(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6973587
(24)【登録日】2021年11月8日
(45)【発行日】2021年12月1日
(54)【発明の名称】オフセットキャンセル容量型MEMSジャイロスコープ
(51)【国際特許分類】
G01C 19/5776 20120101AFI20211118BHJP
【FI】
G01C19/5776
【請求項の数】22
【全頁数】18
(21)【出願番号】特願2020-144299(P2020-144299)
(22)【出願日】2020年8月28日
(65)【公開番号】特開2021-32904(P2021-32904A)
(43)【公開日】2021年3月1日
【審査請求日】2020年8月28日
(31)【優先権主張番号】20195711
(32)【優先日】2019年8月29日
(33)【優先権主張国】FI
(73)【特許権者】
【識別番号】000006231
【氏名又は名称】株式会社村田製作所
(74)【代理人】
【識別番号】100189430
【弁理士】
【氏名又は名称】吉川 修一
(74)【代理人】
【識別番号】100190805
【弁理士】
【氏名又は名称】傍島 正朗
(72)【発明者】
【氏名】ラッセ・アールトネン
(72)【発明者】
【氏名】アンッシ・ブロムクヴィスト
【審査官】
信田 昌男
(56)【参考文献】
【文献】
特表2019−515304(JP,A)
【文献】
特開2017−223659(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 19/5776
(57)【特許請求の範囲】
【請求項1】
MEMSジャイロスコープであって、
少なくとも1つの機械的共振器と、
第1の方向における前記少なくとも1つの機械的共振器の運動を駆動するために前記少なくとも1つの機械的共振器に駆動信号を印加するように構成された駆動回路と、
前記少なくとも1つの機械的共振器の第2の方向の運動を検知し、前記第2の方向は前記第1の方向に直交し、検知された前記機械的共振器の前記第2の方向の前記運動の振幅に比例するレート信号を出力するように構成されるセンス回路と、を備え、
前記センス回路は、前記第2の方向における前記少なくとも1つの機械的共振器の周波数応答を調整するように構成された電気機械共振器ループを形成する閉力フィードバックループを含み、
前記駆動回路は、駆動オン状態と駆動ゼロ状態との間を交番することによって前記駆動信号を変調するようにさらに構成され、
前記MEMSジャイロスコープは、前記駆動信号の前記変調に基づいて前記レート信号に対する前記駆動信号の影響を決定し、前記レート信号に対する前記駆動信号の前記影響を打ち消すように構成されるオフセット補償回路をさらに備え、
前記オフセット補償回路は、
前記駆動信号の直接的な影響である駆動影響が前記レート信号に存在する期間にわたる復調レート信号の平均値を決定し、
前記駆動影響が前記レート信号に実質的に存在しない期間にわたる復調レート信号の平均値を決定し、
第1のオフセット値を決定するために、前記駆動影響が存在するときの前記平均値と前記駆動影響が最大駆動影響の30%未満であるときの前記平均値との間の差を計算するように構成されている、
MEMSジャイロスコープ。
【請求項2】
前記第2の方向における前記少なくとも1つの機械的共振器の整定時間は、前記第1の方向における前記少なくとも1つの機械的共振器の整定時間よりも短い、
請求項1に記載のMEMSジャイロスコープ。
【請求項3】
前記第2の方向における前記少なくとも1つの機械的共振器の整定時間は、1%の精度で0.5ミリ秒未満である、
請求項1または2に記載のMEMSジャイロスコープ。
【請求項4】
前記センス回路は、前記少なくとも1つの機械的共振器の前記運動を容量的に検知するように構成されている、
請求項1〜3のいずれか一項に記載のMEMSジャイロスコープ。
【請求項5】
前記閉力フィードバックループは、前記機械的共振器、フィルタ、および増幅器を備え、
前記増幅器のQ値は3未満である、
請求項1〜4のいずれか一項に記載のMEMSジャイロスコープ。
【請求項6】
前記少なくとも1つの機械的共振器は、第1の機械的共振器および第2の機械的共振器を含み、
前記第1の機械的共振器は、前記第1の方向に運動するように構成され、
前記第2の機械的共振器は、前記第2の方向に運動するように構成され、
前記第1の機械的共振器および前記第2の機械的共振器は、前記第1の方向および前記第2の方向の両方に直交する軸を中心とした前記MEMSジャイロスコープの回転が、前記第2の方向における前記第2の機械的共振器の励起を引き起こすように結合される、
請求項1〜5のいずれか一項に記載のMEMSジャイロスコープ。
【請求項7】
前記オフセット補償回路は、
前記第1のオフセット値が閾オフセット値よりも小さいか否かを判定し、
前記第1のオフセット値が前記閾オフセット値よりも小さい場合、
前記第1のオフセット値をFIFOキューにエンキューし、前記FIFOキューからオフセット値をデキューし、
前記FIFOキューからデキューされた値を第2のオフセット値として出力し、
前記第1のオフセット値が前記閾オフセット値より大きい場合、
前記FIFOキューからの第1の値を前記第2のオフセット値として出力するようにさらに構成されている、
請求項1に記載のMEMSジャイロスコープ。
【請求項8】
前記閾オフセット値は定数である、
請求項7に記載のMEMSジャイロスコープ。
【請求項9】
前記オフセット補償回路は、固定オフセット、および前記FIFOキューに格納されている前記オフセット値の一部またはすべての平均オフセット値の合計を計算することにより、前記閾オフセット値を計算するようにさらに構成されている、
請求項7に記載のMEMSジャイロスコープ。
【請求項10】
前記オフセット補償回路は、前記駆動影響が前記レート信号に存在する期間と、前記駆動影響が前記レート信号に存在しない期間との比によって前記第1のオフセット値または前記第2のオフセット値をスケーリングすることによって、第3のオフセット値を決定するようにさらに構成されている、
請求項7〜9のいずれか一項に記載のMEMSジャイロスコープ。
【請求項11】
前記オフセット補償回路は、前記レート信号から前記第2のオフセット値または前記第3のオフセット値を減算して、オフセット補正レート信号を生成するようにさらに構成されている、
請求項10に記載のMEMSジャイロスコープ。
【請求項12】
前記駆動回路は、少なくとも100Hzの周波数において、前記駆動オン状態と前記駆動ゼロ状態との間で交番するように構成されている、
請求項1〜11のいずれか一項に記載のMEMSジャイロスコープ。
【請求項13】
前記駆動オン状態は、前記交番の期間の略1/8にわたって維持される、
請求項1〜12のいずれか一項に記載のMEMSジャイロスコープ。
【請求項14】
MEMSジャイロスコープであって、
少なくとも1つの機械的共振器と、
第1の方向における前記少なくとも1つの機械的共振器の運動を駆動するために前記少なくとも1つの機械的共振器に駆動信号を印加するように構成された駆動回路と、
前記少なくとも1つの機械的共振器の第2の方向の運動を検知し、前記第2の方向は前記第1の方向に直交し、検知された前記機械的共振器の前記第2の方向の前記運動の振幅に比例するレート信号を出力するように構成されるセンス回路と、を備え、
前記センス回路は、前記第2の方向における前記少なくとも1つの機械的共振器の周波数応答を調整するように構成された電気機械共振器ループを形成する閉力フィードバックループを含み、
前記駆動回路は、前記駆動信号を変調するようにさらに構成され、
前記MEMSジャイロスコープは、前記駆動信号の前記変調に基づいて前記レート信号に対する前記駆動信号の影響を決定し、前記レート信号に対する前記駆動信号の前記影響を打ち消すように構成されるオフセット補償回路をさらに備え、
前記駆動回路は、前記駆動信号を線形的に変調するように構成され、
前記オフセット補償回路は、
変調搬送波を受信し、前記変調搬送波は前記駆動信号の変調と同じ周波数を有し、
前記変調搬送波の位相を、前記駆動信号の変調によって引き起こされる前記レート信号のリップルの位相に整合させ、
前記変調搬送波および前記レート信号を乗算し、乗算された信号の高周波成分をフィルタリング除去し、
乗算およびフィルタリングされた信号の振幅ならびに前記変調搬送波の振幅に基づいて、ACオフセットの大きさを決定し、
前記駆動信号のDC成分、および前記駆動信号のACオフセットとAC成分との比に基づいて、DCオフセットを決定し、
前記ACオフセットと前記DCオフセットとを組み合わせて、第1のオフセット値を決定するようにさらに構成されている、
MEMSジャイロスコープ。
【請求項15】
前記第2の方向における前記少なくとも1つの機械的共振器の整定時間は、前記第1の方向における前記少なくとも1つの機械的共振器の整定時間よりも短い、
請求項14に記載のMEMSジャイロスコープ。
【請求項16】
前記第2の方向における前記少なくとも1つの機械的共振器の整定時間は、1%の精度で0.5ミリ秒未満である、
請求項14または15に記載のMEMSジャイロスコープ。
【請求項17】
前記センス回路は、前記少なくとも1つの機械的共振器の前記運動を容量的に検知するように構成されている、
請求項14〜16のいずれか一項に記載のMEMSジャイロスコープ。
【請求項18】
前記閉力フィードバックループは、前記機械的共振器、フィルタ、および増幅器を備え、
前記増幅器のQ値は3未満である、
請求項14〜17のいずれか一項に記載のMEMSジャイロスコープ。
【請求項19】
前記少なくとも1つの機械的共振器は、第1の機械的共振器および第2の機械的共振器を含み、
前記第1の機械的共振器は、前記第1の方向に運動するように構成され、
前記第2の機械的共振器は、前記第2の方向に運動するように構成され、
前記第1の機械的共振器および前記第2の機械的共振器は、前記第1の方向および前記第2の方向の両方に直交する軸を中心とした前記MEMSジャイロスコープの回転が、前記第2の方向における前記第2の機械的共振器の励起を引き起こすように結合される、
請求項14〜18のいずれか一項に記載のMEMSジャイロスコープ。
【請求項20】
前記駆動信号の変調度は、非変調駆動信号の30%〜80%である、
請求項14〜19のいずれか一項に記載のMEMSジャイロスコープ。
【請求項21】
前記オフセット補償回路は、前記第1のオフセット値が閾オフセット値よりも小さいか否かを判定し、
前記第1のオフセット値が前記閾オフセット値よりも小さい場合、
前記第1のオフセット値をFIFOキューにエンキューし、前記FIFOキューからオフセット値をデキューし、前記FIFOキューからデキューされた値を第2のオフセット値として出力し、
前記第1のオフセット値が前記閾オフセット値より大きい場合、
前記FIFOキューからの第1の値を前記第2のオフセット値として出力するようにさらに構成されている、
請求項14〜20のいずれか一項に記載のMEMSジャイロスコープ。
【請求項22】
前記オフセット補償回路は、前記レート信号から前記第1のオフセット値または前記第2のオフセット値を減算して、オフセット補正レート信号を生成するようにさらに構成されている、
請求項21に記載のMEMSジャイロスコープ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微小電気機械(MEMS)ジャイロスコープに関し、特に、ジャイロスコープの駆動信号の影響によって引き起こされるジャイロスコープ出力のオフセットをキャンセルするように構成されたMEMSジャイロスコープに関する。
【背景技術】
【0002】
運動は、3つの直交方向の並進および3つの直交する軸を中心とした回転の、6つの自由度を有すると考えることができる。後者の3つ、すなわち3つの直交する軸を中心とした回転は、ジャイロスコープとしても知られる角速度センサによって測定することができる。MEMSジャイロスコープは、コリオリ効果を使用して角速度を測定する。マスが一方向に駆動され、従動軸に直交する軸を中心として回転角速度が加えられると、マスはコリオリの力の結果として従動軸と回転軸の両方に対して直交方向の力を受ける。コリオリの力によって引き起こされる結果的な物理的変位を、その後、例えば容量性、圧電性またはピエゾ抵抗性の検知構造から読み取ることができる。
【0003】
MEMSジャイロスコープでは、従来のジャイロスコープのように、一次運動は通常、連続的な回転ではない。代わりに、機械的振動を一次運動として使用する。振動ジャイロスコープが角運動を受けると、波状のコリオリの力が生じる。これは、一次運動に直交し、角運動の軸に直交する、一次振動の周波数における二次振動を生成する。この結合された振動の振幅は、角運動の測度として使用される。
【0004】
MEMSジャイロスコープは、本体と、慣性基準フレーム内に少なくとも2つの自由度を有する少なくとも1つの慣性要素と、を備えることができる。慣性要素は、例えば、第1の方向における振動一次運動のために本体に懸架された、一次要素とも呼ばれる駆動要素と、二次要素またはコリオリ要素とも呼ばれるセンス要素であって、センス要素を振動二次運動において運動させる、第2の方向における直交するコリオリ力成分を受け取るための、センス要素とを備えることができる。他方では、第1の方向における一次運動、別の方向における二次運動を有するように構成された単一の慣性要素が使用されてもよく、この慣性要素は、第3の方向における回転運動のためにも構成される。
【0005】
マスばね構造が、通常、「共振周波数」と呼ばれる、他の周波数よりも振幅の大きい何らかの周波数で自然に振動することによって、共振または共振挙動を示す。これらの共振周波数において、変位は、同じ励起強度においては他の周波数よりもはるかに大きく、MEMS構造の小型化された寸法では、検出を妨げる非線形性および/またはオーバーレンジ条件を引き起こす。
【0006】
これらの外乱は通常、検出に使用される二次要素の検出される運動を減衰させることによって除去される。フィードバックダンピングまたは能動ダンピングにおいては、検出される変位が監視され、運動に対向する相対的な力が生成される。いくつかの既知のシステムでは、能動ダンピングが、閉フィードバックループで実装されている。いわゆる力フィードバックダンピング法では、フィードバックループの応答関数を調整するために、フィルタリングおよび/または他の信号処理がフィードバックループに含まれている。
【0007】
ジャイロスコープの設計におけるもう1つの課題は、駆動/一次要素の運動を駆動するために使用される駆動信号によって引き起こされる出力信号のオフセットを最小限に抑えることにある。オフセットにより、ジャイロスコープが回転運動を受けない場合、ジャイロスコープは非ゼロの出力を示す。駆動信号によるオフセットは、駆動電極からセンス電極への寄生容量による直接的な電気的クロストーク、駆動構造の不均衡による二次方向の静電励起、およびMEMS要素内の非ゼロインピーダンスレベルを介した結合など、さまざまなメカニズムによって引き起こされる可能性がある。直交誤差および直交誤差の補償メカニズムなど、出力オフセットの他の誤差原因は、多くの場合、オフセット誤差において支配的である。ただし、これら他の誤差原因が効果的に補償されると、駆動信号によるオフセット誤差は、比較するとはるかに顕著になる。
【0008】
所与のMEMSジャイロスコープのオフセットは、ナビゲーションなどのジャイロスコープ用途において非常に関連性の高いパラメータである。角度変化の外部レートはゼロであるが、ジャイロスコープの出力が非ゼロレートを示す場合、レート積分はますます不正確な角度値に向かってドリフトする。実際に、このことによって、センサが方向の正確な指示を提供するために使用することができる時間の長さが制限される。同様に、地球の回転をmdps(10
−3°/s)よりも高い正確度で測定する必要がある慣性航法において、オフセット/ドリフトメカニズムは予測できず、mdps正確度を達成することができないため、問題がある。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】国際公開第2017/195020号
【発明の概要】
【0010】
本発明の第1の態様によれば、MEMSジャイロスコープが提供される。MEMSジャイロスコープは、
・少なくとも1つの機械的共振器と、
・第1の方向における少なくとも1つの機械的共振器の運動を駆動するために少なくとも1つの機械的共振器に駆動信号を印加するように構成された駆動回路と、
・少なくとも1つの機械的共振器の第2の方向の運動を検知し、第2の方向は第1の方向に直交し、検知された機械的共振器の第2の方向の運動の振幅に比例するレート信号を出力するように構成されるセンス回路と
を備える。
【0011】
センス回路は、第2の方向における少なくとも1つの機械的共振器の周波数応答を調整するように構成された電気機械共振器ループを形成する閉力フィードバックループを含む。
【0012】
本発明では、駆動回路が駆動信号を変調するようにさらに構成され、MEMSジャイロスコープは、駆動信号の変調に基づいてセンス信号に対する駆動信号の影響を決定し、次いで、レート信号に対する駆動信号の影響を打ち消すように構成されるオフセット補償回路をさらに備えることを特徴とする。
【0013】
第2の方向における少なくとも1つの機械的共振器の整定時間は、第1の方向における少なくとも1つの機械的共振器の整定時間よりも大幅に短くなり得る。具体的には、第2の方向における少なくとも1つの機械的共振器の整定時間は、1%の精度で0.5ミリ秒未満であり得る。
【0014】
センス回路は、少なくとも1つの機械的共振器の運動を容量的に検知するように構成することができる。
【0015】
閉力フィードバックループは、機械的共振器、フィルタ、および増幅器を備えることができ、増幅器のQ値は3未満、好ましくは1〜2である。
【0016】
少なくとも1つの機械的共振器は、第1の機械的共振器および第2の機械的共振器を含み得る。第1の機械的共振器は、第1の方向に運動するように構成され、第2の機械的共振器は、第2の方向に運動するように構成され、第1の機械的共振器および第2の機械的共振器は、第1の方向および第2の方向の両方に直交する軸を中心としたMEMSジャイロスコープの回転が、第2の方向における第2の機械的共振器の励起を引き起こすように結合される。
【0017】
駆動回路は、駆動オン状態と駆動ゼロ(オフ)状態との間を交番することによって駆動信号を変調するように構成することができる。当該事例において、オフセット補償回路は、
・駆動信号の直接的な影響(駆動影響)がレート信号に存在する期間にわたる復調レート信号の平均値を決定し、
・駆動信号の直接的な影響がレート信号に実質的に存在しない期間にわたる復調レート信号の平均値を決定し、
・第1のオフセット値を決定するために、駆動影響が存在するときの平均値と駆動影響が存在しないときの平均値との間の差を計算する
ように構成されている。
【0018】
「実質的に存在しない」という語句は、レート信号に存在する駆動影響が最大駆動影響の30%未満であることを意味する。
【0019】
オフセット補償回路は、
・第1のオフセット値が閾オフセット値よりも小さいか否かを判定し、第1のオフセット値が閾オフセット値よりも小さい場合、
・第1のオフセット値をFIFOキューにエンキューし、FIFOキューからオフセット値をデキューし、
・FIFOキューからデキューされた値を第2のオフセット値として出力し、
・第1のオフセット値が閾オフセット値より大きい場合、FIFOキューからの第1の値を第2のオフセット値として出力する
ようにさらに構成することができる。
【0020】
閾オフセット値は定数であってもよく、またはオフセット補償回路は、固定オフセット、およびFIFOキューに格納されているオフセット値の一部またはすべての平均オフセット値の合計を計算することにより、閾オフセット値を計算するようにさらに構成することができる。
【0021】
オフセット補償回路は、駆動信号の直接的な影響がレート信号に存在する期間と、駆動信号の直接的な影響がレート信号に存在しない期間との比によって第1のオフセット値または第2のオフセット値をスケーリングすることによって、第3のオフセット値を決定するようにさらに構成することができる。
【0022】
オフセット補償回路は、レート信号から第2のオフセット値または第3のオフセット値を減算して、オフセット補正レート信号を生成するようにさらに構成することができる。
【0023】
駆動回路は、少なくとも100Hzの周波数において、好ましくは1kHzを超える周波数において、駆動オン状態と駆動ゼロ(オフ)状態との間で交番するように構成することができる。
【0024】
駆動オン状態は、交番の期間の略1/8にわたって維持することができる。
【0025】
代替的に、駆動回路は、駆動信号を線形的に変調するように構成されてもよい。
【0026】
駆動信号の変調度は、非変調駆動信号の30%〜80%であり得る。
【0027】
オフセット補償回路は、
・変調搬送波を受信し、変調搬送波は駆動信号の変調と同じ周波数を有し、
・変調搬送波の位相を、駆動信号の変調によって引き起こされるレート信号のリップルの位相に整合させ、
・変調搬送波およびレート信号を乗算し、乗算された信号の高周波成分をフィルタリング除去し、
・乗算およびフィルタリングされた信号の振幅ならびに変調搬送波の振幅に基づいて、ACオフセットの大きさを決定し、
・駆動信号のDC成分、および駆動信号のACオフセットとAC成分との比に基づいて、DCオフセットを決定し、
・ACオフセットとDCオフセットとを組み合わせて、第1のオフセット値を決定する
ようにさらに構成することができる。
【0028】
オフセット補償回路は、第1のオフセット値が閾オフセット値よりも小さいか否かを判定し、第1のオフセット値が閾オフセット値よりも小さい場合、
・第1のオフセット値をFIFOキューにエンキューし、FIFOキューからオフセット値をデキューし、FIFOキューからデキューされた値を第2のオフセット値として出力し、
・第1のオフセット値が閾オフセット値より大きい場合、FIFOキューからの第1の値を第2のオフセット値として出力する
ようにさらに構成することができる。
【0029】
オフセット補償回路は、レート信号から第1のオフセット値または第2のオフセット値を減算して、オフセット補正レート信号を生成するようにさらに構成することができる。
【図面の簡単な説明】
【0030】
【
図1】デジタルジャイロスコープの高レベルの概略図である。
【
図2】本発明の第1の実施形態によるオフセットキャンセル回路を示す図である。
【
図3】第1の実施形態および第2の実施形態の両方のIF&FIFO要素を示す図である。
【
図4】本発明の第1の実施形態によるMEMSジャイロスコープの挙動のプロットを示す図である。
【
図5】
図4に示したプロットのさらなる詳細を示す図である。
【
図6】本発明の第2の実施形態によるオフセットキャンセル回路の機能を示す図である。
【
図7】本発明の第2の実施形態によるMEMSジャイロスコープの挙動のプロットを示す図である。
【発明を実施するための形態】
【0031】
図1は、MEMSジャイロスコープ100の高レベルの概略図を示す。電気機械MEMSジャイロ要素110は、一次運動と二次運動の2つの主な運動によって特徴付けられ得る。MEMSジャイロ要素110は、一次および二次運動の両方が可能な単一のMEMS要素内に運動マス、すなわちプルーフマスを含むことができ、または、2つ以上のMEMS要素および運動マスを含むことができる。簡単にするために、
図1は、2つの共振器、すなわち一次共振器111および二次共振器112を有するMEMS要素を示しており、後者の二次共振器112は検出要素または検知要素と呼ばれる場合もある。一次共振器111の少なくとも1つの一次マスは、一次駆動ループ回路120および駆動変調回路130を含む閉一次駆動ループによって安定した一次振動をするように駆動される。一次マス(複数可)の運動は、二次共振器112の少なくとも1つの二次マスに結合される。一次共振器111および二次共振器112の両方の振動に直交する回転軸を中心とした角速度によって引き起こされるコリオリの力F
Corは、二次共振器112の少なくとも1つの二次マスの運動を引き起こす。二次共振器112の二次マス(複数可)の運動は、二次ループ回路140によって検出される。二次ループ回路140は、定義された検出軸を中心とする、センサデバイスによって検出される角度変化の速度(すなわち、角速度)を示す電気レート信号を生成する。二次ループは、二次共振器112の二次マス(複数可)に印加される力フィードバック信号を生成するための力フィードバック回路150も含む。力フィードバック回路150の構成および動作は、例えば、国際公開第2017/195020号に記載されており、その開示は参照により組み込まれる。
【0032】
二次ループ回路140から出力されたレート信号は、オフセット補償回路160に入力される。オフセット補償回路160の出力は、オフセット補償された角速度出力である。オフセット補償回路160は、以下の
図2および5に関してより詳細に説明される。
【0033】
本発明の実施形態によるMEMSジャイロスコープでは、一次共振器111および二次共振器112は、好ましくは、共通のロータ電圧によってバイアスされる。一次共振器111の一次マス(複数可)は、例えば線形櫛型キャパシタなどの静電アクチュエータによって駆動され、二次要素112の二次マス(複数可)の運動は、同様に容量性センサ(例えば、同じく線形櫛型キャパシタなど)によって検出される。一次要素111は通常、容量性センスインターフェースも含み、当該インターフェースの信号は、上述した一次ループ回路120において使用される。二次要素112は通常、力フィードバック回路150から二次要素112に力フィードバックを提供するための静電アクチュエータも含む。
【0034】
DCバイアスは、MEMSジャイロスコープ100の一次要素111および二次要素112内の静電アクチュエータ(複数可)および容量性センサ(複数可)のすべての信号容量にわたって安定したDCバイアス電圧を提供する。例えば、5ボルト〜20ボルトのDCバイアス電圧を印加することができる。一次要素111および二次要素112をバイアスするための1つの典型的な方法は、同じバイアス電圧を、同じバイアス電圧を有するすべての可動半櫛体(一次マスおよび二次マス)に結合することであり、結果、可動半櫛体は、すべてのそれぞれの固定半櫛体のDC電圧レベルよりも高いかまたは低いDC電圧を有するようになる。しかし、DCバイアスのためのいくつかの代替形態が存在し、一次要素111および二次要素112のDCバイアスは異なるバイアス電圧を使用することさえできる。
【0035】
駆動(励起)機能について、高DCバイアス電圧が、一次要素111を駆動するための強い静電力を提供することが有益である。
【0036】
検出(検知)機能について、センサ電極間の可変静電容量にわたるDCバイアス電圧は、信号電流が、静電容量が変化するときはいつでも、センサ電極において生成されるようにする。理想的なシステムにおいて、静電容量が変化しないままである場合、信号電流は生成されない。この変化する電流は、一次ループ回路120および/または二次ループ回路140によって検出され得る。
【0037】
振動型MEMSジャイロスコープは、共振周波数f
RESにおいて動作し、結果、MEMSジャイロスコープが一定の回転速度を受ける場合であっても、MEMSジャイロスコープは、電極を通じて変化する電流を提供する。
【0038】
図1に関して上述したように、オフセットキャンセル回路160は、二次ループ回路140によって出力されるレート信号を入力として受け取る。レート信号は、ジャイロスコープのセンス軸の周りのジャイロスコープの角度位置の変化率に比例する。理想的には、二次要素の振動は、ジャイロスコープの回転、および結果として生じるコリオリの力によってのみ引き起こされる。しかしながら、上述のように、実際には、レート信号は、駆動信号によって引き起こされる望ましくない影響を含み、当該影響は、外部回転速度が実際にはゼロであるときにオフセット、すなわち非ゼロレート信号をもたらす。レート信号に対する駆動信号の影響の程度を決定し、続いて、レート信号において当該影響を打ち消しまたはキャンセルするために、本発明のMEMSジャイロスコープ100は、一次振動振幅を交番する通常は連続的な駆動信号を変調し、レート信号に対する駆動信号の影響の結果として生じる変調を使用して、レート信号に対する駆動信号の影響の程度を決定する。
【0039】
本発明の第1の実施形態は、駆動信号が繰り返しオンおよびオフになる駆動信号変調方式を特徴とする。第1の実施形態のオフセットキャンセル回路の概略図が
図2に示され、駆動信号変調が
図3から
図5にさらに詳細に示されている。
【0040】
本発明の第2の実施形態は、駆動信号が線形的に変調される連続変調方式を特徴とする。第2の実施形態のオフセットキャンセル回路の概略図が
図6に示され、駆動信号方式が
図7にさらに詳細に示されている。
【0041】
第1および第2の両方の実施形態において、静電駆動力は積F
Drive=V
DC・V
ACに比例し、V
DCはDCバイアス電圧であり、V
ACは駆動信号のAC成分である。したがって、V
DCまたはV
ACのいずれかを変化させることにより、駆動力変調を生成することが可能である。本発明の場合、駆動信号を変調するために上記の一方または他方を使用することは必須ではなく、自動利得制御(AGC)動作がAC利得制御を使用して実施されるか、またはDC制御を使用して実施されるかに応じて、V
DCまたはV
ACの一方または他方の使用が、ハードウェアの複雑さの観点からより適切な場合がある。
【0042】
本発明の両方の実施形態は、力フィードバック機能を備えたMEMSジャイロスコープの振動特性を利用する。そのようなジャイロスコープにおいて、一次共振器111のQ値は非常に高く、一方、力フィードバック回路によって減衰される二次共振器112のQ値ははるかに低い。これは、駆動力が変化すると、一次共振器111は、新しい力の状態に応答して新しい定常状態(または定常状態に近い状態)に整定するまでに比較的長い時間を必要とすることを意味する。対照的に、二次共振器112は、力フィードバックループによって設定される周波数応答に起因して、急速に整定する。したがって、駆動信号の変化は、一次要素111に比較的低速の影響を及ぼし、したがって、コリオリ効果によって引き起こされる二次要素112の振動の成分に比較的低速の影響を与えるが、二次発振器への駆動信号の影響はより迅速である。したがって、本明細書においては、力フィードバック機能を有するMEMSジャイロスコープに関して本発明を説明するが、本発明は、二次要素のQ値が一次要素のQ値より大幅に低い任意のMEMSジャイロスコープに適用可能であることが理解されよう。
【0043】
力フィードバック回路を含む既存のジャイロスコープでは、閉ループ、すなわち、二次共振器+力フィードバックシステムは、二次MEMS共振器、フィルタ(例えば、二次ローパスフィルタまたはバンドパスフィルタ)および増幅器から形成される。好ましくは、アナログからデジタルへの変換またはデジタルからアナログへの変換は必要とされないため、フィルタはアナログフィルタである。
【0044】
フィルタのQ値が高いと、閉ループのQ値も高くなり、逆も同様である。フィルタのQ値は通常、発振器の共振挙動によって引き起こされる擾乱を最小限に抑えるように設定される。ただし、大きさの閉ループ伝達関数が、利得極大値なしで可能な限り平坦かつ幅広であるとき、整定ステップ応答をより速くすることができる。上記は、本発明においては、フィルタに対してより低い、すなわち3未満、好ましくは1〜2の範囲内のQ値を使用することによって達成される。最終的に、閉ループの利得範囲を可能な限り平坦かつ幅広することによって、閉ループ、したがって二次MEMS共振器の整定速度が増加する。
【0045】
一次要素および二次要素の応答を規定する別の方法は、整定時間、すなわち、指定された誤差範囲内で、要素への入力の変化から発振器の運動が定常状態に達する時点までの時間を用いる方法である。力フィードバックループを使用することにより、本発明のジャイロスコープの二次要素は、1%の精度で0.5ミリ秒未満の整定時間を達成することができる。
【0046】
第1の実施形態
図2は、本発明の第1の実施形態によるオフセットキャンセル回路160/200の機能を示す。上述のように、第1の実施形態では、駆動力が繰り返しオンおよびオフになるように、すなわち駆動力が繰り返しゼロにされ、完全に有効化されるように、駆動信号が変調される。当該タイプの変調方式には、通常、オン/オフ切り替えの最大速度が二次共振器のリンギング時間によって制限されるという欠点がある。したがって、力フィードバックのない従来のMEMSジャイロスコープ(または整定時間がより遅い任意のMEMSジャイロスコープ)では、オン/オフ切り替えの速度は、実際に使用できない程度まで厳しく制限される。しかしながら、二次共振器が一次共振器よりもはるかに速い整定時間を有する本発明の事例では、オン/オフ切り替えの速度を大幅に増加させることができる。
【0047】
オフセットキャンセル回路200は、駆動信号の影響がレート信号に存在するとき(要素211)、および駆動信号の影響がレート信号に存在しないとき(要素212)に、レート信号をサンプリングするように構成されるサンプリング要素211および212を含む。無論、実際には、異なる時間にレート信号をサンプリングするために電子回路に別個の構成要素を設ける必要はなく、要素211および212の両方の機能が電子回路の単一の構成要素に含まれていてもよい。
【0048】
各時間スロット中(すなわち、駆動信号の影響が存在するとき、および駆動信号の影響が存在しないとき)にサンプリング要素211および212において得られるサンプリング信号データの平均値が計算されて、新しいデータストリームS
DriveOnおよびS
DriveOffが形成される。次いで、当該データストリームを使用して、オフセット値を計算することができる。オフセット値は、レート信号に駆動信号の影響が存在する時間、および駆動信号の影響が存在しない時間の相対的な持続時間に従ってスケーリングする必要もある。したがって、オフセット値はM・(S
DriveOn−S
DriveOff)として計算することができ、ここで、Mはスケーリング係数である。例えば、
図4に示すように、レート信号に駆動信号の影響が存在する時間と、駆動信号の影響が存在しない時間との比は3:1であり、スケーリング計数Mは3/4である。無論、当該値は単に例として提供されており、他の要因の中でも、二次共振器112のQ係数/整定時間(例えば、力フィードバック出力における二次共振器ループのQ値)、駆動信号が有効である時間の長さ、および変調方式のオン/オフ切り替えの周波数に応じて変動する。
【0049】
図2は、値S
DriveOn−S
DriveOffが計算される減算要素220を示す。次に、結果の値がIF&FIFO要素230に渡され、IF&FIFO要素は、
図3で詳細に説明されている他の機能の中でも、値S
DriveOn−S
DriveOffにスケーリング係数Mを乗算する。オフセット値M・(S
DriveOn−S
DriveOff)が第2の減算要素250に達する前に計算される限り、動作が上記特定の順序で、または
図2に示される特定の要素によって実行される必要はないことが理解されよう。減算要素250において、オフセット値がレート信号から減算されて、オフセット補正レート信号が生成される。
【0050】
本発明のシステムでは、駆動変調方式のオンオフ周波数を2kHz程度に高く設定することが可能である。したがって、オフセット低減後にデータをフィルタリングすることが可能である。フィルタリングにより、レートデータおよびオフセット低減データからのノイズおよび帯域外信号成分を、ローパスフィルタ260において同時に除去することが可能になる。以下の
図3に関してより詳細に説明するIF&FIFO機能は、オフセットキャンセル信号を折り返しノイズのないままにし、レート信号自体を継続的に読み取ることができ、元々折り返し効果がないため、重大な折り返しは発生しない。ただし、オフセットキャンセルに、例えば10Hzなど、大幅に低い帯域幅BWが必要である一方で、レート信号の帯域幅が、例えば100Hzなど、オフセット低減の帯域幅よりも大幅に高い状態を維持する必要がある場合、ローパスフィルタ240におけるオフセット低減データ帯域幅を制限することが実行可能である。
【0051】
図3は、
図2のIF&FIFO要素230などのIF&FIFO要素300をより詳細に示す。IF&FIFO要素300の主な機能は、オンオフ周波数の近くで任意の外部信号を検出し、外部信号が決定されたオフセット値に影響を与えるのを防ぐことである。上記のように、IF&FIFO要素300はまた、スケーリング係数をオフセット値に適用することを担当することもできる。
【0052】
ブロック310において、減算要素220によって生成されたオフセット値OFFが、IF&FIFO要素によって読み取られる。ブロック320において、閾値TH_OFFが使用されて、オフセットが駆動誘発オフセットに対して予想されるよりも高いか否かを検出する。TH_OFFは、単に一定の固定パラメータであってもよく、例えば、TH_OFF=TH_OFF_FIXED+average(OFF[1...n−1])など、シフトレジスタ出力サンプルを使用して計算されてもよい。当該事例において、ノイズの影響を低減するために平均値を計算することができるが、TH_OFF_FIXEDは、ノイズがあっても起動時に適切に動作することができるように十分に高く選択する必要がある。
【0053】
読み取られたオフセット値OFFが閾値TH_OFFよりも大きい場合、プロセスがブロック340に移動すると、オフセット値OFFは破棄される。
【0054】
オフセット値OFFが閾値TH_OFFよりも小さい(または等しい)場合、処理はブロック330に進み、OFFがFIFO(先入れ先出し)キューにエンキューされ、キュー内の第1の要素、OFF[n]がデキューされる。
【0055】
OFFがTH_OFF以下の場合のブロック330に続き、またはOFFがTH_OFFより大きい場合のブロック320に続き、FIFOキューの第1の要素、OFF[n]は、回路200の減算要素250によって、レート信号からオフセットを除去するために使用するために、IF&FIFO要素300によって出力される。
【0056】
ブロック320は、不等号によって示されているが、不等号は、厳密でなくてもよく、すなわち、等号付き不等号であってもよいことが理解されよう。
【0057】
TH_OFFの定数値を使用した場合であっても、OFF[1]〜OFF[n]の複数のオフセット値がFIFOキューに保持され、レート信号に対して遅延される。したがって、減算要素220によって生成されるオフセット値OFFがTH_OFF閾値を超えたとしても、別のオフセット値がFIFOキューから提供され、オフセットは依然としてレート信号から除去することができる。
【0058】
図4および
図5は、第1の実施形態におけるMEMSジャイロスコープの変調方式および挙動をより詳細に示す。両方の図は、変調された駆動信号、一次共振器の振動、二次要素に印加される力フィードバック信号、および二次要素の検知された振動から復調されたが、駆動信号に起因する(オフセット)誤差はキャンセルされていないレート信号を示す、4つのプロットを含む。
【0059】
図4では、外部レート、すなわちジャイロスコープがセンス軸を中心に回転している速度は、10ミリ秒においてジャイロスコープに100dpsの回転が加えられるまでゼロである。
図4に示すように、5ミリ秒より前の駆動信号は、変調方式が適用されていない単純な振動波形である。上記は、対応する振動を示す力フィードバック信号、および真のゼロ値からの一定のオフセットを示すレート信号に反映される。5ミリ秒後、駆動信号はオン/オフ変調方式に切り替えられる。本発明の例では、駆動信号は、8つに1つの期間にわたって、オン状態である。5ミリ秒前の単純な振動波形は、一次要素の振動の起動プロセスの一部である。連続波形を使用して一次要素の振動を開始することによって、安定した振動に達するまでの時間が短縮される。
【0060】
起動が5ミリ秒において完了した後、定期的なオン状態によって提供されるインパルスが、連続的な起動によって生成される振動を維持する。上記は、一次要素の振動においてより詳細に示される。図からは判別できないが、一次要素の振動の振幅は、5ミリ秒後にオン/オフ変調方式に切り替えた後、駆動オン/オフ期間の間で約0.3%しか変化しない。
図4および
図5に示されているように、一次発振器のQ値は、まだ適度に低い5000である。一次発振器のQ値が20000の場合、一次発振器の振幅の変動は0.1%未満になる。
【0061】
図4の一番下のプロットからわかるように、駆動信号のオン/オフ変調方式はレート信号に反映される。ただし、連続駆動信号が適用される5ミリ秒前の時間とは対照的に、駆動信号によって発生するレート信号のピークは、次の駆動信号オン期間によって発生する次のピークの前にゼロに降下する。上記態様を
図5により詳細に示す。
【0062】
図5は、
図4に示したプロットのより詳細なセクションを示す。レート信号のピークの期間は、S
DriveOffおよびS
DriveOnとラベリングされたセクションに分割される。セクションS
DriveOffとS
DriveOnの対は、インデックスN、N+1などによってラベリングされる。S
DriveOffは、駆動信号がレート信号に及ぼす影響がゼロである、レート信号の駆動誘発されたピークの期間のセクションである。S
DriveOnは、駆動信号がレート信号に及ぼす影響が非ゼロである、レート信号の駆動誘発されたピークの期間のセクションである。隣接するS
DriveOnセクションとS
DriveOffセクションとの間の境界は、完全である必要はない、すなわち、駆動信号の影響がゼロから非ゼロに遷移する瞬間に開始および終了する必要はないことが理解されよう。ただし、レート信号の正しい、すなわち、駆動信号が誘発するオフセットのない値のベースラインが提供されるため、S
DriveOffセクションに最小量の駆動信号の影響が含まれるように、境界を設定することが重要である。
【0063】
図2に関して前述したように、レート信号セクションS
DriveOnおよびS
DriveOffが測定および平均化されると、オフセット値がM・(S
DriveOn−S
DriveOff)として計算される。
図5に示す例では、S
DriveOnの長さは、S
DriveOffの長さの3倍である。したがって、スケーリング計数Mは3/4である。
【0064】
第2の実施形態
図6は、本発明の第2の実施形態によるオフセットキャンセル回路160/600の機能を示す。上述のように、第2の実施形態では、駆動力が連続的に変化するように、駆動信号が線形的に変調される。力フィードバック機能を含むジャイロスコープなど、二次要素のQ値が一次要素よりも大幅に低いジャイロスコープでは、このような駆動信号の変調は、一次要素111の運動にほとんど影響を与えないが、レート信号には明確な影響がある。実際、(例示的な変調度50%による)
図6に示される変調方式を使用すると、5000の中程度のQ値を有する一次共振器111は、わずか0.08%のピーク間変動しか有しない。
【0065】
駆動信号には、DC成分およびAC成分の2つの成分がある。レート信号オフセットのAC成分を回復し、当該AC成分を駆動信号のAC成分と比較することにより、DCオフセットの大きさを駆動信号のDC成分から決定することができる。
【0066】
乗算要素610において、レート信号(オフセットを含む)が、二次ループ回路140から受信され、変調搬送波として参照される信号S
MODULATIONと乗算され、当該信号は、駆動信号を変調するのに使用される信号と同じ周波数を有する。S
MODULATIONの位相は、レート信号の駆動誘発リップルの位相と整合される(
図6により詳細に示す)。乗算要素610の出力は、以下の形式で書くことができる。
【0068】
式中、S
MOD_AMPは信号S
MODULATIONの振幅であり、F
MOD_AMPは駆動信号の変調によって引き起こされるレート信号のリップルの振幅である。乗算器610の出力はローパスフィルタ620を通じてフィルタリングされ、乗算された信号のsin
2(ωt)成分が除去され、2つの既知の値、すなわちD
OUTおよびS
MOD_AMP、ならびに、他の2つから計算することができる1つの未知の値F
MOD_AMPが残る。さらに、F
MOD_AMPと駆動信号の変調の振幅との比から、オフセットのDC成分を計算することもできる。
【0069】
ローパスフィルタ620には、IF&FIFO要素630が後続し、当該要素は、上述のようにACおよびDCオフセットの計算を実行することができる。当該計算以外では、IF&FIFO要素630は、本質的に
図3に関して上述したように動作する。
図2に示されるローパスフィルタ240と同じ目的を果たす、さらなるローパスフィルタ640を、IF&FIFO要素630に後続して設けることができる。
【0070】
減算要素650において、要素610〜640によって計算されたオフセットがレート信号から減算されて、駆動誘発オフセットが除去されたレート信号が出力される。ローパスフィルタ660は、第2の実施形態において、フィルタ260が第1の実施形態において実行するのと同じ機能を実行する、すなわち、最終的なレート信号帯域幅を設定し、変調方式によって引き起こされるAC誤差を除去する。
【0071】
第2の実施形態の駆動信号は連続的に変調されるため、駆動信号におけるノイズエイリアシングタイプの問題は低減される。好ましくは、変調度は、線形駆動力を維持しながら可能な限り大きく設定される。実際には、通常の駆動力の30〜80%を、選択可能な変調範囲として設定することができる。
図7の上2つのプロットに示されている例の場合、駆動変調は通常の駆動力の50%に設定される。
図7の下から2番目のプロットの力フィードバック信号が示すように、20ミリ秒の時点でジャイロスコープによって測定される外部レートにおいて、100dpsのステップが発生する。
図7の一番下のプロットにおいて、レート信号(オフセットを含む)が100dpsレベルをわずかに超えて整定し、駆動変調による正弦波リップルを示していることがわかる。また、駆動運動のピーク間変動は、一次Qが5000と中程度でしかないにもかかわらず、わずか0.08%であることも注目に値する。また、駆動信号の変調の周波数が十分に低く、結果、駆動力変調を非線形的変調に変更することができないことを確認することも重要である。例えば、振幅制御帯域幅が数十Hz(例えば、10〜30)程度の場合、AGCなどの回路構成要素が駆動変調に与える非線形効果を制限することは簡単である。