特許第6972872号(P6972872)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

<>
  • 6972872-燃料電池システム 図000002
  • 6972872-燃料電池システム 図000003
  • 6972872-燃料電池システム 図000004
  • 6972872-燃料電池システム 図000005
  • 6972872-燃料電池システム 図000006
  • 6972872-燃料電池システム 図000007
  • 6972872-燃料電池システム 図000008
  • 6972872-燃料電池システム 図000009
  • 6972872-燃料電池システム 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6972872
(24)【登録日】2021年11月8日
(45)【発行日】2021年11月24日
(54)【発明の名称】燃料電池システム
(51)【国際特許分類】
   H01M 8/04 20160101AFI20211111BHJP
   H01M 8/0612 20160101ALI20211111BHJP
   C01B 3/38 20060101ALI20211111BHJP
   H01M 8/12 20160101ALN20211111BHJP
【FI】
   H01M8/04 Z
   H01M8/0612
   C01B3/38
   !H01M8/12 101
【請求項の数】8
【全頁数】22
(21)【出願番号】特願2017-194063(P2017-194063)
(22)【出願日】2017年10月4日
(65)【公開番号】特開2019-67684(P2019-67684A)
(43)【公開日】2019年4月25日
【審査請求日】2020年9月10日
(73)【特許権者】
【識別番号】000000011
【氏名又は名称】株式会社アイシン
(74)【代理人】
【識別番号】100089082
【弁理士】
【氏名又は名称】小林 脩
(74)【代理人】
【識別番号】100190333
【弁理士】
【氏名又は名称】木村 群司
(72)【発明者】
【氏名】村上 大河
【審査官】 笹岡 友陽
(56)【参考文献】
【文献】 特開2013−191319(JP,A)
【文献】 特開2012−155847(JP,A)
【文献】 特開2012−133915(JP,A)
【文献】 特開2015−141863(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/04
H01M 8/0612
C01B 3/38
H01M 8/12
(57)【特許請求の範囲】
【請求項1】
燃料と酸化剤ガスとにより発電する燃料電池と、
改質用原料と改質水とから前記燃料を生成して前記燃料電池に供給する改質部と、
前記燃料電池からの未使用の前記燃料を含む可燃性ガスを導入し酸化剤ガスで燃焼して燃焼排ガスを導出する燃焼部と、
前記燃焼排ガスと熱媒体との間で熱交換が行われ、前記燃焼排ガスに含まれている水蒸気を凝縮して凝縮水を生成する熱交換器と、
前記熱交換器から供給された凝縮水を前記改質水として貯水するとともに前記改質部に供給する水タンクと、
前記水タンクに設けられ、前記水タンク内の前記改質水の水量を検出する水量センサと、
前記水タンクから前記改質部に前記改質水を供給する水供給管と、
前記水供給管に設けられ、前記水タンク内の前記改質水を前記改質部に送出する改質水送出装置と、
前記水供給管に設けられ、前記水供給管内の前記改質水を前記水タンクに戻す改質水戻し装置と、
前記水供給管に設けられ、前記水供給管内の前記改質水の水面が基準水位にあるか否かを検出するための水位センサと、
前記燃料電池を発電させる制御を行う制御装置と、
を備えた燃料電池システムであって、
前記制御装置は、
前記改質水戻し装置を作動させて、前記水供給管内の前記改質水の水面を、初期水位から前記初期水位より低い位置である第1戻り水位まで低下させる第1改質水水位調整を行う第1改質水水位調整制御部と、
前記水量センサの検出結果に基づいて、前記改質水の戻り量を算出する戻り量算出部と、
前記戻り量算出部によって算出された前記改質水の戻り量から前記改質水送出装置の駆動指令時間を算出する駆動指令時間算出部と、
前記第1改質水水位調整制御部による前記第1改質水水位調整を行った後に、前記第1改質水水位調整による前記改質水の戻り量に対応する前記駆動指令時間だけ前記改質水送出装置を駆動するように指令して、前記水供給管内の前記改質水の水面を前記第1戻り水位から上昇させる第2改質水水位調整を行う第2改質水水位調整制御部と、
前記第2改質水水位調整制御部による前記第2改質水水位調整を行う際に、前記水位センサの検出結果を用いて、前記水供給管内の前記改質水の水面が前記第1戻り水位から前記基準水位までに到達するのにかかる時間を実測時間として計測をする計測部と、
前記駆動指令時間と、前記計測部によって計測された実測時間との関係に基づいて、前記水供給管および前記改質水送出装置の故障を判定する判定部と、を備えている燃料電池システム。
【請求項2】
前記判定部は、前記駆動指令時間と、前記計測部によって計測された実測時間との関係が、前記水供給管および前記改質水送出装置が正常である正常範囲より下方にある場合には、前記改質水送出装置の送出能力が過剰である送出過剰故障であると判定する請求項1記載の燃料電池システム。
【請求項3】
前記判定部は、前記駆動指令時間と、前記計測部によって計測された実測時間との関係が、前記水供給管および前記改質水送出装置が正常である正常範囲より上方にあり、
かつ、
前記改質水戻し装置を所定時間だけ作動させて、前記水供給管内の前記改質水の水面を、前記基準水位から前記基準水位より低い位置である第2戻り水位まで低下させ、その後、前記改質水送出装置を前記所定時間だけ作動させて、前記水供給管内の前記改質水の水面を、前記第2戻り水位から上昇させた後、前記改質水の水面が前記基準水位に戻っている場合には、前記改質水送出装置の送出能力が低下している送出低下故障であると判定する請求項1記載の燃料電池システム。
【請求項4】
前記判定部は、前記駆動指令時間と、前記計測部によって計測された実測時間との関係が、前記水供給管および前記改質水送出装置が正常である正常範囲より上方にあり、
かつ、
前記改質水戻し装置を所定時間だけ作動させて、前記水供給管内の前記改質水の水面を、前記基準水位から前記基準水位より低い位置である第2戻り水位まで低下させ、その後、前記改質水送出装置を前記所定時間だけ作動させて、前記水供給管内の前記改質水の水面を、前記第2戻り水位から上昇させた後、前記改質水の水面が前記基準水位に戻っていない場合には、前記水供給管の漏れ故障であると判定する請求項1記載の燃料電池システム。
【請求項5】
前記燃料電池システムは、前記改質水を蒸発させて前記改質部に供給する蒸発部に設けられ、前記蒸発部の温度を検出する温度センサをさらに備え、
前記計測部によって前記実測時間が計測できない場合であって、前記温度センサによって検出された前記計測部による前記計測後の前記蒸発部の温度が、前記温度センサによって検出された前記計測部による前記計測前の前記蒸発部の温度より低下している場合には、前記水位センサの故障であると判定する請求項1から請求項のいずれか一項記載の燃料電池システム。
【請求項6】
燃料と酸化剤ガスとにより発電する燃料電池と、
改質用原料と改質水とから前記燃料を生成して前記燃料電池に供給する改質部と、
前記燃料電池からの未使用の前記燃料を含む可燃性ガスを導入し酸化剤ガスで燃焼して燃焼排ガスを導出する燃焼部と、
前記燃焼排ガスと熱媒体との間で熱交換が行われ、前記燃焼排ガスに含まれている水蒸気を凝縮して凝縮水を生成する熱交換器と、
前記熱交換器から供給された凝縮水を前記改質水として貯水するとともに前記改質部に供給する水タンクと、
前記水タンクから前記改質部に前記改質水を供給する水供給管と、
前記水供給管に設けられ、前記水タンク内の前記改質水を前記改質部に送出する改質水送出装置と、
前記水供給管に設けられ、前記水供給管内の前記改質水を前記水タンクに戻す改質水戻し装置と、
前記水供給管に設けられ、前記水供給管内の前記改質水の水面が基準水位にあるか否かを検出するための水位センサと、
前記燃料電池を発電させる制御を行う制御装置と、
を備えた燃料電池システムであって、
前記制御装置は、
前記改質水戻し装置を作動させて、前記水供給管内の前記改質水の水面を、初期水位から前記初期水位より低い位置である第1戻り水位まで低下させる第1改質水水位調整を行う第1改質水水位調整制御部と、
前記第1改質水水位調整制御部による前記第1改質水水位調整を行った後に、前記第1改質水水位調整による前記改質水の戻り量に対応する駆動指令時間だけ前記改質水送出装置を駆動するように指令して、前記水供給管内の前記改質水の水面を前記第1戻り水位から上昇させる第2改質水水位調整を行う第2改質水水位調整制御部と、
前記第2改質水水位調整制御部による前記第2改質水水位調整を行う際に、前記水位センサの検出結果を用いて、前記水供給管内の前記改質水の水面が前記第1戻り水位から前記基準水位までに到達するのにかかる時間を実測時間として計測をする計測部と、
前記駆動指令時間と、前記計測部によって計測された実測時間との関係に基づいて、前記水供給管および前記改質水送出装置の故障を判定する判定部と、を備え、
前記判定部は、前記駆動指令時間と、前記計測部によって計測された実測時間との関係が、前記水供給管および前記改質水送出装置が正常である正常範囲より上方にあり、
かつ、
前記改質水戻し装置を所定時間だけ作動させて、前記水供給管内の前記改質水の水面を、前記基準水位から前記基準水位より低い位置である第2戻り水位まで低下させ、その後、前記改質水送出装置を前記所定時間だけ作動させて、前記水供給管内の前記改質水の水面を、前記第2戻り水位から上昇させた後、前記改質水の水面が前記基準水位に戻っている場合には、前記改質水送出装置の送出能力が低下している送出低下故障であると判定する燃料電池システム。
【請求項7】
燃料と酸化剤ガスとにより発電する燃料電池と、
改質用原料と改質水とから前記燃料を生成して前記燃料電池に供給する改質部と、
前記燃料電池からの未使用の前記燃料を含む可燃性ガスを導入し酸化剤ガスで燃焼して燃焼排ガスを導出する燃焼部と、
前記燃焼排ガスと熱媒体との間で熱交換が行われ、前記燃焼排ガスに含まれている水蒸気を凝縮して凝縮水を生成する熱交換器と、
前記熱交換器から供給された凝縮水を前記改質水として貯水するとともに前記改質部に供給する水タンクと、
前記水タンクから前記改質部に前記改質水を供給する水供給管と、
前記水供給管に設けられ、前記水タンク内の前記改質水を前記改質部に送出する改質水送出装置と、
前記水供給管に設けられ、前記水供給管内の前記改質水を前記水タンクに戻す改質水戻し装置と、
前記水供給管に設けられ、前記水供給管内の前記改質水の水面が基準水位にあるか否かを検出するための水位センサと、
前記燃料電池を発電させる制御を行う制御装置と、
を備えた燃料電池システムであって、
前記制御装置は、
前記改質水戻し装置を作動させて、前記水供給管内の前記改質水の水面を、初期水位から前記初期水位より低い位置である第1戻り水位まで低下させる第1改質水水位調整を行う第1改質水水位調整制御部と、
前記第1改質水水位調整制御部による前記第1改質水水位調整を行った後に、前記第1改質水水位調整による前記改質水の戻り量に対応する駆動指令時間だけ前記改質水送出装置を駆動するように指令して、前記水供給管内の前記改質水の水面を前記第1戻り水位から上昇させる第2改質水水位調整を行う第2改質水水位調整制御部と、
前記第2改質水水位調整制御部による前記第2改質水水位調整を行う際に、前記水位センサの検出結果を用いて、前記水供給管内の前記改質水の水面が前記第1戻り水位から前記基準水位までに到達するのにかかる時間を実測時間として計測をする計測部と、
前記駆動指令時間と、前記計測部によって計測された実測時間との関係に基づいて、前記水供給管および前記改質水送出装置の故障を判定する判定部と、を備え、
前記判定部は、前記駆動指令時間と、前記計測部によって計測された実測時間との関係が、前記水供給管および前記改質水送出装置が正常である正常範囲より上方にあり、
かつ、
前記改質水戻し装置を所定時間だけ作動させて、前記水供給管内の前記改質水の水面を、前記基準水位から前記基準水位より低い位置である第2戻り水位まで低下させ、その後、前記改質水送出装置を前記所定時間だけ作動させて、前記水供給管内の前記改質水の水面を、前記第2戻り水位から上昇させた後、前記改質水の水面が前記基準水位に戻っていない場合には、前記水供給管の漏れ故障であると判定する燃料電池システム。
【請求項8】
燃料と酸化剤ガスとにより発電する燃料電池と、
改質用原料と改質水とから前記燃料を生成して前記燃料電池に供給する改質部と、
前記燃料電池からの未使用の前記燃料を含む可燃性ガスを導入し酸化剤ガスで燃焼して燃焼排ガスを導出する燃焼部と、
前記燃焼排ガスと熱媒体との間で熱交換が行われ、前記燃焼排ガスに含まれている水蒸気を凝縮して凝縮水を生成する熱交換器と、
前記熱交換器から供給された凝縮水を前記改質水として貯水するとともに前記改質部に供給する水タンクと、
前記水タンクから前記改質部に前記改質水を供給する水供給管と、
前記水供給管に設けられ、前記水タンク内の前記改質水を前記改質部に送出する改質水送出装置と、
前記水供給管に設けられ、前記水供給管内の前記改質水を前記水タンクに戻す改質水戻し装置と、
前記水供給管に設けられ、前記水供給管内の前記改質水の水面が基準水位にあるか否かを検出するための水位センサと、
前記改質水を蒸発させて前記改質部に供給する蒸発部に設けられ、前記蒸発部の温度を検出する温度センサと、
前記燃料電池を発電させる制御を行う制御装置と、
を備えた燃料電池システムであって、
前記制御装置は、
前記改質水戻し装置を作動させて、前記水供給管内の前記改質水の水面を、初期水位から前記初期水位より低い位置である第1戻り水位まで低下させる第1改質水水位調整を行う第1改質水水位調整制御部と、
前記第1改質水水位調整制御部による前記第1改質水水位調整を行った後に、前記第1改質水水位調整による前記改質水の戻り量に対応する駆動指令時間だけ前記改質水送出装置を駆動するように指令して、前記水供給管内の前記改質水の水面を前記第1戻り水位から上昇させる第2改質水水位調整を行う第2改質水水位調整制御部と、
前記第2改質水水位調整制御部による前記第2改質水水位調整を行う際に、前記水位センサの検出結果を用いて、前記水供給管内の前記改質水の水面が前記第1戻り水位から前記基準水位までに到達するのにかかる時間を実測時間として計測をする計測部と、
前記駆動指令時間と、前記計測部によって計測された実測時間との関係に基づいて、前記水供給管および前記改質水送出装置の故障を判定する判定部と、を備え、
前記計測部によって前記実測時間が計測できない場合であって、前記温度センサによって検出された前記計測部による前記計測後の前記蒸発部の温度が、前記温度センサによって検出された前記計測部による前記計測前の前記蒸発部の温度より低下している場合には、前記水位センサの故障であると判定する燃料電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システムに関する。
【背景技術】
【0002】
燃料電池システムの一形式として、特許文献1に示されているものが知られている。特許文献1の図1に示されているように、燃料電池システムは、蒸発部2、改質部3、水タンク4、給水通路8、水搬送源8A、水センサ87を有する。制御部100は蒸発部2への給水に対する給水異常判定処理を実行する。給水異常判定処理は、水搬送源8Aを逆回転させることにより給水通路8の改質水を水タンク4に戻す操作と、給水通路8の改質水を空にした状態において、水搬送源8Aを正回転させることにより水タンク4の改質水を給水通路8に供給し、水センサ87が水を検知するまでの水搬送源8Aの出力に関する物理量を検知する給水操作と、給水操作における物理量が規定範囲外であれば、蒸発部2への給水が異常であると判定する判定操作とを含む。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2013−191319号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述した特許文献1に記載されている燃料電池システムは、給水異常判定を実施しているものの、水タンクから改質部までに設けられた給水系の異常部位を特定する改善の余地があり、ひいてはメンテナンス性を向上させる余地がある。
【0005】
本発明は、上述した問題を解消するためになされたもので、燃料電池システムにおいて、給水系の異常部位を特定し、ひいてはメンテナンス性を向上することを目的とする。
【課題を解決するための手段】
【0006】
上記の課題を解決するため、請求項1に係る燃料電池システムの発明は、燃料と酸化剤ガスとにより発電する燃料電池と、改質用原料と改質水とから前記燃料を生成して前記燃料電池に供給する改質部と、前記燃料電池からの未使用の前記燃料を含む可燃性ガスを導入し酸化剤ガスで燃焼して燃焼排ガスを導出する燃焼部と、前記燃焼排ガスと熱媒体との間で熱交換が行われ、前記燃焼排ガスに含まれている水蒸気を凝縮して凝縮水を生成する熱交換器と、前記熱交換器から供給された凝縮水を前記改質水として貯水するとともに前記改質部に供給する水タンクと、前記水タンクに設けられ、前記水タンク内の前記改質水の水量を検出する水量センサと、前記水タンクから前記改質部に前記改質水を供給する水供給管と、前記水供給管に設けられ、前記水タンク内の前記改質水を前記改質部に送出する改質水送出装置と、前記水供給管に設けられ、前記水供給管内の前記改質水を前記水タンクに戻す改質水戻し装置と、前記水供給管に設けられ、前記水供給管内の前記改質水の水面が基準水位にあるか否かを検出するための水位センサと、前記燃料電池を発電させる制御を行う制御装置と、を備えた燃料電池システムであって、前記制御装置は、前記改質水戻し装置を作動させて、前記水供給管内の前記改質水の水面を、初期水位から前記初期水位より低い位置である第1戻り水位まで低下させる第1改質水水位調整を行う第1改質水水位調整制御部と、前記水量センサの検出結果に基づいて、前記改質水の戻り量を算出する戻り量算出部と、前記戻り量算出部によって算出された前記改質水の戻り量から前記改質水送出装置の駆動指令時間を算出する駆動指令時間算出部と、前記第1改質水水位調整制御部による前記第1改質水水位調整を行った後に、前記第1改質水水位調整による前記改質水の戻り量に対応する前記駆動指令時間だけ前記改質水送出装置を駆動するように指令して、前記水供給管内の前記改質水の水面を前記第1戻り水位から上昇させる第2改質水水位調整を行う第2改質水水位調整制御部と、前記第2改質水水位調整制御部による前記第2改質水水位調整を行う際に、前記水位センサの検出結果を用いて、前記水供給管内の前記改質水の水面が前記第1戻り水位から前記基準水位までに到達するのにかかる時間を実測時間として計測をする計測部と、前記駆動指令時間と、前記計測部によって計測された実測時間との関係に基づいて、前記水供給管および前記改質水送出装置の故障を判定する判定部と、を備えている。
【発明の効果】
【0007】
これによれば、制御装置は、改質水戻し装置を作動させて、水供給管内の改質水の水面を、第1戻り水位まで低下させ(第1改質水水位調整)、その後、第1改質水水位調整による改質水の戻り量に対応する駆動指令時間だけ改質水送出装置を駆動させて、水供給管内の改質水の水面を第1戻り水位から上昇させる(第2改質水水位調整)。このとき、制御装置は、水位センサの検出結果を用いて、水供給管内の改質水の水面が第1戻り水位から基準水位までに到達するのにかかる時間を実測時間として計測をする(計測部)。そして、制御装置は、駆動指令時間と、計測部によって計測された実測時間との関係に基づいて、水供給管および改質水送出装置の故障を判定する(判定部)。その結果、燃料電池システムにおいて、水タンクから改質部までに設けられた給水系の異常部位を特定することができ、ひいてはメンテナンス性を向上することができる。
【図面の簡単な説明】
【0008】
図1】本発明による燃料電池システムの一実施形態の概要を示す概要図である。
図2図1に示す制御装置で実行される制御プログラムのフローチャートである。
図3図1に示す制御装置で実行される制御プログラムのフローチャートである。
図4】検知時間t2と定数βとの関係を示す図である。
図5】駆動指令時間と検知時間t4との関係と給水系の正常範囲および故障範囲とのの関係を示す図である。
図6】本発明による燃料電池システムの一実施形態の変形例の概要を示す概要図である。
図7図6に示す制御装置で実行される制御プログラムのフローチャートである。
図8図6に示す制御装置で実行される制御プログラムのフローチャートである。
図9】時間t5と時間t6との関係を示す図である。
【発明を実施するための形態】
【0009】
以下、本発明による燃料電池システム1の一実施形態について説明する。燃料電池システム1は、図1に示すように、発電ユニット10および貯湯槽21を備えている。発電ユニット10は、筐体10a、燃料電池モジュール11(30)、熱交換器12、インバータ装置13、水タンク14、および制御装置15を備えている。燃料電池モジュール11(30)、熱交換器12、インバータ装置13、水タンク14、および制御装置15は、筐体10a内に収容されている。
【0010】
燃料電池モジュール11は、後述するように燃料電池34を少なくとも含んで構成されるものである。燃料電池モジュール11は、改質用原料、改質水およびカソードエアが供給されている。具体的には、燃料電池モジュール11は、一端が供給源Gsに接続されて改質用原料が供給される改質用原料供給管11aの他端が接続されている。改質用原料供給管11aは、原料ポンプ11a1が設けられている。さらに、燃料電池モジュール11は、一端が水タンク14に接続されて改質水が供給される水供給管11bの他端が接続されている。さらに、燃料電池モジュール11は、一端がカソードエアブロワ11c1に接続されてカソードエアが供給されるカソードエア供給管11cの他端が接続されている。
【0011】
水供給管11bは、改質水ポンプ11b1が設けられている。改質水ポンプ11b1は、水タンク14の改質水を吸入して蒸発部32(改質部33)への送出(正回転:改質水送出)、および改質水ポンプ11b1より蒸発部32(改質部33)側の水供給管11b内の改質水を吸入して水タンク14への送出(逆回転:改質水戻し)を切り替え可能に構成されたポンプである。改質水ポンプ11b1は、水供給管11bに設けられ、水タンク14内の改質水を改質部33に送出する改質水送出装置であり、水供給管11bに設けられ、水供給管11b内の改質水を水タンク14に戻す改質水戻し装置である。
【0012】
水供給管11bには、水供給管11b内の改質水の水面が基準水位にあるか否かを検出するための水位センサ11b2が設けられている。水位センサ11b2の検出結果は、制御装置15に送信されるようになっている。水位センサ11b2は、改質水ポンプ11b1の下流で且つ蒸発部32の上流に設けられている。水位センサ11b2は水供給管11bにおいて蒸発部32の入口ポートの直前または同じ高さに配置されていることが好ましい。水位センサ11b2の検知原理は、何でも良く、水の有無に基づく静電容量の変化を検知する方式、水の有無に基づく通電量の変化を検知する方式、水の有無に基づく電気抵抗の変化を検知する方式、水の有無に基づく水圧の変化を検知する方式、水の有無に基づく磁気の変化を検知する方式等のいずれでも良く、更に他の方式でも良い。水位センサ11b2の検知部は、基準水位と同じ高さに配置されるのが好ましい。また、水位センサ11b2の検知部は、基準水位から上下方向に沿って所定距離だけ離れた位置に配置されるようにしてもよい。基準水位は、改質水ポンプ11b1が正回転した場合、遅滞なく改質水が蒸発部32に供給される改質水の水位である。なお、図1に示すように、水供給管11bにおいては、水タンク14、改質水ポンプ11b1、水位センサ11b2、蒸発部32がこの順に直列に配置されている。
【0013】
熱交換器12は、燃料電池モジュール11から排気される燃焼排ガスが供給されるとともに貯湯槽21からの貯湯水が供給され、燃焼排ガス(燃料電池34および改質部33の各排熱を含んでいる)と貯湯水との間で熱交換が行われる熱交換器である。また、熱交換器12は、燃焼排ガスと貯湯水との間で熱交換が行われ、燃焼排ガスに含まれている水蒸気を凝縮して凝縮水を生成する。貯湯水は、燃焼排ガスの排熱を回収する熱媒体(排熱回収水)である。
【0014】
貯湯槽21は、貯湯水を貯湯するものであり、貯湯水が循環する(図にて矢印の方向に循環する)貯湯水循環ライン22が接続されている。貯湯水循環ライン22上には、下端から上端に向かって順番にラジエータ22a、貯湯水循環ポンプ22b、および熱交換器12が配設されている。
【0015】
熱交換器12は、ケーシング12bを備えている。ケーシング12bの上部には、燃料電池モジュール11からの排気管11dが接続されている。ケーシング12bの下部には、外部(大気)に接続されている排気管11eが接続されている。ケーシング12bの底部には、水タンク14に接続されている凝縮水供給管12aが接続されている。ケーシング12b内には、燃焼排ガスが通過する燃焼排ガス流路(図示省略)が形成されている。この燃焼排ガス流路に、貯湯水循環ライン22に接続されている熱交換部(凝縮部)12cが配設されている。熱交換部12c内には、貯湯水が流れ、熱交換部12cの外側には、燃焼排ガスが流れている。なお、貯湯水と燃焼排ガスとは互いに反対向きに流れるように構成されるのが好ましい。
【0016】
このように構成された熱交換器12においては、燃料電池モジュール11からの燃焼排ガスは、排気管11dを通ってケーシング12b内に導入され、貯湯水が流通する熱交換部12cを通る際に貯湯水との間で熱交換が行われ凝縮されるとともに冷却される。その後、燃焼排ガスは排気管11eを通って外部に排出される。また、凝縮された凝縮水は、凝縮水供給管12aを通って水タンク14に供給される(自重で落水する)。一方、熱交換部12cに流入した貯湯水は、加熱されて流出される。
【0017】
上述した熱交換器12、貯湯槽21および貯湯水循環ライン22から、排熱回収システム20が構成されている。排熱回収システム20は、燃料電池モジュール11の排熱を貯湯水に回収して蓄える。
貯湯槽21は、密封式の容器である。貯湯槽21は、耐圧式の容器である。貯湯槽21内の温度分布は、基本的には、温度の異なる二層に分かれている。上層は比較的温度が高い層(例えば50度以上)であり、下層は比較的温度が低い層(例えば20度以下(水道水の温度))である。上下各層は、それぞれほぼ同一温度である。
【0018】
ラジエータ22aは、貯湯水循環ライン22を循環する熱媒体(貯湯水)を冷却する冷却装置であり、制御装置15の指令によってオン・オフ制御されており、オン状態のときには熱媒体を冷却し、オフ状態のときには冷却しないものである。なお、ラジエータ22aは、熱媒体と空気との間で熱交換が行われる熱交換部(図示省略)と、熱交換部を空冷する冷却ファン(図示省略)とを備えている。
貯湯水循環ポンプ22bは、貯湯水循環ライン22の熱媒体(貯湯水)を送出して図示矢印方向へ循環させる送出装置であり、制御装置15によって制御されてその吐出量(送出量)が制御されるようになっている。
【0019】
インバータ装置13は、燃料電池34から出力される直流電圧を入力し所定の交流電圧に変換して、交流の系統電源16aおよび外部電力負荷16c(例えば電化製品)に接続されている電源ライン16bに出力する。また、インバータ装置13は、系統電源16aからの交流電圧を電源ライン16bを介して入力し所定の直流電圧に変換して補機(各ポンプ、ブロワなど)や制御装置15に出力する。
【0020】
水タンク14は、熱交換器12から供給される凝縮水を貯水し、蒸発部32ひいては改質部33に改質水として供給するものである。水タンク14内には、水タンク14内の水量(水位:以下、タンク水量ともいう。)を検出する水量センサ14aが配設されている。水量センサ14aの検出結果は、制御装置15に出力されるようになっている。水量センサ14aは、例えば、フロート式のセンサであり、フロートの上下量を可変抵抗(ポテンショメータ)により抵抗値に変換し、抵抗値の上下動によって水量(残水量)を表示する方式のセンサである。
【0021】
また、凝縮水供給管12aには、水精製器40が設けられている。水精製器40は、熱交換器12から供給された凝縮水を例えばイオン交換樹脂によって純水化して水タンク14に導出する。なお、水タンク14は、凝縮水をイオン交換樹脂によって純水化するように構成するようにしてもよい。この場合、水精製器40を省略することができる。
【0022】
燃料電池モジュール11(30)は、ケーシング31、蒸発部32、改質部33および燃料電池34を備えている。ケーシング31は、断熱性材料で箱状に形成されている。
蒸発部32は、後述する燃焼ガスにより加熱されて、供給された改質水を蒸発させて水蒸気を生成するとともに、供給された改質用原料を予熱するものである。蒸発部32は、このように生成された水蒸気と予熱された改質用原料を混合して改質部33に供給するものである。改質用原料としては天然ガス(メタンガスを主成分とする)、LPガスなどの改質用気体燃料、灯油、ガソリン、メタノールなどの改質用液体燃料があり、本実施形態においては天然ガスにて説明する。
【0023】
蒸発部32には、一端(下端)が水タンク14に接続された水供給管11bの他端が接続されている。また、蒸発部32には、一端が供給源Gsに接続された改質用原料供給管11aが接続されている。供給源Gsは、例えば都市ガスのガス供給管、LPガスのガスボンベである。蒸発部32には、蒸発部32(例えば蒸発部32の内部)の温度を検出する温度センサ32aが設けられている。温度センサ32aの検出結果は、制御装置15に送信されるようになっている。
【0024】
改質部33は、上述した燃焼ガスにより加熱されて水蒸気改質反応に必要な熱が供給されることで、蒸発部32から供給された混合ガス(改質用原料、水蒸気)から改質ガスを生成して導出するものである。改質部33内には、触媒(例えば、RuまたはNi系の触媒)が充填されており、混合ガスが触媒によって反応し改質されて水素ガスと一酸化炭素などを含んだガスが生成されている(いわゆる水蒸気改質反応)。改質ガスは、水素、一酸化炭素、二酸化炭素、水蒸気、未改質の天然ガス(メタンガス)、改質に使用されなかった改質水(水蒸気)を含んでいる。このように、改質部33は改質用原料(原燃料)と改質水とから改質ガス(燃料)を生成して燃料電池34に供給する。なお、水蒸気改質反応は吸熱反応である。
【0025】
燃料電池34は、燃料極、空気極(酸化剤極)、および両極の間に介装された電解質からなる複数のセル34aが積層されて構成されている。本実施形態の燃料電池は、固体酸化物形燃料電池であり、電解質として固体酸化物の一種である酸化ジルコニウムを使用している。燃料電池34の燃料極には、燃料として水素、一酸化炭素、メタンガスなどが供給される。動作温度は400〜1000℃程度である。
【0026】
セル34aの燃料極側には、燃料である改質ガスが流通する燃料流路34bが形成されている。セル34aの空気極側には、酸化剤ガスである空気(カソードエア)が流通する空気流路34cが形成されている。
【0027】
燃料電池34は、マニホールド35上に設けられている。マニホールド35には、改質部33からの改質ガス(アノードガス)が改質ガス供給管38を介して供給される。燃料流路34bは、その下端(一端)がマニホールド35の燃料導出口に接続されており、その燃料導出口から導出される改質ガスが下端から導入され上端から導出されるようになっている。カソードエアブロワ11c1によって送出されたカソードエアはカソードエア供給管11cを介して供給され、空気流路34cの下端から導入され上端から導出されるようになっている。
【0028】
燃料電池34においては、燃料極に供給されたアノードガスと空気極に供給された酸化剤ガス(カソードガス)によって発電が行われる。すなわち、燃料極では、下記化1および化2に示す反応が生じ、空気極では、下記化3に示す反応が生じている。すなわち、空気極で生成した酸化物イオン(O2−)が電解質を透過し、燃料極で水素と反応することにより電気エネルギーを発生させている。したがって、燃料流路34bおよび空気流路34cからは、発電に使用されなかった改質ガスおよび酸化剤ガス(空気)が導出する。
(化1)
+O2−→HO+2e
(化2)
CO+O2−→CO+2e
(化3)
1/2O+2e→O2−
【0029】
そして、発電に使用されなかった改質ガス(アノードオフガス)は、燃料流路34bから燃焼空間36(燃料電池34と蒸発部32(改質部33)の間に形成された)に導出される。発電に使用されなかった酸化剤ガス(空気:カソードオフガス)は、空気流路34cから燃焼空間36に導出される。燃焼空間36にてアノードオフガスはカソードオフガスによって燃焼され、その燃焼ガスによって蒸発部32および改質部33が加熱される。さらには、燃料電池モジュール11内を動作温度に加熱している。その後、燃焼ガスは、ケーシング12bの下部に設けられた排気管11eから燃料電池モジュール11の外に燃焼排ガスとして排気される。このように、燃焼空間36が、燃料電池34からの未使用の燃料(改質ガス)を含む可燃性ガス(アノードオフガス)を導入し酸化剤ガスで燃焼して燃焼排ガス(水蒸気を含む)を導出する燃焼部である。
【0030】
燃焼部36では、アノードオフガスが燃焼されて火炎37(燃焼ガス)が発生している。燃焼部36には、アノードオフガスを着火させるための一対の着火ヒータ36a1,36a2が設けられている。
【0031】
制御装置15は、補機を駆動して燃料電池システム1の運転を統括して制御する。制御装置15は、燃料電池34を発電させる制御を行うことができる。制御装置15は、マイクロコンピュータ(図示省略)を有している。マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも図示省略)を備えている。CPUは、燃料電池システム1の統括運転を実施している。RAMは制御プログラムの実行に必要な変数を一時的に記憶するものであり、ROMは制御プログラムを記憶するものである。
【0032】
次に、上述した燃料電池システム1の作動について図2図3に示すフローチャートに沿って説明する。制御装置15は、そのフローチャートに沿ったプログラムを実行する。
制御装置15は、ステップS102において、水位センサ11b2の検出結果に基づいて水位センサ11b2が水なしを検知するか否かを判定する。改質水の水位が水位センサ11b2の検出部にあれば、水ありを検知し、一方、改質水の水位が水位センサ11b2の検出部より下方にあれば、水なしを検知する。制御装置15は、水ありを検知すれば、プログラムを一旦終了し、水なしを検知すれば、プログラムをステップS104以降に進める。
なお、ステップS102の処理に代えて、故障個所判定の要否を判定するようにしてもよい。例えば故障個所判定指示を示す故障個所判定スイッチが押されたか否かを判定するようにすればよい。
また、水位センサ11b2の水なし検知は、センサ自体は正常であるが実際に改質水の水位が検知部より低い場合や、実際に改質水の水位は検知部にあるがセンサ自体が故障している場合を含んでいる。
【0033】
制御装置15は、ステップS104において、改質水戻し装置である改質水ポンプ11b1を作動(逆回転)させて、水供給管11b内の改質水の水面を、初期水位から初期水位より低い位置である第1戻り水位まで低下させる第1改質水水位調整を行う(第1改質水水位調整制御部)。具体的には、制御装置15は、改質水ポンプ11b1の逆回転を開始させて、αcc/分の流量にて時間t1逆回転を継続する。これにより、改質水ポンプ11b1より下流側の水供給管11b内の改質水が水タンク14に戻される。
なお、時間t1は、水供給管11bの蒸発部32から改質水ポンプ11b1までの改質水の全量(配管容積に等しい)を送出できる時間に設定されるのが好ましい。αは、改質水ポンプ11b1の単位時間あたりの送出流量であり、例えば最大送出流量である。
初期水位は、第1改質水水位調整を行う直前の改質水の水面(第1改質水水位調整の開始時点の水位)であり、基準水位のときもあれば、基準水位より低い水位のときもある。第1戻り水位は、初期水位より下方に位置し、改質水ポンプ11b1より上方に位置する場合もあれば、改質水ポンプ11b1より下方に位置する場合もある。
【0034】
制御装置15は、ステップS106において、第1改質水水位調整を開始した時点から時間t1内に(第1改質水水位調整を開始した時点から時間t1が経過した時点までにおいて)、水量センサ14aが第1改質水水位調整を開始した時点から所定水量の増量を検知したか否かを判定する。所定水量は、水供給管11bの蒸発部32から改質水ポンプ11b1までの改質水の全量より大きい値に設定されるのが好ましい。なお、水位センサ11b2から蒸発部32までの水供給管11bが水平であるかまたは下方に向けて傾斜している場合は、所定水量は、水位センサ11b2から改質水ポンプ11b1までの改質水の全量より大きい値に設定されるのが好ましい。制御装置15は、水量センサ14aの検出結果に基づいて水タンク14の改質水の残量が所定水量を越えれば所定水量の増量を検知し、越えなければ所定水量の増量を検知しない。
また、制御装置15は、ステップS106において、第1改質水水位調整を開始した時点から水量センサ14aが所定水量の増量を検知した時点までにかかった時間(検知時間)t2を計測する。なお、例えば、時間t1は、前述した所定水量を、改質水ポンプ11b1の単位時間あたりの戻し量(送出量)で除した値に所定値(改質水ポンプ11b1の送出能力を考慮した値)を加算した値に設定される。
【0035】
制御装置15は、時間t1内に水量センサ14aが所定水量の増量を検知すれば(ステップS106にて「YES」)、プログラムをステップS108に進め、時間t1内に水量センサ14aが所定水量の増量を検知しなければ(ステップS106にて「NO」)、プログラムをステップS124に進める。
【0036】
制御装置15は、ステップS108において、改質水ポンプ11b1を停止させ、所定時間(例えば60秒)だけ処理を行わず待機する。これにより、後述する第2改質水水位調整を行う際に、改質水ポンプ11b1、水供給管11bに空気が混入されるのを抑制することができる。
【0037】
そして、制御装置15は、ステップS110において、第1改質水水位調整により水タンク14に戻った改質水の量である改質水戻り量(=検知時間t2×改質水ポンプ11b1の送出流量α)を演算する。すなわち、制御装置15は、水量センサ14aの検出結果(上述した水タンク14の所定水量の増量の検知)に基づいて、改質水の戻り量を算出することができる(戻り量算出部)。
【0038】
その後、制御装置15は、ステップS112において、水供給管11b内の改質水の水面を第1戻り水位から上昇させる第2改質水水位調整を行う(第2改質水水位調整制御部)。具体的には、制御装置15は、前記第1改質水水位調整制御部による第1改質水水位調整を行った後に、第1改質水水位調整による改質水戻り量に対応する駆動指令時間だけ改質水送出装置である改質水ポンプ11b1を駆動するように指令して第2改質水水位調整を行う。
【0039】
さらに、制御装置15は、ステップS112において、前記戻り量算出部によって算出された改質水戻り量から、駆動指令時間を算出する(駆動指令時間算出部)。具体的には、制御装置15は、図4に示すマップを用いて検知時間t2に対応する定数βを算出し、検知時間t2に定数βを加算した値を駆動指令時間(=t2+β)として算出する。図4に示すマップは、検知時間t2と定数βとの関係(例えば、定数βは検知時間t2の一次関数で表される。)を示しており、検知時間t2が大きいほど定数βが大きくなるように設定されている。
【0040】
すなわち、制御装置15は、改質水ポンプ11b1の正回転を開始させて、αcc/分の流量にて駆動指令時間(=t2+β)だけ正回転を継続する。これにより、水タンク14内の改質水が汲み上げられ、水供給管11bひいては蒸発部32に送出される。このとき、駆動指令時間は、t2+βであるから、改質水を水タンク14に戻した時間t2より定数βだけ長く設定することができる。よって、水供給管11bや改質水ポンプ11b1に故障がなければ、水供給管11b内にて改質水の水位を初期水位より高い位置にすることができる。さらに、定数βは、初期水位が基準水位に対して乖離する量を加味して設定されているので、第2改質水水位調整を行えば改質水の水位を基準水位より高い位置にすることができる。
【0041】
制御装置15は、ステップS114において、第2改質水水位調整を開始した時点以降において、改質水の水位が基準水位に到達した旨(「水あり」)を水位センサ11b2が検出したか否かを判定する。また、制御装置15は、ステップS114において、第2改質水水位調整を開始した時点から、改質水の水位が基準水位に到達した旨を水位センサ11b2が検出した時点までにかかった時間(検知時間)t4を計測する。すなわち、制御装置15は、前記第2改質水水位調整制御部による前記第2改質水水位調整を行う際に、水位センサ11b2の検出結果を用いて、水供給管11b内の改質水の水面が第1戻り水位から基準水位までに到達するのにかかる時間を実測時間(検知時間)t4として計測をする(計測部)。
【0042】
制御装置15は、駆動指令時間(=t2+β)内に水位センサ11b2が水ありを検知すれば(ステップS114にて「YES」)、プログラムをステップS116に進め、駆動指令時間(t2+β)内に水位センサ11b2が水ありを検知しなければ(ステップS114にて「NO」)、プログラムをステップS122に進める。
【0043】
制御装置15は、ステップS116において、検知時間t4を記憶するとともに、改質水ポンプ11b1の正回転を停止し改質水補給(汲み上げ)を停止する。その後、制御装置15は、ステップS118において、前記駆動指令時間と、前記計測部によって計測された検知時間(実測時間)t4との関係に基づいて、水供給管11bおよび改質水送出装置である改質水ポンプ11b1が正常であるか否かを判定する。すなわち、制御装置15は、ステップS118において、前記駆動指令時間と、前記計測部によって計測された検知時間t4との関係に基づいて、水供給管11bおよび改質水送出装置である改質水ポンプ11b1の故障を判定する(判定部)。
【0044】
具体的には、制御装置15は、図5に示すマップを用いて、前記駆動指令時間と検知時間t4との関係が図5に示す正常範囲内にある場合には、水供給管11bおよび改質水送出装置である改質水ポンプ11b1が正常であると判定する。一方、前記駆動指令時間と検知時間t4との関係が図5に示す正常範囲外にある場合には、水供給管11bまたは改質水送出装置である改質水ポンプ11b1が異常(故障)であると判定する。
【0045】
図5に示すマップは、実験によって作成することができる。水供給管11bおよび改質水ポンプ11b1に故障がない正常である場合に、駆動指令時間を変更して検知時間t4を測定し、駆動指令時間と検知時間t4との関係から正常範囲を作成することができる。同様に、水供給管11bに水漏れ故障がある場合に、駆動指令時間を変更して検知時間t4を測定し、駆動指令時間と検知時間t4との関係から水供給管11bに水漏れ故障がある水供給管水漏れ故障の範囲(水供給管水漏れ故障範囲)を作成することができる。水供給管水漏れ故障範囲は、正常範囲すなわち正常範囲の上限値より上方に位置する。水供給管水漏れ故障である場合には、正常である場合と比較して、同じ駆動指令時間に対して検知時間t4が長くなるからである。
【0046】
さらに、同様に、改質水ポンプ11b1の送出能力が低下している場合に、駆動指令時間を変更して検知時間t4を測定し、駆動指令時間と検知時間t4との関係から、改質水ポンプ11b1の送出能力が低下している改質水ポンプ能力低下故障の範囲(改質水ポンプ能力低下故障範囲)を作成することができる。改質水ポンプ能力低下故障範囲は、正常範囲すなわち正常範囲の上限値より上方に位置する。改質水ポンプ能力低下故障である場合には、正常である場合と比較して、同じ駆動指令時間に対して検知時間t4が長くなるからである。
【0047】
さらに、同様に、改質水ポンプ11b1の送出能力が過剰である場合に、駆動指令時間を変更して検知時間t4を測定し、駆動指令時間と検知時間t4との関係から、改質水ポンプ11b1の送出能力が過剰である改質水ポンプ能力過剰故障の範囲(改質水ポンプ能力過剰故障範囲)を作成することができる。改質水ポンプ能力過剰故障範囲は、正常範囲すなわち正常範囲の下限値より下方に位置する。改質水ポンプ能力過剰故障である場合には、正常である場合と比較して、同じ駆動指令時間に対して検知時間t4が短くなるからである。
【0048】
前記駆動指令時間と検知時間t4との関係が図5に示す正常範囲内にある場合には、制御装置15は、ステップS118にて「YES」と判定し、ステップS120において水供給管11bおよび改質水ポンプ11b1は正常である旨を判定する(判定部)。その後、制御装置15はプログラムを一旦終了する。一方、前記駆動指令時間と検知時間t4との関係が図5に示す正常範囲外にある場合には、制御装置15は、ステップS118にて「NO」と判定し、プログラムをステップS202以降に進める。
【0049】
制御装置15は、前記駆動指令時間と検知時間t4との関係が、正常範囲より下方にある場合には、ステップS202にて「小」と判定し、ステップS204において改質水ポンプ11b1(改質水送出装置)の送出能力が過剰である送出過剰故障であると判定する(判定部)。なお、ステップS202においては、制御装置15は、前記駆動指令時間と検知時間t4との関係が正常範囲より下方にある場合には、前記駆動指令時間と検知時間t4との関係が、正常範囲下限値より小であると判定し、一方、前記駆動指令時間と検知時間t4との関係が正常範囲より上方にある場合には、前記駆動指令時間と検知時間t4との関係が、正常範囲上限値より大であると判定する。
【0050】
制御装置15は、前記駆動指令時間と検知時間t4との関係が、正常範囲より上方にある場合には、ステップS202にて「大」と判定し、ステップS206以降において改質水ポンプ11b1(改質水送出装置)の送出能力が低下している改質水送出装置送出低下故障であるか、または水供給管11bが水漏れしている水供給管水漏れ故障であるかと判定する(判定部)。
【0051】
具体的には、制御装置15は、改質水戻し装置である改質水ポンプ11b1を所定時間だけ作動させて(改質水を水タンク14側に戻して(改質水の戻し制御))、水供給管11b内の改質水の水面を、基準水位から基準水位より低い位置である第2戻り水位まで低下させる(ステップS206)。その後、制御装置15は、改質水送出装置である改質水ポンプ11b1を前記所定時間だけ作動させて(改質水を水タンク14から汲み上げて(改質水の補給制御))、水供給管11b内の改質水の水面を、第2戻り水位から上昇させる(ステップS208)。その後、制御装置15は、改質水の水面が基準水位に戻っている場合には(ステップS210にて「YES」と判定し)、改質水ポンプ11b1の送出能力が低下している送出低下故障であると判定する(ステップS212)。なお、ステップS210において、制御装置15は、上述したステップS114の処理と同様に、改質水の水位が基準水位に到達した旨(「水あり」)を水位センサ11b2が検出したか否かを判定する。
【0052】
改質水の戻し制御と改質水の補給制御を同じ送出量で同じ時間だけ実施した場合、水供給管11bに水漏れがある場合には、両制御の前後にて水面の高さが異なるが、水供給管11bに水漏れがない場合には、両制御の前後にて水面の高さは同じになる。この原理を利用することで、改質水送出装置送出低下故障であるか、または水供給管水漏れ故障であるかを判定することができる。
【0053】
さらに、制御装置15は、改質水戻し装置である改質水ポンプ11b1を所定時間だけ作動させて(改質水を水タンク14側に戻して)、水供給管11b内の改質水の水面を、基準水位から基準水位より低い位置である第2戻り水位まで低下させる(ステップS206)。その後、制御装置15は、改質水送出装置である改質水ポンプ11b1を前記所定時間だけ作動させて(改質水を水タンク14から汲み上げて)、水供給管11b内の改質水の水面を、第2戻り水位から上昇させる(ステップS208)。その後、制御装置15は、改質水の水面が基準水位に戻っていない場合には(ステップS210にて「NO」と判定し)、水供給管11bの漏れ故障であると判定する(ステップS214)。
【0054】
説明をステップS122に戻す。駆動指令時間(t2+β)内に水位センサ11b2が水ありを検知しない場合、制御装置15は、プログラムをステップS122に進める。本来ならば、第2改質水水位調整を実施すれば、改質水の水位は水位センサ11b2の検知部に到達するはずであるが、駆動指令時間(t2+β)内に水位センサ11b2が水ありを検知しないということは、水位センサ11b2の故障、水供給管11bの水漏れ故障、または、改質水ポンプ11b1の能力低下故障が考えられる。
【0055】
したがって、制御装置15は、駆動指令時間(t2+β)内に水位センサ11b2が水ありを検知しない場合、ステップS114にて「NO」と判定し、ステップS122において、水位センサ11b2の故障、水供給管11bの水漏れ故障、または、改質水ポンプ11b1の能力低下故障であると判定する。
【0056】
なお、ステップS122において、温度センサ32aによって検出された前記計測部による前記計測後の蒸発部32の温度が、温度センサ32aによって検出された前記計測部による前記計測前の蒸発部32の温度より低下している場合には、水位センサ11b2の故障であると判定することができる。この判定は、第2改質水水位調整によって改質水が水位センサ11b2を越えて蒸発部32に投入されると、蒸発部32の温度が低下する原理を利用している。
【0057】
さらに、説明をステップS106の処理に戻す。制御装置15は、時間t1内に水量センサ14aが所定水量の増量を検知しない場合には、ステップS106にて「NO」と判定し、プログラムをステップS124に進める。制御装置15は、ステップS124において、上述したステップS108と同様に、改質水ポンプ11b1を停止させ、所定時間(例えば60秒)だけ処理を行わず待機する。
【0058】
その後、制御装置15は、ステップS126において、上述したステップS112と同様に、水供給管11b内の改質水の水面を第1戻り水位から上昇させる第2改質水水位調整を行う(第2改質水水位調整制御部)。具体的には、制御装置15は、前記第1改質水水位調整制御部による第1改質水水位調整を行った後に、第1改質水水位調整による改質水戻り量に対応する駆動指令時間だけ改質水送出装置である改質水ポンプ11b1を駆動するように指令して第2改質水水位調整を行う。
【0059】
さらに、制御装置15は、ステップS126において、駆動指令時間を設定する(駆動指令時間設定部)。例えば、制御装置15は、駆動指令時間を時間t3に設定する。時間t3は、水供給管11bの水位センサ11b2から水タンク14の接続端までの容積を、上述した送出流量αで除した値に定数γを加算した値であることが好ましい。
【0060】
すなわち、制御装置15は、改質水ポンプ11b1の正回転を開始させて、αcc/分の流量にて駆動指令時間(=t3)正回転を継続する。これにより、水タンク14内の改質水が汲み上げられ水供給管11bひいては蒸発部32に送出される。このとき、駆動指令時間はt3であるから、水供給管11bや改質水ポンプ11b1に故障がなければ、水供給管11b内にて改質水の水位を基準水位より高い位置にすることができる。
【0061】
制御装置15は、ステップS128において、上述したステップS114と同様に、第2改質水水位調整を開始した時点以降において、改質水の水位が基準水位に到達した旨(「水あり」)を水位センサ11b2が検出したか否かを判定する。また、制御装置15は、ステップS128において、第2改質水水位調整を開始した時点から、改質水の水位が基準水位に到達した旨を水位センサ11b2が検出した時点までにかかった時間(検知時間)t4を計測する。すなわち、制御装置15は、前記第2改質水水位調整制御部による前記第2改質水水位調整を行う際に、水位センサ11b2の検出結果を用いて、水供給管11b内の改質水の水面が第1戻り水位から基準水位までに到達するのにかかる時間を実測時間(検知時間)t4として計測をする(計測部)。
【0062】
制御装置15は、駆動指令時間(=t3)内に水位センサ11b2が水ありを検知すれば(ステップS128にて「YES」)、プログラムをステップS130に進め、駆動指令時間(t3)内に水位センサ11b2が水ありを検知しなければ(ステップS128にて「NO」)、プログラムをステップS122に進める。
【0063】
制御装置15は、ステップS130において、上述したステップS116と同様に、検知時間t4を記憶するとともに、改質水ポンプ11b1の正回転を停止し改質水補給(汲み上げ)を停止する。その後、制御装置15は、ステップS132において、上述したステップS118と同様に、前記駆動指令時間(t3)と、前記計測部によって計測された検知時間(実測時間)t4との関係に基づいて、水供給管11bおよび改質水送出装置である改質水ポンプ11b1が正常であるか否かを判定する。ひいては、制御装置15は、ステップS132において、前記駆動指令時間と、前記計測部によって計測された検知時間t4との関係に基づいて、水供給管11bおよび改質水送出装置である改質水ポンプ11b1の故障を判定する(判定部)。
【0064】
前記駆動指令時間(t3)と検知時間t4との関係が図5に示す正常範囲内にある場合には、制御装置15は、ステップS132にて「YES」と判定し、ステップS120において水供給管11bおよび改質水ポンプ11b1は正常である旨を判定する(判定部)。その後、制御装置15はプログラムを一旦終了する。一方、前記駆動指令時間と検知時間t4との関係が図5に示す正常範囲外にある場合には、制御装置15は、ステップS132にて「NO」と判定し、プログラムをステップS202以降に進める。
【0065】
上述した説明から明らかなように、本実施形態の燃料電池システム1は、燃料と酸化剤ガスとにより発電する燃料電池34と、改質用原料と改質水とから燃料を生成して燃料電池34に供給する改質部33と、燃料電池34からの未使用の燃料を含む可燃性ガスを導入し酸化剤ガスで燃焼して燃焼排ガスを導出する燃焼部36と、燃焼排ガスと熱媒体との間で熱交換が行われ、燃焼排ガスに含まれている水蒸気を凝縮して凝縮水を生成する熱交換器12と、熱交換器12から供給された凝縮水を改質水として貯水するとともに改質部33に供給する水タンク14と、水タンク14から改質部33に改質水を供給する水供給管11bと、水供給管11bに設けられ、水タンク14内の改質水を改質部33に送出する改質水送出装置(改質水ポンプ11b1)と、水供給管11bに設けられ、水供給管11b内の改質水を水タンク14に戻す改質水戻し装置(改質水ポンプ11b1)と、水供給管11bに設けられ、水供給管11b内の改質水の水面が基準水位にあるか否かを検出するための水位センサ11b2と、燃料電池34を発電させる制御を行う制御装置15と、を備えた燃料電池システムである。制御装置15は、改質水戻し装置(改質水ポンプ11b1)を作動させて、水供給管11b内の改質水の水面を、初期水位から初期水位より低い位置である第1戻り水位まで低下させる第1改質水水位調整を行う第1改質水水位調整制御部(ステップS104)と、第1改質水水位調整制御部による第1改質水水位調整を行った後に、第1改質水水位調整による改質水の戻り量に対応する駆動指令時間だけ改質水送出装置(改質水ポンプ11b1)を駆動するように指令して、水供給管11b内の改質水の水面を第1戻り水位から上昇させる第2改質水水位調整を行う第2改質水水位調整制御部(ステップS112,126)と、第2改質水水位調整制御部による第2改質水水位調整を行う際に、水位センサ11b2の検出結果を用いて、水供給管11b内の改質水の水面が第1戻り水位から基準水位までに到達するのにかかる時間を実測時間として計測をする計測部(ステップS114,128)と、駆動指令時間と、計測部によって計測された実測時間との関係に基づいて、水供給管11bおよび改質水送出装置の故障を判定する判定部(ステップS118,132,202−214)と、を備えている。
【0066】
これによれば、制御装置15は、改質水戻し装置(改質水ポンプ11b1)を作動させて、水供給管11b内の改質水の水面を、第1戻り水位まで低下させ(第1改質水水位調整)、その後、第1改質水水位調整による改質水の戻り量に対応する駆動指令時間だけ改質水送出装置(改質水ポンプ11b1)を駆動させて、水供給管11b内の改質水の水面を第1戻り水位から上昇させる(第2改質水水位調整)。このとき、制御装置15は、水位センサ11b2の検出結果を用いて、水供給管11b内の改質水の水面が第1戻り水位から基準水位までに到達するのにかかる時間を実測時間として計測をする(計測部)。そして、制御装置15は、駆動指令時間と、計測部によって計測された実測時間との関係に基づいて、水供給管11bおよび改質水送出装置(改質水ポンプ11b1)の故障を判定する(判定部)。その結果、燃料電池システム1において、水タンク14から改質部33までに設けられた給水系の異常部位を特定することができ、ひいてはメンテナンス性を向上することができる。
【0067】
また、燃料電池システム1は、水タンク14に設けられ、水タンク14内の改質水の水量を検出する水量センサ14aをさらに備え、制御装置15は、水量センサ14aの検出結果に基づいて、改質水の戻り量を算出する戻り量算出部(ステップS110)と、戻り量算出部によって算出された改質水の戻り量から、駆動指令時間を算出する駆動指令時間算出部(ステップS112)と、をさらに備えている。
これによれば、駆動指令時間を適切に算出することができ、ひいては、水タンク14から水供給管11bに改質水を無駄なく適切に供給することができる。
【0068】
また、判定部(制御装置15)は、駆動指令時間と、計測部によって計測された実測時間との関係が、水供給管11bおよび改質水送出装置(改質水ポンプ11b1)が正常である正常範囲より下方にある場合には、改質水送出装置(改質水ポンプ11b1)の送出能力が過剰である送出過剰故障であると判定する(ステップS204)。
これによれば、燃料電池システム1において、水タンク14から改質部33までに設けられた給水系の異常部位を特定することができる。
【0069】
また、判定部(制御装置15)は、駆動指令時間と、計測部によって計測された実測時間との関係が、水供給管11bおよび改質水送出装置(改質水ポンプ11b1)が正常である正常範囲より上方にあり、かつ、改質水戻し装置(改質水ポンプ11b1)を所定時間だけ作動させて、水供給管11b内の改質水の水面を、基準水位から基準水位より低い位置である第2戻り水位まで低下させ、その後、改質水送出装置(改質水ポンプ11b1)を所定時間だけ作動させて、水供給管11b内の改質水の水面を、第2戻り水位から上昇させた後、改質水の水面が基準水位に戻っている場合には、改質水送出装置(改質水ポンプ11b1)の送出能力が低下している送出低下故障であると判定する(ステップS212)。
これによれば、燃料電池システム1において、水タンク14から改質部33までに設けられた給水系の異常部位を特定することができる。
【0070】
また、判定部(制御装置15)は、駆動指令時間と、計測部によって計測された実測時間との関係が、水供給管11bおよび改質水送出装置(改質水ポンプ11b1)が正常である正常範囲より上方にあり、かつ、改質水戻し装置(改質水ポンプ11b1)を所定時間だけ作動させて、水供給管11b内の改質水の水面を、基準水位から基準水位より低い位置である第2戻り水位まで低下させ、その後、改質水送出装置(改質水ポンプ11b1)を所定時間だけ作動させて、水供給管11b内の改質水の水面を、第2戻り水位から上昇させた後、改質水の水面が基準水位に戻っていない場合には、水供給管11bの漏れ故障であると判定する(ステップS214)。
これによれば、燃料電池システム1において、水タンク14から改質部33までに設けられた給水系の異常部位を特定することができる。
【0071】
また、燃料電池システム1は、蒸発部32に設けられ、蒸発部32の温度を検出する温度センサ32aをさらに備え、計測部(ステップS114,128)によって実測時間が計測できない場合であって、温度センサ32aによって検出された計測部による計測後の蒸発部32の温度が、温度センサ32aによって検出された計測部による計測前の蒸発部32の温度より低下している場合には、水位センサ11b2の故障であると判定する(ステップS122)。
これによれば、燃料電池システム1において、水タンク14から改質部33までに設けられた給水系の異常部位を特定することができる。
【0072】
なお、上述した実施形態において、正逆回転可能な改質水ポンプ11b1を採用し改質水ポンプ11b1を改質水送出装置および改質水戻し装置に兼用するようにしたが、改質水送出装置および改質水戻し装置をそれぞれ別々の改質水ポンプにより構成するようにしてもよい。
【0073】
また、上述した実施形態において、正逆回転可能な改質水ポンプ11b1を採用し改質水ポンプ11b1を改質水送出装置および改質水戻し装置に兼用するようにしたが、改質水送出装置を正回転の改質水ポンプにより構成するとともに改質水戻し装置を電磁弁により構成するようにしてもよい。
【0074】
図6に示すように、図1に示す改質水ポンプ11b1に代えて改質水ポンプ11b3が水供給管11bに設けられ、改質水ポンプ11b3をバイパスするバイパス管11b5に電磁弁11b4が設けられている。改質水ポンプ11b3は、正回転のみするポンプでもよく、正逆回転するポンプでもよい。電磁弁11b4は制御装置15の指示によってバイパス管11b5を開閉する。
【0075】
この変形例に係る燃料電池システムの制御を上述した実施形態と異なる点について説明する。図7のフローチャートに示すように、制御装置15は、図2のステップS104の処理に代えて、ステップS302の処理を実行する。制御装置15は、ステップS302において、電磁弁11b4を時間t1だけ開弁し、その後閉じる。これにより、水供給管11b内の改質水が自重で落水することで、水供給管11b内の改質水の水面を、初期水位から初期水位より低い位置である第1戻り水位まで低下させる第1改質水水位調整を行う(第1改質水水位調整制御部)。これにより、改質水ポンプ11b3より下流側の水供給管11b内の改質水が水タンク14に戻される。
なお、時間t1は、水供給管11bの蒸発部32から改質水ポンプ11b3までの改質水の全量(配管容積に等しい)を送出できる時間に設定されるのが好ましい。
【0076】
さらに、図8のフローチャートに示すように、制御装置15は、図2のステップS206の処理に代えて、ステップS304の処理を実行する。制御装置15は、ステップS304において、改質水戻し装置である電磁弁11b4を時間t5だけ開弁し(改質水を水タンク14側に戻して(改質水の戻し制御))、その後閉じる。これにより、制御装置15は、水供給管11b内の改質水の水面を、基準水位から基準水位より低い位置である第2戻り水位まで低下させる。
【0077】
さらに、制御装置15は、図2のステップS208の処理に代えて、ステップS306の処理を実行する。制御装置15は、ステップS306において、改質水送出装置である改質水ポンプ11b3を時間t6だけ作動させて(改質水を水タンク14から汲み上げて(改質水の補給制御))、水供給管11b内の改質水の水面を、第2戻り水位から上昇させる。なお、時間t5と時間t6は図9に示す関係がある。また、時間t5×電磁弁11b4開時の落水量は、時間t6×改質水ポンプ11b3の送出量と等しくなる関係にある。なお、図9において、改質水戻り量が上述したαである場合を実線で示し、改質水戻り量が上述したαより大である場合を点線で示し、改質水戻り量が上述したαより小である場合を一点鎖線で示す。
【符号の説明】
【0078】
1…燃料電池システム、11b…水供給管、11b1…改質水ポンプ(改質水送出装置、改質水戻し装置)、11b2…水位センサ、12…熱交換器、14…水タンク、14a…水量センサ、15…制御装置(第1改質水水位調整制御部(ステップS104)、第2改質水水位調整制御部(ステップS112,126)、計測部(ステップS114,128)、判定部(ステップS118,132,202−214)、戻り量算出部(ステップS110)、駆動指令時間算出部(ステップS112))、32…蒸発部、33…改質部、34…燃料電池、36…燃焼部。

図1
図2
図3
図4
図5
図6
図7
図8
図9