(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0006】
[本開示の実施形態の説明]
まず本開示の実施形態について説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。本明細書の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。結晶学上の指数が負であることは、通常、数字の上に”−”(バー)を付すことによって表現されるが、本明細書では数字の前に負の符号を付すことによって結晶学上の負の指数を表現する。
【0007】
(1)本開示に係る炭化珪素エピタキシャル基板100は、炭化珪素単結晶基板10と、炭化珪素層20とを備える。炭化珪素単結晶基板10は、第1主面11を含む。炭化珪素層20は、第1主面11上にある。炭化珪素層20は、炭化珪素単結晶基板10と接する面14と反対側の第2主面30を含む。第2主面30の最大径111は、100mm以上である。第2主面30は、第2主面30の外縁31から5mm以内の外周領域32と、外周領域32に取り囲まれた中央領域33とを有する。炭化珪素層20は、中央領域33を含む中央表面層25を有する。中央表面層25におけるキャリア濃度の平均値は、1×10
14cm
-3以上5×10
16cm
-3以下である。キャリア濃度の周方向均一性は、2%以下であり、かつキャリア濃度の面内均一性は、10%以下である。中央領域33と炭化珪素単結晶基板10とに挟まれた炭化珪素層の部分27の厚みの平均値は、5μm以上である。厚みの周方向均一性は、1%以下であり、かつ厚みの面内均一性は、4%以下である。キャリア濃度の周方向均一性は、周方向における中央表面層25のキャリア濃度の平均値に対する、周方向における中央表面層25のキャリア濃度の最大値と最小値との差の絶対値の比率である。キャリア濃度の面内均一性は、中央領域全体における中央表面層25のキャリア濃度の平均値に対する、中央領域全体における中央表面層25のキャリア濃度の最大値と最小値との差の絶対値の比率である。厚みの周方向均一性は、周方向における部分27の厚みの平均値に対する、周方向における部分27の厚みの最大値と最小値との差の絶対値の比率である。厚みの面内均一性は、中央領域全体における部分27の厚みの平均値に対する、中央領域全体における部分27の厚みの最大値と最小値との差の絶対値の比率である。
【0008】
炭化珪素層をエピタキシャル成長により形成する際、炭化珪素単結晶基板を回転させながら炭化珪素層が炭化珪素単結晶基板上に形成される。炭化珪素層は、たとえば1600℃程度の高温で形成される。そのため、たとえばステンレスなどの金属を用いて、炭化珪素単結晶基板10を機械的に回転させる機構を採用することはできない。そこで、炭化珪素層のエピタキシャル成長においては、水素等のガスを用いて、炭化珪素単結晶基板を保持するサセプタプレートを浮上させながら、サセプタプレートを回転させるガスフォイル(gas foil)方式が採用されている。
【0009】
しかしながら、ガスフォイル方式の場合、たとえばサセプタプレートに対してガスを噴出するためのガス噴出孔付近に炭化珪素などの堆積物が付着する場合がある。これにより、ガスの流れる方向、速度などが変化するため、サセプタプレートの回転数が変化する。またサセプタプレートの形状がひずんでいる場合は回転数が安定しない。さらに時間の経過につれて炭化珪素単結晶基板およびサセプタプレート上に炭化珪素層が堆積されることで総重量が変化することで、回転数が変化する場合もある。以上のような理由により、ガスフォイル方式の場合は、回転数が安定しないと考えられる。このことが、炭化珪素単結晶基板の周方向において、炭化珪素層の厚みおよび炭化珪素層内のキャリア濃度のばらつきが大きくなる原因であると推定される。
【0010】
そこで、発明者らは、炭化珪素単結晶基板の回転数をモニターし、当該回転数に基づいてガスの流量をフィードバック制御することにより、回転数の変動を抑制可能であることを見出した。これにより、炭化珪素単結晶基板の周方向において、炭化珪素層内のキャリア濃度の均一性および炭化珪素層の厚みの均一性を向上することができる。結果として、炭化珪素層内のキャリア濃度の面内均一性および炭化珪素層の厚みの面内均一性を向上することができる。
【0011】
(2)上記(1)に係る炭化珪素エピタキシャル基板100において、最大径は、150mm以上であってもよい。
【0012】
(3)上記(1)または(2)に係る炭化珪素エピタキシャル基板100において、キャリア濃度の平均値は、1×10
15cm
-3以上1×10
16cm
-3以下であってもよい。
【0013】
(4)上記(1)〜(3)のいずれかに係る炭化珪素エピタキシャル基板100において、キャリア濃度の周方向均一性は、1%以下であってもよい。
【0014】
(5)上記(1)〜(4)のいずれかに係る炭化珪素エピタキシャル基板100において、キャリア濃度の面内均一性は、5%以下であってもよい。
【0015】
(6)本開示に係る炭化珪素半導体装置の製造方法は以下の工程を備えている。上記(1)〜上記(5)のいずれか1項に記載の炭化珪素エピタキシャル基板100が準備される。炭化珪素エピタキシャル基板100が加工される。
【0016】
[本開示の実施形態の詳細]
以下、本開示の一実施形態(以下「本実施形態」とも記す)について説明する。ただし本実施形態はこれらに限定されるものではない。
【0017】
(炭化珪素エピタキシャル基板)
図1および
図2に示されるように、本実施形態に係る炭化珪素エピタキシャル基板100は、炭化珪素単結晶基板10と、炭化珪素層20とを有している。炭化珪素単結晶基板10は、第1主面11と、第1主面11と反対側の第3主面13とを含む。炭化珪素層20は、炭化珪素単結晶基板10と接する第4主面14と、第4主面14と反対側の第2主面30を含む。
図1に示されるように、炭化珪素エピタキシャル基板100は、第1方向101に延在する第1フラット5を有していてもよい。炭化珪素エピタキシャル基板100は、第2方向102に延在する第2フラット(図示せず)を有していてもよい。第1方向101は、たとえば<11−20>方向である。第2方向102は、たとえば<1−100>方向である。
【0018】
炭化珪素単結晶基板10(以下「単結晶基板」と略記する場合がある)は、炭化珪素単結晶から構成される。当該炭化珪素単結晶のポリタイプは、たとえば4H−SiCである。4H−SiCは、電子移動度、絶縁破壊電界強度等において他のポリタイプより優れている。炭化珪素単結晶基板10は、たとえば窒素などのn型不純物を含んでいる。炭化珪素単結晶基板10の導電型は、たとえばn型である。第1主面11は、たとえば{0001}面もしくは{0001}面から8°以下傾斜した面である。第1主面11が{0001}面から傾斜している場合、第1主面11の法線の傾斜方向は、たとえば<11−20>方向である。
【0019】
炭化珪素層20は、炭化珪素単結晶基板10上に形成されたエピタキシャル層である。炭化珪素層20は、第1主面11上にある。炭化珪素層20は、第1主面11に接している。炭化珪素層20は、たとえば窒素(N)などのn型不純物を含んでいる。炭化珪素層20の導電型は、たとえばn型である。炭化珪素層20が含むn型不純物の濃度は、炭化珪素単結晶基板10が含むn型不純物の濃度よりも低くてもよい。
図1に示されるように、第2主面30の最大径111(直径)は、100mm以上である。最大径111の直径は150mm以上でもよいし、200mm以上でもよいし、250mm以上でもよい。最大径111の上限は特に限定されない。最大径111の上限は、たとえば300mmであってもよい。
【0020】
第2主面30は、たとえば{0001}面もしくは{0001}面から8°以下傾斜した面であってもよい。具体的には、第2主面30は、(0001)面もしくは(0001)面から8°以下傾斜した面であってもよい。第2主面30の法線の傾斜方向(オフ方向)は、たとえば<11−20>方向であってもよい。{0001}面からの傾斜角(オフ角)は、1°以上であってもよいし、2°以上であってもよい。オフ角は、7°以下であってもよいし、6°以下であってもよい。
【0021】
図1に示されるように、第2主面30は、外周領域32と、外周領域32に取り囲まれた中央領域33とを有する。外周領域32は、第2主面30の外縁31から5mm以内の領域である。言い換えれば、第2主面30の径方向において、外縁31と、外周領域32および中央領域33の境界との距離112は、5mmである。
【0022】
図2に示されるように、炭化珪素層20は、バッファ層21と、ドリフト層24とを有している。ドリフト層24が含むn型不純物の濃度は、バッファ層21が含むn型不純物の濃度よりも低くてもよい。ドリフト層24は、表層領域23と、深層領域22とを含む。表層領域23は、第2主面30を構成する。表層領域23は、中央表面層25と、外周表層領域19とを有している。中央表面層25は、中央領域33を構成する。外周表層領域19は、外周領域32を構成する。第2主面30に対して垂直な方向から見て、中央表面層25は、外周表層領域19に取り囲まれている。中央表面層25は、中央領域33から第1主面に向かって5μm程度以内の領域である。
【0023】
深層領域22は、中央深層領域18と、外周深層領域17とを有している。第2主面30に対して垂直な方向から見て、中央深層領域18は、外周深層領域17に取り囲まれている。同様に、バッファ層21は、中央バッファ領域16と、外周バッファ領域15とを有している。第2主面30に対して垂直な方向から見て、中央バッファ領域16は、外周バッファ領域15に取り囲まれている。中央深層領域18は、中央バッファ領域16と中央表面層25とに挟まれている。同様に、外周深層領域17は、外周バッファ領域15と外周表層領域19とに挟まれている。
【0024】
炭化珪素層20は、中央炭化珪素領域27と、外周炭化珪素領域26とにより構成されている。中央炭化珪素領域27は、中央表面層25と、中央深層領域18と、中央バッファ領域16とにより構成されている。同様に、外周炭化珪素領域26は、外周表層領域19と、外周深層領域17と、外周バッファ領域15とにより構成されている。
【0025】
(キャリア濃度の周方向均一性および面内均一性)
炭化珪素層20は、ドーパントとしてたとえば窒素を含有する。本開示に係る炭化珪素エピタキシャル基板100によれば、中央表面層25におけるキャリア濃度の平均値は、1×10
14cm
-3以上5×10
16cm
-3以下である。中央表面層25において、キャリア濃度の周方向均一性は、2%以下であり、かつキャリア濃度の面内均一性は、10%以下である。周方向均一性および面内均一性は、その値が小さいほど、キャリア濃度が均一に分布していることを示す。なお、本願におけるキャリア濃度とは、実効キャリア濃度を意味する。たとえば、炭化珪素層がドナーとアクセプタとを含む場合、実効キャリア濃度とは、ドナー濃度(N
d)とアクセプタ濃度(N
a)との差の絶対値(|N
d−N
a|)として計算される。キャリア濃度の測定方法は後述する。
【0026】
中央表面層25において、キャリア濃度の平均値は、2×10
16cm
-3以下であってもよいし、9×10
15cm
-3以下であってもよい。キャリア濃度の平均値は、たとえば1×10
15cm
-3以上であってもよいし、5×10
15cm
-3以上であってもよい。
【0027】
中央表面層25において、キャリア濃度の周方向均一性は、1.5%以下であってもよいし、1%以下であってもよいし、0.5%以下であってもよい。中央表面層25において、キャリア濃度の面内均一性は、8%以下であってもよいし、5%以下であってもよいし、3%以下であってもよい。
【0028】
次に、キャリア濃度の測定方法について説明する。キャリア濃度は、たとえば水銀プローブ方式のC−V測定装置により測定される。具体的には、後述する中央領域33の測定位置に一方のプローブが配置され、第3主面13に他方のプローブが配置される。一方のプローブの面積は、たとえば0.01cm
2である。一方のプローブと他方のプローブとの間に電圧が印加され、一方のプローブと他方のプローブとの間のキャパシタンスが測定される。
【0029】
図3に示されるように、第2主面30の中央35を中心とした複数の同心円34を想定する。複数の同心円34の各々は、共通の中央35を有する。
図3に示されるように、キャリア濃度の測定位置は、ハッチングで示した位置とすることができる。具体的には、キャリア濃度の測定位置は、中央35を通りかつ第1方向101に平行な直線4上と、中央35を通りかつ第2方向102に平行な直線3上と、中央35を通りかつ直線4と直線3とにより形成される角度を2等分する直線6上とにある。外周領域32と中央領域33との境界線と直線3との交点と、中央35とを繋ぐ線分が略5等分される。当該線分が5等分された各位置を通り、かつ中央35を中心とする5つの同心円34と、直線3、直線4および直線6との交点の位置が測定位置とされてもよい。
図3に示されるように、中央領域における計31カ所の測定位置においてキャリア濃度が測定される。
【0030】
図3に示されるように、外縁31は、円弧部7と、直線状の第1フラット5とを含んでいる。円弧部7上における任意の3点により形成される三角形の外接円の中心が、第2主面30の中央35とされてもよい。
【0031】
キャリア濃度の周方向均一性は、周方向における中央表面層25のキャリア濃度の平均値に対する、周方向における中央表面層25のキャリア濃度の最大値と最小値との差の絶対値の比率である。具体的には、ある一つの同心円34上の8カ所の測定位置における、キャリア濃度の平均値と、最大値と、最小値とが求められ、キャリア濃度の周方向均一性が計算される。本開示に係る炭化珪素エピタキシャル基板によれば、上記5つの同心円34の各々において、キャリア濃度の周方向均一性が2%以下である。たとえば、上記8カ所の測定位置におけるキャリア濃度の平均値が1.00×10
16cm
-3であり、最大値が1.01×10
16cm
-3であり、最小値が0.99×10
16cm
-3である場合、キャリア濃度の周方向均一性は、(1.01×10
16cm
-3−0.99×10
16cm
-3)/1.00×10
16cm
-3=2%である。
【0032】
キャリア濃度の面内均一性は、中央領域全体における中央表面層25のキャリア濃度の平均値に対する、中央領域全体における中央表面層25のキャリア濃度の最大値と最小値との差の絶対値の比率である。具体的には、上記31カ所の測定位置における、キャリア濃度の平均値と、最大値と、最小値とが求められ、キャリア濃度の面内均一性が計算される。本開示に係る炭化珪素エピタキシャル基板によれば、キャリア濃度の面内均一性は、10%以下である。たとえば、上記31カ所の測定位置おけるキャリア濃度の平均値が1.00×10
16cm
-3であり、最大値が1.05×10
16cm
-3であり、最小値が0.95×10
16cm
-3である場合、キャリア濃度の面内均一性は、(1.05×10
16cm
-3−0.95×10
16cm
-3)/1.00×10
16cm
-3=10%である。
【0033】
図4に示されるように、縦軸を1/C(キャパシタンスの逆数)とし、横軸をV(電圧)とし、測定データ41がプロットされる。
図4に示されるように、電圧が大きくなると、キャパシタンスの逆数は小さくなる。測定データ41の直線の傾きから、キャリア濃度が求められる。測定データ41の傾きの絶対値が大きい程、キャリア濃度は高い。
図4において、直線で表わす測定データ41を示す基板のキャリア濃度は、破線で表わす測定データ42を示す基板のキャリア濃度よりも高い。キャリア濃度の測定深さは、印加される電圧に依存する。本実施の形態においては、たとえば0Vから5V(
図4における電圧V1)まで電圧が掃引される。これにより、中央領域33から第1主面11に向かって5μm程度以内である中央表面層25におけるキャリア濃度が測定される。電圧が電圧V1よりも大きくなると、より深い位置までの領域におけるキャリア濃度が測定される。
【0034】
(炭化珪素層の厚みの周方向均一性および面内均一性)
中央領域33と炭化珪素単結晶基板10とに挟まれた炭化珪素層の部分(つまり、中央炭化珪素領域27)の厚み113の平均値は、5μm以上である。厚み113の平均値は、10μm以上であってもよいし、15μm以上であってもよいし。厚みの周方向均一性は、1%以下であり、かつ厚みの面内均一性は、4%以下である。厚みの周方向均一性は、周方向における中央炭化珪素領域27の厚みの平均値に対する、周方向における中央炭化珪素領域27の厚みの最大値と最小値との差の絶対値の比率である。厚みの面内均一性は、中央領域全体における中央炭化珪素領域27の厚みの平均値に対する、中央領域全体における中央炭化珪素領域27の厚みの最大値と最小値との差の絶対値の比率である。
【0035】
厚みの測定位置は、前述したキャリア濃度の測定位置と同じであってもよい。具体的には、
図3に示されるように、ある一つの同心円34上の8カ所の測定位置における、中央炭化珪素領域27の厚みの平均値と、最大値と、最小値とが求められ、中央炭化珪素領域27の厚みの周方向均一性が計算される。本開示に係る炭化珪素エピタキシャル基板によれば、上記5つの同心円34の各々において、厚みの周方向均一性は、1%以下である。たとえば、上記8カ所の測定位置における中央炭化珪素領域27の厚みの平均値が10.00μmであり、最大値が10.05μmであり、最小値が9.95μmである場合、厚みの周方向均一性は、(10.05μm−9.95μm)/10μm=1%である。同様に、上記31カ所の測定位置における、中央炭化珪素領域27の厚みの平均値と、最大値と、最小値とが求められ、中央炭化珪素領域27の厚みの面内均一性が計算される。上記31カ所の測定位置における中央炭化珪素領域27の厚みの平均値が10.0μmであり、最大値が10.2μmであり、最小値が9.8μmである場合、厚みの周方向均一性は、(10.2μm−9.8μm)/10μm=4%である。
【0036】
(成膜装置)
次に、本実施形態に係る炭化珪素エピタキシャル基板100の製造方法で使用される製造装置200の構成について説明する。
【0037】
図5に示されるように、製造装置200は、たとえばホットウォール方式のCVD(Chemical Vapor Deposition)装置である。製造装置200は、発熱体203、石英管204、断熱材205、誘導加熱コイル206および予備加熱機構211を主に有する。発熱体203に取り囲まれた空洞は、反応室201である。反応室201には、炭化珪素単結晶基板10を保持するサセプタプレート210が設けられている。サセプタプレート210は自転可能である。炭化珪素単結晶基板10は、第1主面11を上にして、サセプタプレート210に載せられる。
【0038】
発熱体203は、たとえば黒鉛製である。誘導加熱コイル206は、石英管204の外周に沿って巻回されている。誘導加熱コイル206に所定の交流電流を供給することにより、発熱体203が誘導加熱される。これにより反応室201が加熱される。
【0039】
製造装置200は、ガス導入口207およびガス排気口208をさらに有する。ガス排気口208は、図示しない排気ポンプに接続されている。
図5中の矢印は、ガスの流れを示している。キャリアガス、原料ガスおよびドーピングガスは、ガス導入口207から反応室201に導入され、ガス排気口208から排気される。反応室201内の圧力は、ガスの供給量と、ガスの排気量とのバランスによって調整される。
【0040】
(フィードバック制御部)
図6に示されるように、製造装置200は、回転数計51と、制御部52と、MFC(Mass Flow Controller)53と、ガス供給源54とをさらに有していてもよい。回転数計51は、たとえばレーザ光を用いて、炭化珪素単結晶基板10の回転数(言い換えれば、サセプタプレート210の回転数)をモニター可能に構成されているレーザ回転数計であってもよい。回転数計51は、炭化珪素単結晶基板10の第1フラット5を基準として、炭化珪素単結晶基板10の回転数をモニターしてもよい。回転数計51は、第1主面11に対面する位置に配置されている。
【0041】
発熱体203には、凹部68が設けられている。凹部68は、底面62と側面67とにより構成されている。底面62には、ガス噴出孔63が設けられている。ガス噴出孔63は、発熱体203に設けられた流路64と連通している。ガス供給源54は、流路64に対して、水素などのガスを供給可能に構成されている。ガス供給源54と流路64との間には、MFC53が設けられている。MFC53は、ガス供給源54から流路64に対して供給されるガスの流量を制御可能に構成されている。ガス供給源は、たとえば水素またはアルゴンなどの不活性ガスを供給可能なガスボンベである。
【0042】
図7に示されるように、底面62には、複数のガス噴出孔63が設けられている。底面62に対して垂直な方向から見て、ガス噴出孔63は、たとえば0°、90°、180°および270°の位置に設けられていてもよい。複数のガス噴出孔63の各々は、サセプタプレート210の底面61の周方向に沿って、ガスを噴出可能に構成されている。底面62に対して平行な方向から見て(
図6の視野において)、ガス噴出孔63から噴出されるガスの方向は、底面61に対して傾斜していてもよい。
図6および
図7において、矢印の方向は、ガスの流れの方向を示している。ガスが底面61に噴射されることにより、サセプタプレート210が浮き上がり、炭化珪素単結晶基板10の周方向103に回転する。サセプタプレート210の底面61が凹部68の底面62から離間し、かつサセプタプレート210の側面65が凹部68の側面67から離間した状態で、サセプタプレート210は周方向103に回転する。
【0043】
制御部52は、回転数計51により測定された炭化珪素単結晶基板10の回転数の情報を取得可能に構成されている。制御部52は、炭化珪素単結晶基板10の回転数の情報に基づいて、MFC53に対して信号を送信可能に構成されている。たとえば、サセプタプレート210の回転数が、所望の回転数よりも低い場合、制御部52は、MFC53に対して流路64に供給するガスの流量を増加させる信号を送る。これにより、ガス供給源54から流路64に供給されるガスの流量が増加する。結果として、炭化珪素単結晶基板10の回転数が増加する。反対に、サセプタプレート210の回転数が、所望の回転数よりも高い場合、制御部52は、MFC53に対して流路64に供給するガスの流量を減少させる信号を送る。これにより、ガス供給源54から流路64に供給されるガスの流量が減少する。結果として、炭化珪素単結晶基板10の回転数が低減する。
【0044】
つまり、回転数計51によって検知された炭化珪素単結晶基板10の回転数に基づいて、流路64に導入されるガスの流量が調整される。言い換えれば、回転数計51と、制御部52と、MFC53とは、フィードバック回路を構成する。これにより、炭化珪素単結晶基板10の回転数の変化を抑制することができる。結果として、第2主面30の周方向において、キャリア濃度の均一性を高めることができる。
【0045】
通常、サセプタプレート210および単結晶基板10は、反応室201の軸方向において、略中央に配置されている。
図5に示されるように、本開示では、サセプタプレート210および単結晶基板10が、反応室201の中央よりも下流側、すなわちガス排気口208側に配置されていてもよい。原料ガスが単結晶基板10に到達するまでに、原料ガスの分解反応を十分に進行させるためである。これにより単結晶基板10の面内においてC/Si比の分布が均一になることが期待される。
【0046】
(予備加熱機構)
ドーパントガスであるアンモニアガスは、反応室201に供給される前に、十分に加熱し、予め熱分解させておくことが望ましい。これにより炭化珪素層20において、窒素濃度(キャリア濃度)の面内均一性が向上することが期待できる。
図5に示されるように、反応室201の上流側に予備加熱機構211が設けられている。予備加熱機構211において、アンモニアガスを事前に加熱することができる。予備加熱機構211は、たとえば1300℃以上に加熱された部屋を備えている。アンモニアガスは、予備加熱機構211の内部を通過する際、十分に熱分解され、その後反応室201へと供給される。こうした構成により、ガスの流れに大きな乱れを生じさせることなく、アンモニアガスの熱分解を行うことができる。
【0047】
予備加熱機構211の内壁面の温度は、より好ましくは1350℃以上である。アンモニアガスの熱分解を促進するためである。また熱効率を考慮すると、予備加熱機構211の内壁面の温度は、好ましくは1600℃以下である。予備加熱機構211は、反応室201と一体となっていてもよいし、別体であってもよい。また予備加熱機構211の内部を通過させるガスは、アンモニアガスのみでもよいし、その他のガスを含んでいてもよい。たとえば原料ガス全体を予備加熱機構211の内部を通過させてもよい。
【0048】
(炭化珪素エピタキシャル基板の製造方法)
次に、本実施形態に係る炭化珪素エピタキシャル基板の製造方法について説明する。
【0049】
まず、たとえば昇華法により、ポリタイプ6Hの炭化珪素単結晶が製造される。次に、たとえばワイヤーソーによって、炭化珪素単結晶をスライスすることにより、炭化珪素単結晶基板10が準備される。炭化珪素単結晶基板10は、第1主面11と、第1主面11と反対側の第3主面13とを有する。第1主面11は、たとえば{0001}面から8°以下傾斜した面である。
図5および
図6に示されるように、炭化珪素単結晶基板10は、第1主面11がサセプタプレート210から露出するように、サセプタプレート210の凹部66内に配置される。次に、前述した製造装置200を用いて、炭化珪素単結晶基板10上に炭化珪素層20がエピタキシャル成長によって形成される。
【0050】
たとえば反応室201の圧力が大気圧から1×10
-6Pa程度に低減された後、炭化珪素単結晶基板10の昇温が開始される。昇温の途中において、キャリアガスである水素(H
2)ガスが、反応室201に導入される。
【0051】
反応室201内の温度がたとえば1600℃程度となった後、原料ガスおよびドーピングガスが反応室201に導入される。原料ガスは、Si源ガスおよびC源ガスを含む。Si源ガスとして、たとえばシラン(SiH
4)ガス用いることができる。C源ガスとして、たとえばプロパン(C
3H
8)ガスを用いることができる。シランガスの流量およびプロパンガスの流量は、たとえば46sccmおよび14sccmである。水素に対するシランガスの体積比率は、たとえば0.04%である。原料ガスのC/Si比は、たとえば0.9である。
【0052】
ドーピングガスとして、たとえばアンモニア(NH
3)ガスが用いられる。アンモニアガスは、三重結合を有する窒素ガスに比べて熱分解されやすい。アンモニアガスを用いることにより、キャリア濃度の面内均一性の向上が期待できる。水素ガスに対するアンモニアガスの濃度は、たとえば1ppmである。アンモニアガスは、反応室201に導入される前に、予備加熱機構211で、予め熱分解させておくことが望ましい。予備加熱機構211により、アンモニアガスは、たとえば1300℃以上に加熱される。
【0053】
炭化珪素単結晶基板10が1600℃程度に加熱された状態で、キャリアガス、原料ガスおよびドーピングガスが反応室201に導入されることで、炭化珪素単結晶基板10上に炭化珪素層20がエピタキシャル成長により形成される。炭化珪素層20がエピタキシャル成長している間、サセプタプレート210は回転軸212(
図5参照)の周りを回転している。サセプタプレート210の平均回転数は、たとえば20rpmである。
【0054】
図6に示されるように、炭化珪素層20が炭化珪素単結晶基板10上にエピタキシャル成長により形成されている間、回転数計51により炭化珪素単結晶基板10の回転数がモニターされる。制御部52は、回転数計51により測定された炭化珪素単結晶基板10の回転数の情報を取得する。制御部52は、炭化珪素単結晶基板10の回転数の情報に基づいて、MFC53に対して信号を送信する。つまり、回転数計51によって検知された炭化珪素単結晶基板10の回転数に基づいて、流路64に導入されるガスの流量が調整される。
【0055】
たとえば、サセプタプレート210のターゲット回転数が20rpmである場合を想定する。たとえば、サセプタプレート210の回転数が、20rpmよりも所定の値だけ低くなると、制御部52は、MFC53に対して流路64に供給するガスの流量を増加させる信号を送る。これにより、ガス供給源54から流路64に供給されるガスの流量が増加する。結果として、回転数が増加して20rpmに近づく。反対に、回転数が、20rpmよりも所定の値だけ高くなると、制御部52は、MFC53に対して流路64に供給するガスの流量を減少させる信号を送る。これにより、ガス供給源54から流路64に供給されるガスの流量が減少する。結果として、回転数が低減して20rpmに近づく。
【0056】
図8に示されるように、炭化珪素層20の成長開始時点から成長終了時点までの間、サセプタプレート210の回転数は僅かに変化する。炭化珪素層20を形成する工程の間、回転数は、上昇と下降とを交互に繰り返してもよい。回転数の振幅は、時間の経過につれて小さくなってもよい。回転数は、時間の経過につれて一定の値に収束してもよい。好ましくは、サセプタプレート210の回転数は、平均回転数±10%に制御される。たとえば、平均回転数が20rpmである場合、炭化珪素層20を形成する工程の間、回転数は、18rpm以上22rpm以下に制御されることが望ましい。つまり、最高回転数R2は、22rpm以下であり、最低回転数R1は、18rpm以上であることが望ましい。より好ましくは、サセプタプレート210の回転数は、平均回転数±8%に制御され、さらに好ましくは、平均回転数±5%に制御される。以上のようにして、炭化珪素層20がエピタキシャル成長により炭化珪素単結晶基板10上に形成される。これにより、炭化珪素単結晶基板10の周方向において、炭化珪素層20内のキャリア濃度の均一性および炭化珪素層20の厚みの均一性を向上することができる。結果として、炭化珪素層20内のキャリア濃度の面内均一性および炭化珪素層20の厚みの面内均一性を向上することができる。
【0057】
(炭化珪素半導体装置の製造方法)
次に、本実施形態に係る炭化珪素半導体装置300の製造方法について説明する。
【0058】
本実施形態に係る炭化珪素半導体装置の製造方法は、エピタキシャル基板準備工程(S10:
図9)と、基板加工工程(S20:
図9)とを主に有する。
【0059】
まず、エピタキシャル基板準備工程(S10:
図9)が実施される。具体的には、前述した炭化珪素エピタキシャル基板の製造方法によって、炭化珪素エピタキシャル基板100が準備される(
図1参照)。
【0060】
次に、基板加工工程(S20:
図9)が実施される。具体的には、炭化珪素エピタキシャル基板を加工することにより、炭化珪素半導体装置が製造される。「加工」には、たとえば、イオン注入、熱処理、エッチング、酸化膜形成、電極形成、ダイシング等の各種加工が含まれる。すなわち基板加工ステップは、イオン注入、熱処理、エッチング、酸化膜形成、電極形成およびダイシングのうち、少なくともいずれかの加工を含むものであってもよい。
【0061】
以下では、炭化珪素半導体装置の一例としてのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の製造方法を説明する。基板加工工程(S20:
図9)は、イオン注入工程(S21:
図9)、酸化膜形成工程(S22:
図9)、電極形成工程(S23:
図9)およびダイシング工程(S24:
図9)を含む。
【0062】
まず、イオン注入工程(S21:
図9)が実施される。開口部を有するマスク(図示せず)が形成された第2主面30に対して、たとえばアルミニウム(Al)等のp型不純物が注入される。これにより、p型の導電型を有するボディ領域132が形成される。次に、ボディ領域132内の所定位置に、たとえばリン(P)等のn型不純物が注入される。これにより、n型の導電型を有するソース領域133が形成される。次に、アルミニウム等のp型不純物がソース領域133内の所定位置に注入される。これにより、p型の導電型を有するコンタクト領域134が形成される(
図10参照)。
【0063】
炭化珪素層20において、ボディ領域132、ソース領域133およびコンタクト領域134以外の部分は、ドリフト領域131となる。ソース領域133は、ボディ領域132によってドリフト領域131から隔てられている。イオン注入は、炭化珪素エピタキシャル基板100を300℃以上600℃以下程度に加熱して行われてもよい。イオン注入の後、炭化珪素エピタキシャル基板100に対して活性化アニールが行われる。活性化アニールにより、炭化珪素層20に注入された不純物が活性化し、各領域においてキャリアが生成される。活性化アニールの雰囲気は、たとえばアルゴン(Ar)雰囲気でもよい。活性化アニールの温度は、たとえば1800℃程度でもよい。活性化アニールの時間は、たとえば30分程度でもよい。
【0064】
次に、酸化膜形成工程(S22:
図9)が実施される。たとえば炭化珪素エピタキシャル基板100が酸素を含む雰囲気中において加熱されることにより、第2主面30上に酸化膜136が形成される(
図11参照)。酸化膜136は、たとえば二酸化珪素(SiO
2)等から構成される。酸化膜136は、ゲート絶縁膜として機能する。熱酸化処理の温度は、たとえば1300℃程度でもよい。熱酸化処理の時間は、たとえば30分程度でもよい。
【0065】
酸化膜136が形成された後、さらに窒素雰囲気中で熱処理が行なわれてもよい。たとえば、一酸化窒素(NO)、亜酸化窒素(N
2O)等の雰囲気中、1100℃程度で1時間程度、熱処理が実施されてもよい。さらにその後、アルゴン雰囲気中で熱処理が行なわれてもよい。たとえば、アルゴン雰囲気中、1100〜1500℃程度で、1時間程度、熱処理が行われてもよい。
【0066】
次に、電極形成工程(S23:
図9)が実施される。第1電極141は、酸化膜136上に形成される。第1電極141は、ゲート電極として機能する。第1電極141は、たとえばCVD法により形成される。第1電極141は、たとえば不純物を含有し導電性を有するポリシリコン等から構成される。第1電極141は、ソース領域133およびボディ領域132に対面する位置に形成される。
【0067】
次に、第1電極141を覆う層間絶縁膜137が形成される。層間絶縁膜137は、たとえばCVD法により形成される。層間絶縁膜137は、たとえば二酸化珪素等から構成される。層間絶縁膜137は、第1電極141と酸化膜136とに接するように形成される。次に、所定位置の酸化膜136および層間絶縁膜137がエッチングによって除去される。これにより、ソース領域133およびコンタクト領域134が、酸化膜136から露出する。
【0068】
たとえばスパッタリング法により当該露出部に第2電極142が形成される。第2電極142はソース電極として機能する。第2電極142は、たとえばチタン、アルミニウムおよびシリコン等から構成される。第2電極142が形成された後、第2電極142と炭化珪素エピタキシャル基板100が、たとえば900〜1100℃程度の温度で加熱される。これにより、第2電極142と炭化珪素エピタキシャル基板100とがオーミック接触するようになる。次に、第2電極142に接するように、配線層138が形成される。配線層138は、たとえばアルミニウムを含む材料から構成される。
【0069】
次に、第3主面13に第3電極143が形成される。第3電極143は、ドレイン電極として機能する。第3電極143は、たとえばニッケルおよびシリコンを含む合金(たとえばNiSi等)から構成される。
【0070】
次に、ダイシング工程(S24:
図9)が実施される。たとえば炭化珪素エピタキシャル基板100がダイシングラインに沿ってダイシングされることにより、炭化珪素エピタキシャル基板100が複数の半導体チップに分割される。以上より、炭化珪素半導体装置300が製造される(
図12参照)。
【0071】
上記において、MOSFETを例示して、本開示に係る炭化珪素半導体装置の製造方法を説明したが、本開示に係る製造方法はこれに限定されない。本開示に係る製造方法は、たとえばIGBT(Insulated Gate Bipolar Transistor)、SBD(Schottky Barrier Diode)、サイリスタ、GTO(Gate Turn Off thyristor)、PiNダイオード等の各種炭化珪素半導体装置に適用可能である。
【0072】
今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施形態ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。