【実施例1】
【0010】
図1に実施例1のエフェクタの構成例を示す。エフェクタ100は、2次以上のハイパスフィルタ110、2次以上のローパスフィルタ120、加重加算部130、制御部190を備える。ハイパスフィルタ110とローパスフィルタ120は、並列に配置されている。2次のフィルタとは、信号を遮断する周波数帯において1オクターブごとに約−12dBずつ遮断量が増加するフィルタを意味している。一般的には、1次のフィルタは約−6dB/オクターブ、3次のフィルタは約−18dB/オクターブである。つまり、2次以上のハイパスフィルタとは、信号の阻止域(遮断する低周波の帯域)において、1オクターブ周波数が低くなると(周波数が半分になると)、約−12dB以上遮断が多くなるフィルタである。また、2次以上のローパスフィルタとは、信号の阻止域(遮断する高周波の帯域)において、1オクターブ周波数が高くなると(周波数が2倍になると)、約−12dB以上遮断が多くなるフィルタである。フィルタの特性は、バターワース・フィルタ、チェビシェフ・フィルタなどの中から適宜選択すればよいが、エフェクタ100用としてはリップルが小さい方が望ましい。
【0011】
また、エフェクタ100は、ハイパスフィルタ110のカットオフ周波数F
CH(遮断が−3dBとなる周波数)とローパスフィルタ120のカットオフ周波数F
CLとの相違があらかじめ定めた範囲内であるという特徴を有する。一般的には、カットオフ周波数F
CHとカットオフ周波数F
CLとを一致させれば、ハイパスフィルタ110とローパスフィルタ120とを並列に配置し、1対1の比率で加算したときの周波数特性は、ほぼ平坦になる。そして、カットオフ周波数F
CHとカットオフ周波数F
CLとが離れるにしたがって平坦ではなくなる。「ハイパスフィルタ110のカットオフ周波数F
CHとローパスフィルタ120のカットオフ周波数F
CLとの相違があらかじめ定めた範囲内」とは、ハイパスフィルタ110とローパスフィルタ120とを並列に配置し、1対1の比率で加算したときの周波数特性が、許容できる程度に平坦な範囲を意味している。制御部190は、ハイパスフィルタ110のカットオフ周波数F
CHとローパスフィルタ120のカットオフ周波数F
CLの設定を、前記の相違があらかじめ定めた範囲内であることを維持しながら、操作者の指示(外部からの入力)に従って変更する。
【0012】
加重加算部130は、ハイパスフィルタ110の出力とローパスフィルタ120の出力の重み付け平均の所定倍である信号を出力する。ハイパスフィルタの出力をV
H、ローパスフィルタの出力をV
L、ハイパスフィルタの出力の重みをr、ローパスフィルタの出力の重みをR−r、所定倍をA倍とすると、加重加算部130の出力V
OUTは、
V
OUT=A(rV
H+(R−r)V
L)/R
となる。ここで、AとRは定数であり、変数となる値はrだけである。そして、rがR付近のときは高音の楽音のみ、rが0付近のときは低音の楽音のみを選択でき、rが0付近でもR付近でもないときは高音と低音のバランスを調整できる。したがって、エフェクタ100によれば、1つの変数を操作するだけで、高音の楽音と低音の楽音の一方のみを選択することも含む範囲で、バランスを簡単に調整できる。
【0013】
<具体例>
図2に実施例1の加重加算部をより具体的に示したエフェクタの構成を示す。エフェクタ101は、加重加算部131の部分のみがエフェクタ100と異なる。加重加算部131は、加重加算部130の1つの具体例である。加重加算部131は、全体の抵抗がRの可変抵抗132と増幅器133を備えている。可変抵抗132のツマミを操作者が操作することで、抵抗rの値が変化する。そして、増幅器133の増幅率をAとすると、加重加算部131の出力V
OUTは、
V
OUT=A(rV
H+(R−r)V
L)/R
となる。つまり、加重加算部131は、加重加算部130の具体例の1つである。
【0014】
図3に、実施例1のハイパスフィルタとローパスフィルタの周波数特性と、それぞれの出力を1対1で加重加算したときの出力の周波数特性を示す。一点鎖線がハイパスフィルタの周波数特性、破線がローパスフィルタの周波数特性、実線が出力の周波数特性を示している。ハイパスフィルタ110のカットオフ周波数F
CHは600Hz、ローパスフィルタ120のカットオフ周波数F
CLは1kHzである。この例の場合、カットオフ周波数F
CHとカットオフ周波数F
CLは異なるが、1対1で加重加算したときの出力の周波数特性はほぼ平坦になっていることが分かる。この周波数特性が許容できる場合、上述の「ハイパスフィルタ110のカットオフ周波数F
CHとローパスフィルタ120のカットオフ周波数F
CLとの相違があらかじめ定めた範囲内」に該当する。
【0015】
図4に、加重加算部の可変抵抗を操作したときの実施例1のエフェクタの周波数特性の変化の様子を示す。このシミュレーションでは、抵抗Rを10kΩ、増幅率は1である。そして、抵抗rを約0kΩ〜約10kΩまで1kΩずつ変化させている。
図4から分かるとおり、抵抗rを変化させるだけ(操作者が可変抵抗132のツマミを操作するだけ)で高音または低音を他方に20dB以上の差を付けて選択でき、かつ両方を選択することもできる。よって、高音の楽音と低音の楽音の一方のみを選択することも含む範囲で、バランスを簡単に調整できる。
【0016】
例えば、ベースのような100Hz程度の音とパーカッションのような3kHz程度の音が、同程度の音量で混ざった音響信号が入力されるとする。このとき、rの値を大きくすればベースの音は十分に減衰されるので、人にはパーカッションの音のみが含まれる音に聞こえる。また、rの値を小さくすればパーカッションの音は十分に減衰されるので、人にはベースの音のみが含まれる音に聞こえる。
【実施例2】
【0017】
図5に実施例2のエフェクタの構成例を示す。エフェクタ200は、2次以上のハイパスフィルタ110、2次以上のローパスフィルタ120、加重加算部130、補正部240、制御部290を備える。ハイパスフィルタ110、ローパスフィルタ120、加重加算部130は、エフェクタ100と同じである。
【0018】
補正部240は、重みが1対1のときの、ハイパスフィルタ110、ローパスフィルタ120、加重加算部130を組み合わせた構成の周波数特性を平滑化する。実施例1では、ハイパスフィルタ110のカットオフ周波数F
CH(遮断が−3dBとなる周波数)とローパスフィルタ120のカットオフ周波数F
CLとの相違をあらかじめ定めた範囲内に限定することで、周波数特性をほぼ平坦にしていた。実施例2ではカットオフ周波数を自由に設定するために、補正部240を備える。補正部240は、入力V
INを補正し、補正後の信号V
INCを出力する。ハイパスフィルタ110とローパスフィルタ120には補正後の信号V
INCが入力される。その後の処理は、実施例1と同じである。
【0019】
制御部290は、ハイパスフィルタ110のカットオフ周波数F
CHとローパスフィルタ120のカットオフ周波数F
CLの設定を変更する。そして、補正部240は、変更後のハイパスフィルタ110、ローパスフィルタ120、加重加算部130を組み合わせた構成の周波数特性を平滑化する。例えば、補正部240があらかじめ、カットオフ周波数F
CHとカットオフ周波数F
CLの組合せに対応する周波数特性を平滑化するための補正値のデータを複数記録しておく。制御部290がカットオフ周波数F
CHとカットオフ周波数F
CLの組合せの情報を補正部240に送信し、補正部240は受信した情報から補正値のデータにしたがって、周波数特性を平滑化すればよい。
【0020】
あるいは、制御部290は、ハイパスフィルタ110のカットオフ周波数F
CHとローパスフィルタ120のカットオフ周波数F
CLの設定を変更すると共に、変更後のハイパスフィルタ110、ローパスフィルタ120、加重加算部130を組み合わせた構成の周波数特性を平滑化するように補正部240を調整してもよい。例えば、制御部290があらかじめ、カットオフ周波数F
CHとカットオフ周波数F
CLの組合せに対応する周波数特性を平滑化するための補正値のデータを複数記録しておく。制御部290がカットオフ周波数F
CHとカットオフ周波数F
CLの組合せの情報にしたがって補正値のデータを読出して補正部240に送信し、補正部240は受信した補正値のデータにしたがって周波数特性を平滑化すればよい。
【0021】
このような構成なので、エフェクタ200によれば、エフェクタ100と同様に、1つの変数を操作するだけで、高音の楽音と低音の楽音の一方のみを選択することも含む範囲で、バランスを簡単に調整できる。
【0022】
<具体例>
図6に実施例2の加重加算部をより具体的に示したエフェクタの構成を示す。エフェクタ201は、加重加算部131の部分のみがエフェクタ200と異なる。加重加算部131は、加重加算部130の1つの具体例である。加重加算部131は、全体の抵抗がRの可変抵抗132と増幅器133を備えている。可変抵抗132のツマミを操作者が操作することで、抵抗rの値が変化する。そして、増幅器133の増幅率をAとすると、加重加算部131の出力V
OUTは、
V
OUT=A(rV
H+(R−r)V
L)/R
となる。
【0023】
図7に、実施例2のハイパスフィルタとローパスフィルタの周波数特性と、それぞれの出力を1対1で加重加算したときの出力の周波数特性を示す。一点鎖線がハイパスフィルタの周波数特性、破線がローパスフィルタの周波数特性、実線が出力の周波数特性を示している。ハイパスフィルタ110のカットオフ周波数F
CHは200Hz、ローパスフィルタ120のカットオフ周波数F
CLは2.0kHzである。1対1で加重加算したときの出力は、周波数によって6dB程度の差がある。
【0024】
図8に、実施例2のハイパスフィルタとローパスフィルタの出力を1対1で加重加算したときの出力の周波数特性と補正部の周波数特性を示す。実線が1対1で加重加算したときの出力の周波数特性であり、点線が補正部240の周波数特性である。補正部240の周波数特性は、1対1で加重加算したときの出力の周波数特性を反転した特性に近いことが分かる。
【0025】
図9に、加重加算部の可変抵抗を操作したときの実施例2のエフェクタの周波数特性の変化の様子を示す。このシミュレーションでは、抵抗Rを10kΩ、増幅率は1である。そして、抵抗rを約0kΩ〜約10kΩまで1kΩずつ変化させている。
図9から分かるとおり、抵抗rを変化させるだけで高音または低音を他方に20dB以上の差を付けて選択でき、かつ両方を選択することもできる。よって、高音の楽音と低音の楽音の一方のみを選択することも含む範囲で、バランスを簡単に調整できる。また、補正部240によって抵抗rが小さいときには低音側、抵抗rが大きいときには高音側の音量が大きくなる。したがって、人に小さい音(選択していない方の音)を聞こえにくくする効果も生じる。
【0026】
さらに、
図9では、500Hz〜1kHzのゲインはほとんど変化していないことが分かる。メロディの音量を一定に保てば、人が感じる音量感を変化させないで音質を変化させることができる。メロディの周波数帯域は、楽曲のジャンル、楽器、ボーカルの性別などによって変わるため、楽曲に合わせて制御部290がハイパスフィルタ110のカットオフ周波数F
CHとローパスフィルタ120のカットオフ周波数F
CLを変更すればよい。
【0027】
例えば、ベースのような100Hz程度のリズムを表現する音とパーカッションのような3kHz程度のリズムを表現する音とが同程度の音量で混ざり、500Hz〜1kHzを中心とするメロディも含まれた音響信号が入力されるとする。このとき、rの値を大きくすればベースの音は十分に減衰されるので、人にはメロディとパーカッションの音が含まれる音に聞こえる。また、rの値を小さくすればパーカッションの音は十分に減衰されるので、人にはメロディとベースの音が含まれる音に聞こえる。つまり、操作者が可変抵抗132のツマミを操作するだけで、音量感を変化させないでメロディを出力しながら、リズムを表現する音であるベースとパーカッションの一方を選択したり、リズムを表現する音のバランスを調整したりできる。
【0028】
[変形例]
図10に実施例2変形例のエフェクタの構成例を示す。エフェクタ202は、補正部240の位置がエフェクタ200と異なる。エフェクタ202では、加重加算部130の出力V
Cが補正部240に入力され、補正部240の出力がエフェクタ202の出力V
OUTとなる。その他の構成は、エフェクタ200と同じである。したがって、エフェクタ200と同じ効果が得られる。
【0029】
<具体例>
図11に実施例2変形例の加重加算部をより具体的に示したエフェクタの構成を示す。エフェクタ203は、加重加算部131の部分のみがエフェクタ202と異なる。加重加算部131は、加重加算部130の1つの具体例である。エフェクタ203はエフェクタ201と、補正部240の位置のみが異なる。したがって、エフェクタ201と同じ効果が得られる。