプの冷却効率を向上させることができる。しかしながら、上述したように、大きな電力がエキシマランプに投入される場合には、エキシマランプを十分に冷却することが困難であった。
また、照射エリアの大面積化を図るために、例えば多数のエキシマランプが水平に並べられた構造とされる場合には、冷却機構の構造自体が煩雑化するという問題がある。
【0006】
本発明は、以上のような事情に基づいてなされたものであって、エキシマランプを効率よく冷却することができてエキシマランプに高い照度を得ることのできるランプユニットを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明のランプユニットは、一面に断面半円形のランプ収容凹所が形成されたブロック状の金属ビームと、当該金属ビームにおけるランプ収容凹所の内面に押圧された状態に保持された、互いに同軸上に配置された外側管および内側管を有する二重管構造の放電容器を備えたエキシマランプとを備えており、
前記エキシマランプの内側管の内部空間によって絶縁性の液体冷媒が流通される冷媒流路が形成されていると共に、前記金属ビームに冷媒流通路が設けられており、液体冷媒を前記エキシマランプの内側管内に流通させると共に前記金属ビームにおける冷媒流通路に流通させる冷却機構を有
し、
前記金属ビームにおける冷媒流通路が前記エキシマランプの内側管の内部空間と連通しており、前記冷媒流路及び前記冷媒流通路の一方が冷媒供給部に接続されると共に他方が冷媒排出部に接続されることを特徴とする。
【0009】
本発明のランプユニットにおいては、前記エキシマランプにおける放電容器は、内側管の両端が外側管の両端より軸方向外方に突出する状態で配置され、当該外側管の両端が当該内側管の外周面に気密に封着されて構成されており、
前記金属ビームには、互いに平行に延びる二つのランプ収容凹所が形成されており、各ランプ収容凹所内に保持されたエキシマランプの内側管の各一端は、1つの共通口と2つの分岐口を有する一端側マニホールドの2つの分岐口に接続されていると共に、当該エキシマランプの内側管の各他端は、1つの共通口と2つの分岐口を有する他端側マニホールドの2つの分岐口に接続されており、
前記一端側マニホールドの共通口および前記他端側マニホールドの共通口の一方および他方には、それぞれ冷媒供給部および冷媒排出部の一方および他方が接続されており、かつ、冷媒供給部および冷媒排出部の一方とこれと接続されている一端側マニホールドの共通口または他端側マニホールドの共通口との間に、前記金属ビームに設けられた、前記冷媒流通路を形成する冷媒流通管が接続された構成とされていることが好ましい。
【0010】
このような構成のランプユニットにおいては、前記一端側マニホールドの共通口に冷媒供給部が接続されており、前記他端側マニホールドの共通口に前記金属ビームにおける冷媒流通管の一端が接続されると共に、当該冷媒流通管の他端に冷媒排出部が接続された構成とされていることが好ましい。
【発明の効果】
【0011】
請求項1に記載のランプユニットによれば、液体冷媒を内側管内に流通させることによる直接的冷却作用および金属ビームを介した間接的冷却作用が得られるので、エキシマランプに大きな電力が投入された場合であっても、エキシマランプを効率よく冷却することができてエキシマランプの出力低下を回避することができる。
【0012】
請求項2に記載のランプユニットによれば、エキシマランプにおける内側管内と冷媒流通路とが連通された構成とされていることにより、エキシマランプの温度分布を均斉化することができるとともに、冷却機構における配管構造を簡略化することができる。
【0013】
請求項3に記載のランプユニットによれば、液体冷媒が一端側マニホールドまたは他端側マニホールドによって分配されることによって個々のエキシマランプを実質的に均等な条件で冷却することができる。しかも、エキシマランプにおける内側管と、一端側マニホールドまたは他端側マニホールドとの配管接続部がエキシマランプより離れた位置に形成されると共に、金属ビームにおける冷媒流通路に直接的に液体冷媒が導入されないため、エキシマランプ近傍位置での冷媒漏れを回避することができる。また、冷媒供給部からの液体冷媒が一端側マニホールドによって各エキシマランプの内側管内に分配されると共に、内側管内を流通した液体冷媒が他端側マニホールドによって合流されて冷媒流通管に導入されるため、冷却機構における配管構造が煩雑化することを回避することができる。
請求項4に記載のランプユニットによれば、上記効果を一層確実に得ることができる。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態について詳細に説明する。
図1は、本発明のランプユニットの一例における構成を概略的に示す側面図である。
図2は、
図1に示すランプユニットの、長さ方向に垂直な断面を概略的に示す断面図である。
図3は、ランプユニットの一端部の構造を概略的に示す斜視図である。
図4は、ランプユニットの他端部の構造を概略的に示す斜視図である。
このランプユニット20は、二重管状のエキシマランプ21と、エキシマランプ21を保持する金属ビーム30とを備えている。
この例におけるランプユニット20は、2本のエキシマランプ21,21が、ランプ中心軸が水平面に沿った同一平面内に位置されて互いに幅方向に並んだ状態で、金属ビーム30によって保持されて構成されている。
【0016】
エキシマランプ21は、
図5にも示すように、互いに同軸上に配置された外側管26および内側管27を有する二重管構造の放電容器25を備えている。内側管27は、両端部が外側管26の両端より軸方向外方に突出する状態で、外側管26の内部に配置されている。外側管26の両端部は、内側管27の外周面に気密に封着されており、これにより、外側管26の内周面と内側管27の外周面との間に円筒状の放電空間S1が形成されている。放電空間S1内には、エキシマ放電によってエキシマ分子を形成する、例えばキセノンガスなどの放電用ガスが封入されている。放電用ガスとしてキセノンガスが用いられる場合において、キセノンガスの封入圧は、例えば0.05〜0.1MPaである。
外側管26および内側管27を構成する材料としては、例えば石英ガラス等の誘電体材料を用いることができる。
【0017】
内側管27の内部には、内側電極22が内側管27の内周面に密接して配置されている。この例における内側電極22は、例えば、導電性素線が螺旋状に巻回されてなるコイル状のものにより構成されているが、例えば円筒状など任意の形状のものであってよい。
【0018】
金属ビーム30は、全体が略直方体のブロック状のものであって、各エキシマランプ21の中心軸が位置される水平面と直角な垂直面となる両側面を有する。
金属ビーム30の一面(
図2における下面)には、ランプ装着部が形成されている。ランプ装着部は、エキシマランプ21の外側管の外径に適合する径を有する断面半円形のランプ収容凹所(溝)31により構成されている。この例においては、2つのランプ収容凹所31が、互いに幅方向に並んだ位置において、互いに平行に長さ方向に延びるよう形成されており、これにより、ランプ装着部が形成されている。
金属ビーム30は、後述するようにエキシマランプ21を冷却する冷却機構として機能するものでもあるため、機械的強度が高く、熱伝導性の高い金属により構成される。金属ビーム30を構成する材料としては、例えばアルミニウム、銅、ステンレス鋼などを用いることができる。
【0019】
この例におけるランプユニット20においては、エキシマランプ21は、外側管26の外表面が金属ビーム30のランプ収容凹所31の内面に押圧された状態に保持されている。さらに、エキシマランプ21の両端部が金属ビーム30に設けられた例えばステンレス鋼よりなるランプホルダー35によって支持されている。エキシマランプ21の両端部がランプホルダー35によって支持されていることにより、紫外線ひずみによってエキシマランプ21が反ることを防止することができる。
【0020】
エキシマランプ21の外側管26の外表面と、金属ビーム30におけるランプ収容凹所31の内面との間には、着脱可能(交換可能)に取付けられた金属板23が介挿されている。金属板23は、外側電極として機能する。金属板23が介挿されていることにより、金属ビーム30の内面が保護されるので、金属ビーム30の再利用が可能となりランプユニット20に長い使用寿命が得られる。また、エキシマランプ21における外側管26の外表面と、金属ビーム30におけるランプ収容凹所31の内面との間に不可避的に形成されるギャップにおいてコロナ放電が生ずることを回避することができる。
金属板23を構成する材料としては、例えばステンレス鋼を用いることができる。また金属板23の厚みは、例えば0.1〜0.5mmであることが好ましい。
【0021】
このランプユニット20においては、エキシマランプ21の中心軸間距離をdとしたとき、一方のエキシマランプの中心軸から当該一方のエキシマランプが位置される側の金属ビーム30の側面までの距離aがd/2以下とされていることが好ましい。このような構成とされていることにより、
図6に示すように、複数のランプユニット20をランプ間距離dが一定の大きさとなる状態で並設できる。このため、任意の大きさの水平面状発光部を容易に構成することができ、照射エリアの大面積化を図ることも容易となる。
【0022】
上記のランプユニット20においては、エキシマランプ21の内側管27の内部空間によって絶縁性の液体冷媒Wが流通される冷媒流路R1が形成されていると共に、金属ビーム30に冷媒流通路R2が設けられている。そして、液体冷媒Wをエキシマランプ21の内側管27内に流通させると共に金属ビーム30における冷媒流通路R2に流通させることにより、各エキシマランプ21を冷却する冷却機構を有する。
絶縁性の液体冷媒Wとしては、例えば、純水、フロリナート(登録商標)などのフッ素系不活性液体などを用いることができる。
金属ビーム30における冷媒流通路R2は、エキシマランプ21の内側管27の内部空間による冷媒流路R1と連通していることが好ましい。冷媒流路R1と冷媒流通路R2とが互いに連通していることにより、エキシマランプ21の温度分布を均斉化することができるとともに、冷却機構における配管構造を簡略化することができる。
【0023】
冷却機構の構成について具体的に説明すると、
図3に示すように、2本のエキシマランプ21の内側管27の各一端には、継手41が取付けられており、各継手41には例えば絶縁体により構成された冷媒流通管42が接続されている。各エキシマランプ21に係る冷媒流通管42は、それぞれ、1つの共通口と2つの分岐口を有する一端側マニホールド40における2つの分岐口に接続されている。
図4に示すように、2本のエキシマランプ21の内側管27の各他端には、継手46が取付けられており、各継手46には例えば絶縁体により構成された冷媒流通管47が接続されている。各エキシマランプ21に係る冷媒流通管47は、それぞれ、1つの共通口と2つの分岐口を有する他端側マニホールド45における2つの分岐口に接続されている。
【0024】
一方、金属ビーム30における冷媒流通路R2は、金属ビーム30の上面に形成された溝に設けられた、例えば金属よりなる冷媒流通管32により構成されている。この冷媒流通管32は、全体が例えばU字状であって、各々金属ビーム30の長さ方向に互いに平行に延びる2つの直線状流路部分と、金属ビーム30の一端側部分において各直線状流路部分を連結する弧状に湾曲した流路部分とを有する。この冷媒流通管32の一端は、他端側マニホールド45における共通口に接続されており、これにより、冷媒流路R1と冷媒流通路R2とが互いに連通する状態とされている。
【0025】
そして、一端側マニホールド40における共通口に接続された冷媒流通管43および金属ビーム30に設けられた冷媒流通管32の他端の一方が冷媒供給部(不図示)に接続されると共に他方が冷媒排出部(不図示)に接続される。このような冷却機構においては、一端側マニホールド40における共通口に接続された冷媒流通管43が冷媒供給部に接続された構成とされていることが好ましい。このような構成とされていることにより、エキシマランプ21を一層効率よく冷却することができる。
【0026】
このランプユニット20においては、冷媒供給部から冷媒流通管43を介して一端側マニホールド40に供給された液体冷媒Wは、冷媒流通管42,42を介して各エキシマランプ21における冷媒流路R1に供給される。液体冷媒Wが冷媒流路R1を流通されることによりエキシマランプ21が冷却される。各エキシマランプ21における冷媒流路R1から排出された液体冷媒Wは、冷媒流通管47,47を介して他端側マニホールド45に導入される。その後、金属ビーム30における冷媒流通路R2に供給される。そして、液体冷媒Wが冷媒流通路R2を構成する冷媒流通管32内に流通されることにより金属ビーム30が冷却され、金属ビーム30を介して各エキシマランプ21が冷却される。
【0027】
次いで、ランプユニット20における各エキシマランプ21に対する給電構造について説明する。このランプユニット20においては、
図3に示すように、2本のエキシマランプ21の内側電極22に接続された各リード28が内側管27の一端に取付けられた継手41から例えば液密に外部に導出されている。各リード28は、給電線29aを介して、2本のエキシマランプ21に共通のランプ点灯電源ユニット(図示せず)における高圧側端子に接続されている。一方、エキシマランプ21と金属ビーム30との間に介挿された各金属板23には、引き出し電極24が電気的に接続されている。この引き出し電極24は、給電線(図示せず)を介して、ランプ点灯電源ユニット(図示せず)における低圧側端子に電気的に接続されている。
【0028】
上記のランプユニット20の一構成例を示すと、ランプユニット20の長さ方向の最大寸法が950mm、幅方向の最大寸法(金属ビーム30の幅寸法)が59mm、重量が5kg程度である。エキシマランプ21は、全長が800mm(有効発光長が600mm)、定格電力が600Wであるものである。
【0029】
而して、上記構成のランプニット20によれば、エキシマランプ21の内側管27の内部空間によって形成された冷媒流路R1に液体冷媒Wを流通させることによりエキシマランプ21を直接的に冷却することができると共に、金属ビーム30に設けられた冷媒流通管32に液体冷媒Wを流通させることにより金属ビーム30を冷却し、当該金属ビーム30を介してエキシマランプ21を間接的に冷却することができる。従って、エキシマランプ21に大きな電力が投入された場合であっても、エキシマランプ21を効率よく冷却することができるため、エキシマランプ21の出力低下を回避することができてエキシマランプ21に高い照度を得ることができる。
また、エキシマランプ21における内側管27の内部空間によって形成された冷媒流路R1と冷媒流通管32によって形成された冷媒流通路R2とが連通されていることにより、エキシマランプ21の温度分布を均斉化することができるとともに、冷却機構における配管構造を簡略化することができる。
【0030】
さらにまた、上記構成のランプニット20においては、液体冷媒Wが一端側マニホールド40によって分配されて各々のエキシマランプ21に供給されることによって、個々のエキシマランプ21を実質的に均等な条件で冷却することができる。しかも、エキシマランプ21における放電容器25は、内側管27の両端が外側管26の両端より軸方向外方に突出する状態で配置され、当該外側管26の両端が当該内側管27の外周面に気密に封着されて構成されている。このため、エキシマランプ21における内側管27と、一端側マニホールド40および他端側マニホールド45との配管接続部をエキシマランプ21より離れた位置に形成することができる。また、冷媒流通管32が金属ビーム30に設けられて冷媒流通路R2が構成されているため、冷媒流通路R2と他端側マニホールド45との配管接続部をエキシマランプ21より離れた位置に形成することができる。従って、液体冷媒Wがエキシマランプ21近傍位置において漏れることを回避することができる。
また、冷媒供給部からの液体冷媒Wが一端側マニホールド40によって各エキシマランプ21の内側管27内に分配されると共に、内側管27内を流通した液体冷媒Wが他端側マニホールド45によって合流されて冷媒流通管32に導入されるため、冷却機構における配管構造が煩雑化することを回避することができる。
【0031】
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
例えば、ランプユニットにおいてエキシマランプを冷却するための液体冷媒は、エキシマランプの冷媒流路および金属ビームにおける冷媒流通路の各々に独立して供給される構成とされていてもよい。
また、ランプユニットを構成するエキシマランプの数は1本であってもよい。
さらにまた、エキシマランプは、内側管の内部空間に液体冷媒が流通される構成とされていれば、上記構成のものに限定されない。