(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
以下、本発明の一実施形態による用水管理システムについて図面を参照して説明する。
<第1実施形態>
図1は、本実施形態における用水管理システムの全体的な構成例を示している。本実施形態の用水管理システムは、複数の圃場における給排水を管理する。
【0014】
まず、同図を参照して、用水管理システムが対応する圃場の給排水系について説明する。同図では、用水管理システムが、3つの圃場FM−1、FM−2、FM−3を管理対象とした例が示されている。本実施形態における圃場FM−1、FM−2、FM−3は、例えば水田であり、稲作の時期に応じて、適切な水位となるように灌漑、排水(給排水)が行われる。
なお、以降の説明にあたり、圃場FM−1、FM−2、FM−3について特に区別しない場合には、圃場FMと記載する。なお、本実施形態の用水管理システムが管理対象とする圃場FMの数は特に限定されるものではない。
【0015】
圃場FM−1には給水栓100−1が設けられている。給水栓100−1は、パイプラインPLを経由してファームポンドFPから送られた用水を圃場FM−1に供給する設備である。給水栓100−1は、ファームポンドFPから送られた用水を圃場FM−1に吐出するまでの流路(流水経路)において開閉する栓部(弁)を備えることで、ファームポンドFPから送られた用水を圃場FM−1に供給する量が調節可能なようにされている。
また、圃場FM−1には排水栓200−1が設けられている。排水栓200−1は、圃場FM−1に貯まっている水を排出させるための設備である。排水栓200−1は、圃場FM−1から引き揚げた水を例えばパイプラインに出すまでの流路において開閉する栓部(弁)を備えることで、排水量が調節可能なようにされている。
【0016】
上記の圃場FM−1の場合と同様にして、圃場FM−2においても、給水栓100−2、排水栓200−2が備えられる。また、圃場FM−3においても、給水栓100−3、排水栓200−3が備えられる。
【0017】
なお、以降の説明にあたり、給水栓100−1、100−2、100−3について特に区別しない場合には、給水栓100と記載する。また、以降の説明にあたり、排水栓200−1、200−2、200−3について特に区別しない場合には、排水栓200と記載する。
【0018】
ここで、本実施形態の用水管理システムは、圃場FM−1、FM−2、FM−3をカバーするエリアを通信距離とする無線LAN(Local Area Network)ルータRTを備える。無線LANルータRTは、ネットワークNTと接続されており、ネットワークNTには用水管理サーバ500が接続されている。
【0019】
本実施形態における各圃場FMの給水栓100(水栓装置の一例)と排水栓200(水栓装置の一例)は、それぞれ無線LANに対応したネットワーク通信機能を有している。これにより、各圃場FMの給水栓100と排水栓200は、それぞれ、無線LANルータRTからネットワークNTを経由して用水管理サーバ500と通信を行うことができる。
【0020】
圃場FMのそれぞれは、以下のように給水(灌漑)が行われる。圃場FMに供給される用水は、まず、例えば河川RVからパイプラインを経由してファームポンドFPに引かれ、ファームポンドFPにて貯留される。ファームポンドFPは、灌漑のための用水を貯留する池である。
ファームポンドFPに貯留された用水は、ポンプ(図示せず)によって汲み上げられ、圧力が加えられることによりパイプラインPLに供給される。同図の場合、パイプラインPLは3つの経路に分岐され、それぞれ、圃場FM−1、FM−2、FM−3に設けられた給水栓100−1、100−2、100−3と接続されている。これにより、ファームポンドFPからパイプラインPLを経由して送られた用水は、給水栓100−1、100−2、100−3にまで到達する。この際、給水栓100−1、100−2、100−3の栓部が開状態であれば、給水栓100−1、100−2、100−3から圃場FM−1、FM−2、FM−3のそれぞれに対して用水が供給され、灌漑が行われる。
【0021】
また、本実施形態の用水管理システムにおいては、圃場FM−1、FM−2、FM−3への給水制御のために、用水センサ300−Aと、用水センサ300−B1、300−B2及び300−B3とが備えられる。
【0022】
用水センサ300−Aは、ファームポンドFPからパイプラインPLに流れる用水を検出する。一具体例として、用水センサ300−Aは、パイプラインPLにおけるファームポンドFPに近い部分のパイプラインPLに流れる水の量(流量)を検出するように設けられる流量センサである。このように設けられた用水センサ300−Aは、ファームポンドFPから用水が供給されることに応じて、ファームポンドFPからパイプラインPLに流入する用水の量を検出することができる。
また、用水センサ300−Aは、無線LANに対応したネットワーク通信機能を有している。このため、用水センサ300−Aは、無線LANルータRTからネットワークNTを経由して用水管理サーバ500(用水管理装置の一例)と通信を行うことが可能である。
【0023】
用水センサ300−B1は、給水栓100−1に対応して設けられ、給水栓100−1に流れる用水を検出する。一具体例として、用水センサ300−B1は、給水栓100−1と接続されたパイプラインPLにおいて、給水栓100−1に近い部分に流れる水の量(流量)を検出するように設けられる。
例えば給水栓100−1が閉状態にあって給水栓100−1に用水が流れない状態では、給水栓100−1に近い部分のパイプラインPLにおいても用水の流れは生じない。従って、この場合の用水センサ300−B1は、流量がゼロであると検出する。
これに対して、給水栓100−1が開状態にあって給水栓100−1に用水が流れている状態では、給水栓100−1に近い部分のパイプラインPLにおいても用水の流れが生じる。従って、この場合の用水センサ300−B1は、給水栓100−1において流れている用水の量に応じた流量を検出する。
このように、用水センサ300−B1は、給水栓100−1に流れる用水を検出することができる。
【0024】
また、用水センサ300−B1と給水栓100−1とは比較的近接して設置される。そこで、用水センサ300−B1と給水栓100−1とは、近距離無線通信により通信可能に構成される。これにより、用水センサ300−B1は、検出された結果を示す検出情報を給水栓100−1に送信し、給水栓100−1は受信された検出情報を、無線LANルータRTからネットワークNTを経由して用水管理サーバ500に送信することができる。このように、用水管理サーバ500は、通信を介して用水センサ300−B1の検出情報を取得することができる。
【0025】
なお、用水センサ300−B1と給水栓100−1との間の近距離無線通信の方式としては特に限定されるものではないが、例えば、Bluetooth(登録商標)、ZigBee(登録商標)などを採用することができる。
このような近距離無線通信は、消費電力が少ないことから、例えば用水センサ300−B1については、バッテリーを電源として長期間にわたって動作させることが可能であり、メンテナンスの省力化が図られる。また、例えば太陽電池により日中において発生した電力を充電して電源として使用する場合にも、小容量の太陽電池や充電池で済ませることができる。
【0026】
用水センサ300−B2は、給水栓100−2に対応して設けられ、給水栓100−2に流れる用水を検出する。例えば用水センサ300−B2も、給水栓100−2に近い部分のパイプラインPLに流れる水の量(流量)を検出するように設けられる。
また、用水センサ300−B2と給水栓100−2とは、近距離無線通信により通信可能とされている。これにより、用水管理サーバ500は、通信を介して給水栓100−2から用水センサ300−B2の検出情報を取得することができる。
【0027】
用水センサ300−B3は、給水栓100−3に対応して設けられ、給水栓100−3に流れる用水を検出する。例えば用水センサ300−B3も、給水栓100−3に近い部分のパイプラインPLに流れる水の量(流量)を検出するように設けられる。
また、用水センサ300−B3と給水栓100−3とは、近距離無線通信により通信可能とされている。これにより、用水管理サーバ500は、通信を介して給水栓100−3から用水センサ300−B3の検出情報を取得することができる。
【0028】
用水管理サーバ500は、上記のように用水センサ300−A、300−B1、300−B2、300−B3から取得した検出情報を利用して、圃場FM−1、FM−2、FM−3のそれぞれに対応する給排水制御を行うことができる。
【0029】
なお、以降の説明にあたり、各給水栓100に対応する用水センサ300−B1、300−B2、300−B3について特に区別しない場合には、用水センサ300−Bと記載する。また、ファームポンドFPに対応する用水センサ300−Aと、給水栓100に対応する用水センサ300−Bとについて特に区別しない場合には、用水センサ300と記載する。
【0030】
また、圃場FM−1においては、複数の水位センサ400−1が設置される。同図では、4つの水位センサ400−1が設置された例が示されている。水位センサ400−1は、それぞれ、設置された場所における水位を検出(測定)する。
圃場の水位は、例えば圃場における位置ごとに異なっている。このため、1つの圃場に対応して1つの水位を求める場合には、圃場における複数の異なる位置にそれぞれ水位センサを配置し、各水位センサにより検出された水位に基づいて1つの代表的な水位を求めるようにすることが測定結果の信頼性を高めるという点で好ましい。本実施形態においては、このような観点から圃場FM−1において複数の水位センサ400−1が設置されている。
また、各水位センサ400−1は、近距離無線通信により同じ圃場FM−1に設置された給水栓100−1と通信可能とされている。これにより、各水位センサ400−1は、検出した水位の情報を給水栓100−1に送信することができる。また、給水栓100−1は、各水位センサ400−1から受信した水位の情報を無線LANルータRTからネットワークNTを経由して用水管理サーバ500に送信することができる。つまり、各水位センサ400−1は、検出した水位の情報を、給水栓100−1が中継する通信を介して用水管理サーバ500に送信することができる。
【0031】
同様に、圃場FM−2においては、複数の水位センサ400−2が設置される。各水位センサ400−2は、近距離無線通信により同じ圃場FM−2に設置された給水栓100−2と通信可能とされている。これにより、各水位センサ400−2は、検出した水位の情報を、給水栓100−2の中継を介して用水管理サーバ500に送信することができる。
また、圃場FM−3においては、複数の水位センサ400−3が設置される。各水位センサ400−3は、近距離無線通信により同じ圃場FM−3に設置された給水栓100−3と通信可能とされている。これにより、各水位センサ400−3は、検出した水位の情報を、給水栓100−3の中継を介して用水管理サーバ500に送信することができる。
なお、以降の説明にあたり、水位センサ400−1、400−2、400−3について特に区別しない場合には、水位センサ400と記載する。
なお、水位センサ400の数を削減してコストダウンを図りたいような場合には、1つの圃場FMに設置する水位センサ400を1つとしてもよい。そして、用水管理サーバ500が、水位センサ400により検出された水位の情報を用いて演算を行うことにより、圃場FM全体の水位を測定できるようにする。
【0032】
用水管理サーバ500は、圃場FM−1に設置された各水位センサ400−1から受信した水位の情報を利用して圃場FM−1における水位を求め、求めた水位を圃場FM−1における給排水管理に利用することができる。
同様に、用水管理サーバ500は、圃場FM−2に設置された各水位センサ400−2から受信した水位の情報を利用して、圃場FM−2における水位を求め、求めた水位を圃場FM−2における給排水管理に利用することができる。
また、用水管理サーバ500は、圃場FM−3に設置された各水位センサ400−3から受信した水位の情報を利用して、圃場FM−3における水位を求め、求めた水位を圃場FM−3における給排水管理に利用することができる。
【0033】
用水管理サーバ500は、圃場FM−1、FM−2、FM−3における給排水に関する管理(給排水管理)を行う。
給排水管理にあたり、用水管理サーバ500は、ネットワークNTから無線LANルータRTを経由して各圃場FMにおける給水栓100と通信を行うことにより、各給水栓100における栓部の開閉を制御する。これにより、用水管理サーバ500は、圃場FMごとに個別に給水に関する制御を行うことができる。
また、用水管理サーバ500は、ネットワークNTから無線LANルータRTを経由して各圃場FMにおける排水栓200と通信を行うことにより、各排水栓200における栓部の開閉を制御する。これにより、用水管理サーバ500は、圃場FMごとに個別に排水に関する制御を行うことができる。
【0034】
圃場主端末600−1は、圃場FM−1の圃場主(農家)が利用するネットワーク端末装置である。圃場主端末600−1は、例えば圃場FM−1の圃場主が所有するパーソナルコンピュータ、スマートフォン、タブレット端末などである。同様に、圃場主端末600−2、600−3は、それぞれ圃場FM−2、FM−3の圃場主が利用するネットワーク端末装置である。なお、以降の説明にあたり、圃場主端末600−1、600−2、600−3について特に区別しない場合には、圃場主端末600と記載する。
なお、同図では圃場FM−1、FM−2、FM−3の圃場主がそれぞれ異なる場合に対応して、圃場FM−1、FM−2、FM−3ごとに圃場主端末600−1、600−2、600−3が備えられている例が示されている。しかし、圃場FM−1、FM−2、FM−3のうちで圃場主が同じものについては、1つの圃場主端末600が共通に使用されてもよい。
【0035】
図2及び
図3を参照して、給水栓100の構成例について説明する。各図においては、給水栓100の構造に関して、給水栓100を側方からみた断面図により示している。
給水栓100において給水管101は、パイプラインPLから用水が供給される管である。給水管101の下端部側は、図示するように、パイプラインPLの端部と連結されている。これにより、
図2において矢印αで示すように、パイプラインPLから送られてきた用水が給水管101における中空部101aに供給される。
【0036】
給水管101の上端部には吐出管102が取り付けられている。吐出管102の中空部102aは、給水管101の中空部101aと連通するようにされている。そのうえで、給水管101と吐出管102との連結部分において、給水管101の中空部101aの径は、止水栓ボール104よりも大きくなっており、吐出管102の中空部102aの径は止水栓ボール104よりも小さくなっている。また、吐出管102の中空部102aにおける中空部101a側の開口部は図示するようにテーパー状となっていることで、止水栓ボール104が中空部102aの開口にまで浮上してきたときには、図示するように、中空部102aを止水栓ボール104が塞ぐことができる位置に納まるようにしている。
本実施形態においては、止水栓ボール104と中空部102aの下側の開口部とにより栓部が形成される。
【0037】
また、吐出管102の上側にはカップ103が被せられるように設けられる。カップ103の内側と吐出管102との間には、中空部103aが形成されている。中空部103aは、吐出管102の中空部102aから排出された用水が外部に吐出されるまでの経路(流路)となる。
【0038】
止水栓ボール104は、浮力を有する球状の部材である。止水栓ボール104は、図示するように、中空部101a内に設けられる。
また、軸部105は、カップ103と吐出管102の中空部102aを貫通するように設けられる。軸部105は、栓駆動部111により
図2の矢印Aで示すように一定の可動範囲で上下方向に移動可能とされている。
【0039】
図2に示される軸部105は、例えば可動範囲において最も上に位置している状態である。この状態においては、パイプラインPLから給水管101に供給された用水の圧力によって浮力体である止水栓ボール104が同図の状態にまで浮上するため、中空部102aの開口部が止水栓ボール104によって塞がれる状態(閉状態)となる。このように閉状態となることにより、パイプラインPLから給水管101に供給された用水が給水栓100の外部に吐出されることはない。
【0040】
一方、
図3に示される軸部105は、
図2の状態から
図3の矢印Bで示すように下方向に移動され、可動範囲において最も下に位置している状態である。この状態においては、同図のように止水栓ボール104が軸部105によって押し下げられる。このため、止水栓ボール104は、中空部101aにおいて、中空部102aよりも下側に位置する状態(開状態)となる。
このように開状態となることにより、パイプラインPLから給水管101に供給された用水は、同図の破線で示す矢印βとして示すように、中空部101a、中空部102a及び中空部103aによる流路を通って、給水栓100の外部に吐出される。このようにして用水が給水栓100から圃場FMに供給される。この際、吐出管102の上にはカップ103が設けられていることで、中空部102aから吐出される用水の圧力が高い状態であっても、上に吹き出すことなく、中空部103aを通して下側に流すことができる。
【0041】
また、給水栓100には、給水栓100の流路の水の流量を検出する流量センサ106(状態検出部の一例)が備えられる。同図において、流量センサ106は、中空部102aにおいて備えられ、中空部102aにおける流量を検出する。流量センサ106は、検出した流量を示す流量検出信号を制御部112に出力する。
なお、流量センサ106が備えられる位置は同図の例に限定されるものではない。流量センサ106は、パイプラインPLから給水栓100に供給された用水が、中空部103aから吐出されるまでの流路における任意の位置に備えられてよい。
なお、流量センサ106により検出される流量は、給水栓100に対応して設けられる用水センサ300−Bが検出する流量と同じとみてよい。このため、流量センサ106を省略し、用水センサ300−Bが検出する流量を上記の流量検出信号として制御部112に送信するようにしてもよい。
しかしながら、例えば、用水センサ300−Bと給水栓100との間に或る程度の距離があるような場合には、配管の老朽化などによる漏水が生じることがある。この場合、給水栓100に備えられる流量センサ106のほうが、給水栓100の流路の水の流量を正確に検出できる。また、流量センサ106にて検出される流量と用水センサ300−Bにて検出される流量との差分に基づいて、配管の漏水の有無や漏水の程度などを検出することが可能になる。また、用水センサ300−Bの下流に対して複数の給水栓100が分岐して接続されるような構成の場合、用水センサ300−Bでは複数の給水栓100に流れる水の総量が検出される。そこで、この場合には、センサ106により個々の給水栓100に流路の水量を検出することができる。
【0042】
また、給水栓100には、解体センサ107が備えられる。解体センサ107は、給水栓100が解体されたか否かを検出するセンサである。同図の解体センサ107は、給水管101と吐出管102とが分離されるように解体された場合に、そのことが検出できるように設けられる。解体センサは107は、検出対象の部分が解体されたことに伴う物理的な変化に応じて電力を出力するようにされた素子や回路などを備え、出力された電力により制御部112に対して解体通知信号を出力するような構成とされればよい。
なお、解体センサ107は、後述の第3実施形態において利用される。このため、解体センサ107は、本実施形態においては省略されてよい。また、解体センサ107が設けられる位置は、同図に示される例に限定されない。例えば解体センサ107は、回路ケース110とカップ103の間であるとか、回路ケース110そのものとしての蓋部に設けられてもよい。
【0043】
また、
図2及び
図3の各図に示されるように、例えばカップ103の上には、回路ケース110が設けられる。回路ケース110の中には、栓駆動部111、制御部112、センサ対応通信部113、サーバ対応通信部114、電源部115及び移動検出部116が備えられる。
【0044】
栓駆動部111は、栓部の開閉駆動を行う。つまり、栓駆動部111は、軸部105を上下方向に移動させることで、止水栓ボール104が中空部102aの開口部を塞ぐ閉状態と止水栓ボール104が中空部102aの開口部よりも下側に位置する開状態との間で状態を変化させる。
なお、栓駆動部111は、開状態において軸部105の上下方向における位置を変化させることで、中空部102aの開口部と止水栓ボール104との間の隙間を調節することができる。これにより、給水栓100から吐出される用水の量が調節可能とされる。
【0045】
栓駆動部111は、例えば、モータ111aと、モータ111aの回転に応じて軸部105を上下方向に移動させる機構部とを備えて構成される。例えば軸部105を上下方向に移動させる機構部は、軸部105が給水栓100における所定箇所と螺合されていることで回転により上下方向に移動可能とされたうえで、軸部105をモータの回転に応じて回転させるようにされた構造により構成することができる。なお、軸部105を上下方向に移動させる機構部としては他の構造も採り得るものであり、上記の例に限定されない。
【0046】
制御部112は、栓駆動部111の動作を制御する。このために制御部112は、例えば栓駆動部111のモータ111aを回転させるためのモータ制御信号を栓駆動部111に出力することにより、栓部に開閉状態を調整する。
【0047】
また、制御部112は、サーバ対応通信部114を介してネットワークNT経由で用水管理サーバ500と情報の送受信を行う。
本実施形態において、制御部112は、流量センサ106から出力された流量検出信号が入力されると、入力された流量検出信号が示す流量の情報と給水栓100を示す給水栓IDとを含む流量検出情報を、サーバ対応通信部114から用水管理サーバ500に送信させる。
また、制御部112は、センサ対応通信部113を介して、センサ対応通信部113の通信距離にある水位センサ400と情報の送受信を行う。また、制御部112は、サーバ対応通信部114を介してネットワークNT経由で用水管理サーバ500と情報の送受信を行う。
【0048】
センサ対応通信部113は、近距離無線通信により通信距離の範囲内に位置する水位センサ400と通信を行う。
サーバ対応通信部114は、ネットワークNT経由で用水管理サーバ500と通信を行う。
【0049】
電源部115は、栓駆動部111、制御部112、センサ対応通信部113、サーバ対応通信部114及び移動検出部116に電源を供給する。電源部115は、例えば太陽電池と蓄電池とを備え、日中において太陽電池により発電された電力を蓄電池に蓄積する。そして、電源部115は、蓄電池に蓄積された電力を電源として供給するように構成される。
あるいは、電源部115は、2次電池または1次電池などの所定の規格の電池により電源を供給するようにされたうえで、電池の残量が少なくなった場合には電池を交換するように使用される構成であってもよい。
【0050】
移動検出部116は、回路ケース110が取り付けられた給水栓100の本体の移動の有無を検出する。具体的には、移動検出部116は、GPS(Global Positioning System)に対応して測位を行うように構成することができる。この場合の移動検出部116は、測位する位置が時間経過に応じて変化する状態となったことに応じて移動が有ったものと検出する。
あるいは、移動検出部116は、ジャイロセンサにより構成することができる。この場合の移動検出部116は、ジャイロセンサにより移動に応じた信号が検出されることに応じて移動が有ったものと検出する。
なお、移動検出部116の検出出力は第3実施形態において利用される。従って、移動検出部116については本実施形態において省略されてよい。
【0051】
ここで、河川RVからファームポンドFPに用水が貯留されるまでにおいては屋外の水路を経由することから、用水には多様なごみ(異物の一例)が混入する。このために、ファームポンドFPからパイプラインPLを経由して給水栓100に供給される用水のなかにもごみが含まれる。用水をファームポンドFPからパイプラインPLに供給する際には、例えば或る程度の大きなごみについては網目のフィルタなどを設けて除去することができるが、小さなごみは除去しきれずに残ったままとなる。
このように、給水栓100にはごみの混入した用水が供給される。このために給水栓100の内部の流路においてごみが詰まるという障害が発生する場合がある。
【0052】
具体的に、ごみは、
図3において一点鎖線により示すように、止水栓ボール104により塞がれる開口部分SPにおいて詰まる場合がほとんどである。この開口部分SPは、同図から分かるように、広い内径の中空部101aから狭い内径の中空部102aとの連結部分であり、内径が極端に狭まる部位となっているからである。
開口部分SPにごみが詰まった場合、止水栓ボール104は、中空部102aの下側の開口部を
図2のように正常に塞ぐことができなくなる。これにより、栓部の正常な開閉が行えなくなる。また、開口部分SPにごみが詰まったとしても、詰まったごみの間には隙間があることから、この隙間を介して中空部101a内の用水が中空部102aに流入し、この結果、用水が中空部103aから外部に吐出されることになる。このため、例えば、開閉栓制御としては、給水栓100を閉状態となるように制御したはずであるのに、内部では完全に栓部が閉状態となっていないために、用水が漏れ出るという不具合が発生する。
このような不具合はできるだけ早期に発見され、迅速に対処されるようにすることが好ましい。そのうえで、障害の発見、対処に関してもできるだけ人的作業を要しないようにして省力化が図られることが好ましい。
【0053】
そこで、本実施形態においては、給水栓100から送信される流量センサ106の検出情報に基づいて、用水管理サーバ500が給水栓100におけるごみ詰まりの発生を検出する。そして、ごみ詰まりの発生したことが検出された場合、用水管理サーバ500は、ごみ詰まりを解消するための動作を給水栓100に実行させ、解消されなければ管理者に障害発生を通知するように構成される。これにより、給水栓100におけるごみ詰まりの発生の検出とごみ詰まりへの対処とに関して人的作業が省かれ、省力化が図られる。
【0054】
図4を参照して、用水管理サーバ500の構成例について説明する。同図の用水管理サーバ500は、通信部501、制御部502及び記憶部503を備える。
【0055】
通信部501は、ネットワークNTに対応する通信を実行する。通信部501を備えることにより、用水管理サーバ500は、各圃場FMの給水栓100及び排水栓200と、ネットワークNTから無線LANルータRTを経由して通信を行うことができる。
【0056】
制御部502は、用水管理サーバ500における各種制御を実行する。制御部502としての機能は、例えば用水管理サーバ500が備えるCPU(Central Processing Unit)がプログラムを実行することによって実現される。
本実施形態における制御部502は、給水栓100におけるごみ詰まりの検出と、ごみ詰まりに対する対処に関する機能部として、開閉制御部521、障害判定部522及び障害対応部523を備える。
【0057】
開閉制御部521は、給水栓100に供給される用水が吐出される流水経路に設けられる栓部の開閉を制御する。開閉制御部521は、給水栓100の栓部の開閉状態を制御する際には、開栓制御対象の給水栓100に対して栓部制御信号を送信する。
栓部制御信号は、栓部の開状態の度合いを指示する情報である。栓部制御信号は、例えば栓部の開状態の度合いを示す開度を含む。開度は、閉状態を示すゼロ(閉状態)から完全な開状態を示す所定の最大値までの範囲において、目標とする開状態に応じた値を示す。
送信された栓部制御信号は、ネットワークNTから無線LANルータRTを経由して、開栓制御対象の給水栓100のサーバ対応通信部114にて受信される。
給水栓100の制御部112は、受信された栓部制御信号に含まれる開度に応じて栓駆動部111を制御し、栓駆動部111は制御に応じて栓部を駆動する。これにより、栓部制御信号が示す開度となるように栓部の状態が設定される。
【0058】
障害判定部522は、給水栓100における所定の状態を検出する状態検出部から出力された検出情報に基づいて、給水栓100において障害が発生しているかについて判定する。
本実施形態において、給水栓100における状態検出部は流量センサ106である。流量センサ106は、給水栓100における所定の状態として、給水栓100内の流路における水の流量を検出する。給水栓100は、前述のように、流量センサ106が出力した流量を示す流量検出情報を送信する。
【0059】
本実施形態の障害判定部522は、受信された流量検出情報が示す流量に基づいて、流量検出情報の送信元の給水栓100においてごみ詰まりによる障害が発生しているか否かについて判定する。
前述のように、給水栓100においてごみ詰まりが発生することによっては、開口部分SPとして示したように、中空部102aの下側開口部と止水栓ボール104との間にごみが挟まる。このために、閉状態となるように給水栓100を制御している状態であっても止水栓ボール104が中空部102aの下側開口部を完全に塞ぐことができない。そのうえで、開口部分SPにおいて挟まっているごみの隙間を抜けた用水が吐出する。
このように、ごみ詰まりが発生した場合には、閉状態に制御している状態であっても、漏水が発生していることで、給水栓100の流路においては水の流れが生じる。
【0060】
そこで、本実施形態の障害判定部522は、給水栓100における流量センサ106が流量の有ることを検出し、かつ、開閉制御部521が栓部を閉状態とするように制御した状態である場合に障害が発生したと判定する。
つまり、障害判定部522は、給水栓100から受信された流量検出情報が流量有りを示しているか否かについて判定する。例えば、障害判定部522は、給水栓100から受信された流量検出情報が示す流量の値がゼロであれば流量無し、ゼロより大きければ流量有りと判定することができる。
また、障害判定部522は、記憶部503が記憶する給水栓制御情報から、受信された流量検出情報に含まれる給水栓IDの給水栓100についての制御開度を取得する。給水栓制御情報の制御開度は、現在において開閉制御部521が給水栓100に設定している開度を示す。障害判定部522は、取得された制御開度について、閉状態に対応する値(例えばゼロ、もしくは、所定未満の値)であるか否かについて判定する。
そして、障害判定部522は、流量検出情報が流量有りを示しており、かつ、取得された制御開度が閉状態に対応する値であると判定した場合に、ごみ詰まりによる障害が発生したと判定する。
なお、ごみ詰まりによる障害の発生についての判定は、給水栓100内部における水圧についての検出結果を用いることができる。つまり、
図2に示した給水栓100の構造の場合においては、ごみ詰まりにより水漏れが生じていない場合であれば中空部101aにおいて十分な水圧が得られるが、ごみ詰まりにより水漏れが生じている場合には、中空部101aにおける水圧が低下する。
水圧の検出にあたっては、例えば給水栓100の給水管101の内部に水圧計を取り付け、水圧計により測定される水圧を示す情報を用水管理サーバ500に送信するように構成することができる。
また、後述の給水栓100A(
図8、
図9)の構造の場合には、導水管131や圧室123aなどのように栓部が閉じられた状態において水圧のかかる箇所のいずれかに設けることができる。
【0061】
障害対応部523は、障害判定部522により障害が発生していると判定されたことに応じて、発生した障害を解消するための動作が水栓装置において行われるようにする障害解消制御と、障害の発生したことを通知する障害発生通知との少なくともいずれか一方を行う。
本実施形態における障害対応部523は、まず、障害解消制御を行う。ここでの障害解消制御は、ごみ詰まりが解消されるように給水栓100を動作させることである。ごみ詰まりの解消のために給水栓100に行わせる動作は、例えば、栓部の開閉動作を所定回数繰り返すことである。栓部の開閉動作を所定回数繰り返すことによって、用水の水圧によりごみが押し流され、流路を抜けて外部に吐出される可能性がある。
そこで、障害対応部523は、障害解消制御として、給水栓100において栓部を開閉する動作が所定回数繰り返し行われるように、所定のシーケンスに従って開閉制御信号の送信を行う。
【0062】
障害解消制御の後、障害対応部523は、開閉制御部521により給水栓100を閉状態とするように制御させたうえで、再度、給水栓100から受信された流量検出情報が示す流量に基づいて、ごみ詰まりによる障害が発生しているか否かについて判定する。
ここで、ごみ詰まりによる障害が発生していないと判定された場合、給水栓100は、障害解消制御によりごみが除去され、閉状態とする制御に応じて正常に閉状態となっている。そこで、この場合には障害に対応した処理を終了する。
これに対して、ごみ詰まりによる障害が発生していると判定された場合、障害解消制御によってはごみが除去されず、給水栓100において依然としてごみ詰まりが生じている状態である。
そこで、この場合には、障害対応部523は、障害解消制御によってごみ詰まりを解消することはできないとして、障害発生通知を行う。障害発生通知により、本実施形態の用水管理システムの管理者に対して、ごみ詰まりが発生した給水栓100のあることが通知される。障害発生通知としては、例えば管理者が使用する端末にごみ詰まりが発生した給水栓100の情報を送信するようにしてもよいし、例えば管理者のメールアドレス宛にごみ詰まりが発生した給水栓100の情報を含む電子メールを送信するようにしてもよい。
障害発生通知を受けた管理者は、ごみ詰まりが発生した給水栓100に赴いて、ごみを除去することができる。
また、障害発生通知は、用水管理システムの管理者ではなく、障害が発生した給水栓100が設置された圃場FMの圃場主に対して行われるようにしてもよい。また、障害発生通知は、用水管理システムの管理者と、障害が発生した給水栓100が設置された圃場FMの圃場主との両者に対して行われるようにしてもよい。
【0063】
また、障害対応部523は、さらに、障害判定部522により発生の判定が行われた障害についての履歴を示す障害履歴情報を管理する。
具体的に、障害対応部523は、障害判定部522により発生が判定された障害ごとに、発生日時、障害対応処理の結果(障害解消制御の制御内容、障害解消制御による障害解消の有無、障害発生通知のログ)などを障害履歴情報として、障害履歴情報記憶部532に格納する。
【0064】
記憶部503は、制御部502が利用する各種の情報を記憶する。同図の記憶部503は、給水栓100の障害発生に対応して制御部502が行う処理に関連して、給水栓制御情報記憶部531と、障害履歴情報記憶部532とを含む。
【0065】
給水栓制御情報記憶部531は、給水栓制御情報を記憶する。給水栓制御情報は、給水栓100ごとについての開閉制御部521が設定している現在の開度を示す情報である。
図5(A)は、給水栓制御情報の内容例を示している。同図の給水栓制御情報は、給水栓100の給水栓IDごとに制御開度を対応付けた構造である。同図において給水栓制御情報に格納される給水栓ID[F0001]、[F0002]、[F0003]は、それぞれ、
図1の給水栓100−1、100−2、100−3を示す。
制御開度は、現在において開閉制御部521が給水栓100に設定している開度を示す。同図では、制御開度は、0〜100%の開度を、0〜15による16の分解能により段階的に設定した例が示されている。
ここで、上記の制御開度は、あくまでも開閉制御部521が給水栓100に指示する制御値であって、実際の給水栓100における栓部の開度とは異なる場合がある。即ち、開閉制御部521により制御開度として閉状態に対応する「0」を設定したとしても、例えばごみ詰まりなどが発生している場合には、栓部が完全に閉状態とならないため、給水栓100における実際の開度が「0」でない場合がある。
障害判定部522は、ごみ詰まりによる障害の発生の有無を判定するにあたり、受信された流量検出情報(あるいは、給水栓100内部の水圧の測定結果を示す情報であってもよい)に含まれる給水栓IDに対応付けられた制御開度を給水栓制御情報から取得する。
【0066】
障害履歴情報記憶部532は、障害履歴情報を記憶する。障害履歴情報は、これまでに発生した給水栓100の障害に関連する履歴を示す情報である。
図5(B)は、障害履歴情報の一例を示している。同図の障害履歴情報は、給水栓100ごとに管理される構造である。つまり、障害履歴情報は給水栓100ごとに対応付けられている。1の給水栓IDに対応付けられた障害履歴情報は、前述のように、これまでに対応の給水栓100にて発生した障害ごとについての、発生日時、障害対応処理の結果(障害解消制御の制御内容、障害解消制御による障害解消の有無、障害発生通知のログ)が格納される。
【0067】
また、同図の障害履歴情報においては、給水栓IDごとに、さらに圃場主IDが対応付けられている。圃場主IDは、対応付けられた給水栓IDが示す給水栓100が設置された圃場の圃場主を示す。
給水栓ID[F0001]に対応付けられた圃場主ID[FM0001]は、給水栓100−1が設置される圃場FM−1の圃場主を示す。給水栓ID[F0002]に対応付けられた圃場主ID[FM0002]は、給水栓100−2が設置される圃場FM−2の圃場主を示す。給水栓ID[F0003]に対応付けられた圃場主ID[FM0003]は、給水栓100−3が設置される圃場FM−3の圃場主を示す。
【0068】
図6のフローチャートを参照して、本実施形態における用水管理サーバ500が給水栓100のごみ詰まりによる障害発生に対応して実行する処理手順例について説明する。
給水栓100は、それぞれ、流量センサ106により検出される流量を示す流量検出情報を一定時間ごとに用水管理サーバ500に対して送信する。そこで、給水栓100は、流量検出情報が受信されるのを待機する(ステップS101−NO)。
【0069】
或る1つの給水栓100からの流量検出情報が受信されたことを判定すると(ステップS101−YES)、まず、障害判定部522は、流量検出情報の送信元(障害判定対象)の給水栓100についての障害が発生しているか否かを判定するための処理を行う。
ここで、障害判定部522は、障害判定対象の給水栓100について、開閉制御部521が栓部を閉状態とするように制御した状態であるか否かについて判定する(ステップS102)。
このために、障害判定部522は、ステップS101にて受信された流量検出情報に含まれていた障害判定対象の給水栓100を示す給水栓IDに対応付けられた制御開度を、給水栓制御情報記憶部531から取得する。次に、障害判定部522は、取得された制御開度が閉状態に対応する値であるか否かについて判定する。この際、制御開度が閉状態に対応する値(「0」)であれば、閉状態となるように制御されていると判定される。一方、制御開度が開状態に対応した0より大きい値であれば、給水栓100は、制御開度に応じた度合いで開状態となるように制御されている。そこで、この場合の障害判定部522は、閉状態とするように制御されていないと判定する。
【0070】
閉状態とするように制御されていないことが判定された場合(ステップS102−NO)、ごみ詰まりの状態であるか否かにかかわらず、用水が吐出されているため、障害が発生しているか否かの判定はできない。また、ごみが詰まっているとしても、開状態に制御したことに応じて用水は吐出されており、この点で、給水栓100は正常に動作している。そこでこの場合には、同図に示す処理が終了される。
これに対して、閉状態とするように制御されていることが判定された場合には(ステップS102−YES)、さらにステップS101にて受信された流量検出情報が流量有りを示しているか否かについて判定する(ステップS103)。
流量無しを示している場合(ステップS103−NO)、障害判定対象の給水栓100は、閉状態とする制御に応じて、正常に閉状態となっている。従って、この場合には、ごみ詰まりによる障害が発生していないとして判定される。この場合同図に示す処理は終了される。
【0071】
一方、流量有りを示している場合(ステップS103−YES)、障害判定対象の給水栓100は、閉状態とするように制御されているのにかかわらず、閉状態となっていないことになる。そこで、この場合には、ごみ詰まりによる障害が発生した物として判定され、以下の障害対応処理に移行する。
なお、ステップS102とステップS103とについての処理の順序が入れ替えられてもよい。即ち、ステップS103の処理において流量有りと判定された後に、ステップS102による判定が行われるようにしてもよい。
【0072】
まず、障害対応部523は、障害解消制御を実行する(ステップS104)。この場合の障害解消制御は、前述のように、用水の水圧によりごみが外部に押し出されるように、栓部の開閉を所定回数繰り返させるための制御である。
【0073】
障害解消制御を終了すると、障害対応部523は、障害判定対象の給水栓100を閉状態とするための閉栓制御を開閉制御部521に実行させる(ステップS105)。
上記のように閉状態とする制御を行ったうえで、障害判定部522は、再び、同じ障害判定対象の給水栓100から送信される流量検出情報が受信されるのを待機する(ステップS106−NO)。
そして、流量検出情報が受信されると(ステップS106−YES)、障害判定部522は、受信された流量検出情報が流量有りを示しているか否かについて判定する(ステップS107)。
【0074】
流量有りを示している場合(ステップS107−YES)、ステップS105にて閉状態となるように制御している状態のもとで、障害判定対象の給水栓100は、依然として漏水している状態にある。つまり、ごみ詰まりが解消されていないことが判定される。そこで、この場合の障害対応部523は、前述のように、用水管理システムの管理者に対して障害発生通知を行う(ステップS108)。
【0075】
なお、ステップS108による障害発生通知は、前述のように、管理者に代えて判定対象の給水栓100が設置された圃場FMの圃場主に対して行われるようにしてもよい。あるいは、ステップS108による障害発生通知は、管理者及び圃場主の双方に対して行われてもよい。
【0076】
圃場主に障害発生通知を送信する場合には、例えば、用水管理サーバ500に記憶された圃場主の情報(
図4においては図示を省略)に格納されたメールアドレスなどに障害発生通知を行うことができる。
また、圃場主端末600に圃場管理用アプリケーションがインストールされている場合、圃場管理用アプリケーションにはユーザアカウントとして圃場主IDが登録されている。そこで、ステップS108として、障害対応部523は、障害発生履歴において判定対象の給水栓100の給水栓IDに対応付けられている圃場主IDがユーザアカウントとして登録されている圃場管理用アプリケーションに障害発生通知を行ってもよい。
【0077】
ステップS108の処理の後、あるいは、流量無しと判定された場合(ステップS107−NO)、即ち、ごみ詰まりの解消されたことが判定された場合、障害対応部523は、今回の障害の発生に関する内容を、障害履歴情報記憶部532が記憶する障害履歴情報に追加する。つまり、今回の障害の発生に応じた障害履歴情報の更新が行われる(ステップS109)。
ステップS108の処理を経ずにステップS107からステップS109に至った場合、ステップS109により追加される障害履歴情報においては、障害解消制御によって障害が解消された旨が示される。一方、ステップS108の処理を経てステップS109に至った場合、ステップS109により追加される障害履歴情報においては、障害解消制御を行っても障害が解消されなかった旨と、障害発生通知を行った旨とが示される。
【0078】
なお、ステップS107にて流量有りと判定された場合、即ち、ごみ詰まりによる障害が解消されていないことが判定された場合、所定の制限回数の範囲内で、再びステップS104の処理に戻るようにして、障害解消制御のリトライが行われるようにしてもよい。
なお、本実施形態において、障害発生通知は、障害解消制御を行っても障害が解消されなかった場合だけでなく、障害解消制御によって障害が解消された場合にも行われるようにしてよい。この場合、障害解消制御により障害が解消されたか否かを示す内容を障害発生通知に含めるようにすれば、用水管理システムの管理者や圃場主は、障害の発生とともに、障害解消制御の結果についても把握できる。
【0079】
<第2実施形態>
続いて、第2実施形態について説明する。
給水栓100の栓部を閉状態から開状態とするように栓駆動部111を動作させた際に、例えば栓駆動部111が駆動する軸部105の動きが固くなるなどの原因により、モータ111aに過大な負荷がかかる場合がある。このような状態が放置されることは、モータ111aを含む栓駆動部111の故障などの不具合を生じさせる要因となるために好ましくない。
そこで、本実施形態の用水管理システムは、給水栓100の障害として、モータ111aの過負荷を対象とし、障害発生の有無の判定と、障害の発生に対応した処理とを行うように構成される。
【0080】
本実施形態における給水栓100は、
図2及び
図3と同様の構成でよい。そのうえで、本実施形態の給水栓100において、栓駆動部111は、モータ111aの負荷電流を監視し、過負荷の状態になったことを検出した場合には、過負荷の状態を示す過負荷通知信号を制御部112に出力するように構成される。あるいは、栓駆動部111は、モータ111aの負荷電流値を制御部112に通知し、制御部112が負荷電流値に基づいて過負荷の状態を検出するようにしてもよい。
制御部112は、上記のように過負荷通知信号を受信、あるいは過負荷の状態を検出した場合、モータ111aが過負荷の状態となったことを示す過負荷通知を、用水管理サーバ500に対して送信する。過負荷通知には、給水栓100を示す給水栓IDが含められる。
【0081】
また、本実施形態における用水管理サーバ500の構成は
図4と同様でよい。ただし、本実施形態において制御部502における障害判定部522と障害対応部523は、対象となる給水栓100の障害がモータ111aの過負荷とされたことに応じて以下のように処理を行う。
また、本実施形態の場合は、障害発生の有無の判定にあたり給水栓制御情報を利用する必要がないことから、記憶部503における給水栓制御情報記憶部531は省略されてよい。
【0082】
図7のフローチャートを参照して、本実施形態における用水管理サーバ500がモータ111aの過負荷による障害発生に対応して実行する処理手順例について説明する。
障害判定部522は、或る1の給水栓100を対象として開閉制御部521により開状態とする制御(開栓制御)が行われた後において、開栓制御の対象とされた給水栓100から過負荷通知が受信されるのを待機する(ステップS201−NO)。
【0083】
この場合において、開栓制御の対象の給水栓100の制御部112は、開栓制御に応じてモータ111aが正常に動作して過負荷の状態とならなければ、過負荷通知の送信を行わない。この場合、
図7のステップS202以降の処理に移行することはない。
これに対して、開栓制御が行われた結果、開栓制御の対象の給水栓100のモータ111aに過負荷の状態が発生すると、開栓制御の対象の給水栓100から過負荷通知が送信され、用水管理サーバ500にて受信される(ステップS201−YES)。障害判定部522は、過負荷通知の受信に応じて、開栓制御対象の給水栓100においてモータ111aに過負荷による障害が発生したと判定する。
【0084】
そこで、この場合の障害対応部523は、給水栓100を対象として、障害解消制御を実行する(ステップS202)。この場合の障害解消制御として、障害対応部523は、例えば開栓制御を再度行う。なお、ステップS202の障害解消制御にあたり、障害対応部523は、開栓制御を1回行ってもよいし、所定の複数回にわたって繰り返し行ってもよい。このように開栓制御を再度試みることによって、例えば軸部105を移動させる機構が正常に戻るなどして、モータ111aの回転に従って軸部105が移動できるようになり、この結果、モータ111aの負荷電流も正常範囲に戻る場合がある。
【0085】
ステップS202による障害解消制御においても開栓制御が行われている。このため、障害解消制御としての開栓制御に応じて栓駆動部111が動作しているとき、モータ111aの過負荷の状態が解消されなければ、給水栓100の制御部112は、再び過負荷通知を送信する。一方、障害解消制御としての開栓制御に応じて栓駆動部111が動作したことでモータ111aの過負荷の状態が解消されれば、給水栓100の制御部112は、過負荷通知の送信を行わない。
そこで、障害判定部522は、例えばステップS202による開栓制御に応じて過負荷通知が受信されたか否かについて判定する(ステップS203)。
【0086】
過負荷通知が受信された場合(ステップS203−YES)、モータ111aの過負荷による障害は解消されていないと判定される。そこで、この場合の障害対応部523は、用水管理システムの管理者と圃場主との少なくともいずれかに対して障害発生通知を行う(ステップS204)。
【0087】
ステップS204の処理の後、あるいは、過負荷通知が受信されなかったことが判定された場合(ステップS203−NO)、即ち、モータ111aの過負荷が解消されたことが判定された場合、障害対応部523は、今回の障害の発生に関する内容により障害履歴情報記憶部532が記憶する障害履歴情報を更新する(ステップS205)。
【0088】
なお、本実施形態においても、ステップS103にて過負荷通知が受信された場合、即ち、障害が解消されていないことが判定された場合、所定の制限回数の範囲内で、再びステップS202の処理に戻るようにして、障害解消制御のリトライが行えるようにしてもよい。
なお、本実施形態においても、障害発生通知は、障害解消制御を行っても障害が解消されなかった場合だけでなく、障害解消制御によって障害が解消された場合にも行われるようにしてよい。
また、過負荷通知に関しては、複数段階により行うようにしてもよい。一例として、2段階により過負荷通知を行う場合として、第1段階においては、例えば可動部周辺および回転軸の汚れやゴミ噛みなどによりモータの負荷が平常時よりも一定率以上増加した状態を検出する。この状態が検出された場合、給水栓100は、1次過負荷通知を用水管理サーバ500に送信する。1次過負荷通知は、過負荷の状態には至っていないが過負荷の状態となる可能性があることを示す。1次過負荷通知を受信した用水管理サーバ500は、例えば、給水栓100が過負荷の状態に近づいていることを通知する過負荷予告通知を、対応の圃場主端末600に送信する。圃場主端末600は、過負荷予告通知の受信に応じて、給水栓100が過負荷の状態に近づいていることを圃場主に報知するメッセージを、例えば表示などによって出力する。このように表示されるメッセージを見ることにより、圃場主は事前に給水栓100のメンテナンスなどを行い、過負荷状態になることを未然に防止することが可能になる。
そして、第2段階としては、先に
図7に対応して説明したのと同様の過負荷通知が、2次過負荷通知として給水栓100から用水管理サーバ500に送信される。2次過負荷通知を受信した用水管理サーバ500は、先の
図7による説明と同様に障害解消制御や障害発生通知などを実行する。
【0089】
次に、第2実施形態における変形例について説明する。
例えば給水栓100において電源部115及び電源部115により動作する回路部などの回路を有する部位(以下回路系統ともいう)において電力、電圧、電流などに異常が生じる場合がある。このような回路系統における電気的な異常の発生に応じてもできるだけ迅速に対応が図られることが好ましい。
そこで、制御部112は、上記のような回路系統の異常が検出された場合に、その旨を示す回路系統異常通知を用水管理サーバ500に送信する。つまり、変形例においては、給水栓100の障害として、給水栓100における回路系統の異常が対象となる。
【0090】
用水管理サーバ500における障害判定部522は、回路系統異常通知を受信することにより、回路系統異常通知の送信元の給水栓100において、回路系統の異常による障害が発生したと判定することができる。
このように回路系統の異常による障害の発生したことが判定された場合、障害対応部523は、例えば障害解消制御として、例えば電源部115の動作を停止させるなどの制御を行うことができる。これにより、回路系統に異常が発生した状態のまま給水栓100を動作させてしまうことがなくなる。そのうえで、障害対応部523は、用水管理システムの管理者と圃場主との少なくともいずれかに対して障害発生通知を行うようにすればよい。これにより、用水管理システムの管理者または圃場主が、回路系統の異常に応じた点検、修理を迅速に行うことが可能になる。
また、回路系統における電気的な異常のほか、例えば電源部115における電池の低電圧化の発生なども障害として通知されるようにしてよい。また、用水管理サーバ500側にて給水栓100との通信に不良が発生したことが判定された場合にも、障害として通知されるようにしてよい。
さらには、例えば水位センサ400により検出された水位に基づいて、水位に異常のあることが判定された場合に水位異常発生通知が行われるようにしてよい。具体的に、用水管理サーバ500は、例えば、予め設定された上限水位よりも水位が高い状態や、予め設定された下限水位よりも水位が低い状態にあることが判定された場合に、水位の異常が発生したと判定すればよい。
また、用水管理サーバ500は、圃場FMに給水するように給水栓100を制御している状態において水位が変化しないことを判定した場合に、圃場FMからの水漏れによる異常が発生していることを示す異常発生通知が行われるようにしてよい。
また、圃場FMに水温計を設置し、水温計により測定された水温を給水栓100経由で用水管理サーバ500が監視する。そして、用水管理サーバ500は、監視している水温が例えば予め設定された上限水温を越えるなどした場合に、水温の異常を示す異常発生通知を行うようにしてよい。
また、給水栓100の内部に水圧計を設けて、用水管理サーバ500により水圧が監視可能なようにする。そして、監視している水圧が予め定められた下限の圧力よりも低くなるなどの異常が発生した場合に、用水管理サーバ500が水圧の異常を示す異常発生通知を行うようにしてよい。
【0091】
<第3実施形態>
続いて、第3実施形態について説明する。給水栓100は、圃場FMという屋外に常設されることから、盗難やいたずらの被害を受けやすい。そこで、本実施形態の用水管理システムにおいては、給水栓100の盗難や給水栓100へのいたずらなどの不正行為が行われていると推定される状態を判定し、不正行為が行われていると判定された場合には、例えば用水管理システムの管理者にその旨の通知が行われるように構成される。
これにより、盗難やいたずらなどの不正行為が行われている現場をおさえることが可能となり、不正行為の抑止を図ることが可能になる。
【0092】
給水栓100への不正行為が行われたことの判定(不正行為判定)は、具体的に以下の第1の判定手法と第2の判定手法との2つの推定手法により行われる。
まず、給水栓100の盗難や、給水栓100が動かされたり倒されたりするなどのいたずらによる不正行為が行われる場合、給水栓100は、本来の設置場所から移動する。このことに基づいて、第1の判定手法では、以下のように不正行為の判定を行う。
【0093】
給水栓100には移動検出部116が備えられる(
図2、
図3)。前述のように、移動検出部116は、GPSに対応する測位機能あるいは加速度センサを備え、測位機能により測位した位置または加速度センサが検出する加速度に基づいて、自己の位置が移動したか否かについて検出する。そして、移動検出部116は、自己の位置が移動した(動かされた)ことを検出すると、その旨を示す移動検出信号を制御部112に出力する。
制御部112は、移動検出部116から移動検出信号を入力すると、用水管理サーバ500に対して、給水栓100が移動したことを通知する給水栓移動通知を送信する。
【0094】
そして、用水管理サーバ500の障害判定部522は、給水栓移動通知が受信されると、給水栓移動通知の送信元の給水栓100への不正行為が行われていると判定する。そして、障害対応部523は、用水管理サーバ500の管理者または圃場主の少なくともいずれかに対して、給水栓100への不正行為が行われていることを通知する旨の障害発生通知を行う。
【0095】
なお、移動検出部116の測位機能によって測位された位置、または移動検出部116が備える加速度センサにより検出された加速度に基づいて、制御部112により給水栓100が移動したか否かを判定するようにしてもよい。
さらに、例えば移動検出部116が測位した位置情報または加速度センサが検出した加速度を給水栓100から用水管理サーバ500に対して一定時間ごとに送信する。そして、用水管理サーバ500が、受信された位置情報または加速度に基づいて給水栓100への不正行為が行われているか否か判定するように構成することもできる。
【0096】
また、盗難やいたずらなどの不正行為にあっては、給水栓100が分解される場合がある。そこで、第2の判定手法では、以下のように不正行為の判定を行う。
給水栓100には解体センサ107が備えられる(
図2、
図3)。解体センサ107は、前述のように、同図の解体センサ107は、給水管101と吐出管102とが分離されるように解体された場合に、そのことを検出し、解体検出信号を制御部112に出力するように構成される。
制御部112は、解体センサ107から移動検出信号を入力すると、用水管理サーバ500に対して、給水栓100が解体されていることを通知する解体通知を送信する。
【0097】
そして、用水管理サーバ500の障害判定部522は、解体通知が受信されると、解体通知の送信元の給水栓100への不正行為が行われていると判定する。そして、障害対応部523は、用水管理サーバ500の管理者または圃場主の少なくともいずれかに対して、給水栓100への不正行為が行われていることを通知する旨の障害発生通知を行う。
【0098】
なお、第1の判定手法に対応して送信される障害発生通知には、給水栓100が動かされていることを示す情報を含め、第2の判定手法に対応して送信される障害発生通知においては、給水栓100が解体されていることを示す情報を含めることが好ましい。これにより、障害発生通知を受けた管理者または圃場主は、盗難、いたずらがどのような状況で行われているのかを或る程度把握することができる。
また、本実施形態のもとでは、移動検出部116を用いた不正行為対応の構成と、解体センサ107を用いた不正行為対応の構成とのいずれか一方が採られてもよいし、双方の構成が組み合わされてもよい。
なお、例えば給水栓100と用水管理サーバ500とが一定時間ごとに通信を行うようにする。そして、用水管理サーバ500は、例えば所定回数以上連続して通信エラーになるなどした場合に、盗難や解体などの不正が行われたとして、不正行為が行われたことを示す障害発生通知を行うようにしてもよい。
また、用水管理サーバ500が、給水栓100における水圧を一定時間ごとに監視し、水圧が検出されなくなったことに応じて、盗難や解体などの不正が行われたとして、不正行為が行われたことを示す障害発生通知を行うようにしてもよい。
【0099】
<第4実施形態>
続いて、第4実施形態について説明する。先の第1実施形態と第2実施形態における給水栓100は、
図2及び
図3に示したように、止水栓ボール104の浮力を利用して栓部の開閉を行うように構成されている。しかし、本実施形態において障害発生の有無の判定対象となる給水栓の構造は、
図2及び
図3に示した例に限定されない。
そこで、本実施形態においては、ダイヤフラムが受ける水圧に応じて栓部が開閉される構造の給水栓を、障害発生の有無の判定対象とする。
【0100】
図8及び
図9を参照して、本実施形態の給水栓100Aの構成例について説明する。各図においては、給水栓100Aの構造に関して、給水栓100を側方からみた断面図により示している。
給水栓100Aにおいて給水管121は、パイプラインPLから用水が供給される管である。給水管121の下端部側は、図示しないパイプラインPL(
図1)の端部と連結されている。これにより、
図8において矢印αで示すように、パイプラインPLから送られてきた用水が給水管121における中空部121aに供給される。また、給水管121における上端側の開口部121bは、弁体部125の底側の形状に対応してテーパー状となっている。
【0101】
給水管121の上端部には吐出管122が取り付けられている。吐出管122の中空部122aは、給水管121の中空部121aと開口部121bに対応する部分にて連通するようにされている。
例えば、
図9に示すように弁体部125により開口部121bが塞がれていない状態では、パイプラインPLから供給される用水が矢印βにより示すように、中空部121aから中空部122aによる流路を経由して、吐出口122bから外部に吐出される。
これに対して、
図8に示すように弁体部125により開口部121b塞がれる状態では、パイプラインPLから供給される用水は、中空部101aにとどまり、中空部122aへは流れないことから、外部に吐出されることはない。
【0102】
吐出管122の上部にはダイヤフラムケース123が取り付けられている。ダイヤフラムケース123の内部にはダイヤフラム124が取り付けられる。ダイヤフラムケース123の内部空間においてダイヤフラム124により仕切られる上側の空間は、ダイヤフラム124を水圧により駆動するための圧室123aとして形成される。
【0103】
ダイヤフラム124は、軸部126の上側と固定される。また、軸部126は、ダイヤフラムケース123の内部から下方向に向けて吐出管122を貫通している。そのうえで、軸部126の下側が吐出管122内の弁体部125と固定される。これにより、ダイヤフラム124の上下方向に沿った変位に応じて、弁体部125も上下方向に沿って移動する。
【0104】
なお、軸部126の上側にはガイド軸127が取り付けられており、ガイド軸127は、ハンドル軸129の内部に挿入されている。詳細な構造の図示は省略するが、ハンドル軸129に取り付けられたハンドル128を回転させることで、軸部126を上下方向に移動させて開口部121bにおける弁体部125の開閉状態を調整できる。つまり、給水栓100Aは、手動によっても弁体部125と開口部121bとを含む栓部の開閉状態を調整できる。
【0105】
また、給水管121の側面にはフィルタ141が設けられ、フィルタ141から切替弁142へ導水管131が接続される。
【0106】
また、切替弁142は接続された導水管の間での流路を切り替える。切替弁142から大気開放弁151の下側側面に対して導水管132が接続される。また、大気開放弁151の上側側面から切替弁142に対して導水管133が接続される。また、切替弁142は、圧室123aの内部と連結される。
【0107】
大気開放弁151は、内室151aにおいて球状の弁体部160が設けられる。弁体部160の下側には、開口部151bが設けられている。
弁体部160は、例えばロープ、鎖などにより弁体駆動部170のアーム171から釣り下げられている。
弁体駆動部170は、回路ケース110において備えられる栓駆動部によって、アーム171を上下方向に移動させるように動作する。
図8は、アーム171が可動範囲における最も下に位置している状態を示している。この状態では、アーム171から吊り下げられている弁体部160は、開口部151bにまで下降し、開口部151bを塞ぐ状態となる。
一方、
図9は、アーム171が可動範囲における最も上に位置している状態を示している。この状態では、アーム171から吊り下げられている弁体部160は、開口部151bから離れ、開口部151bが開放される。
【0108】
回路ケース110においては、例えば、
図2及び
図3の構成に準じて、栓駆動部111、制御部112、センサ対応通信部113、サーバ対応通信部114及び電源部115などを備える。なお、本実施形態においても第3実施形態のように不正行為に対応した構成とするのであれば、移動検出部116を備えればよい。
本実施形態における制御部112も、例えば先の第1実施形態と同様に、用水管理サーバ500とサーバ対応通信部114を介して通信を行うことができる。また、制御部112は、センサ対応通信部113との通信により水位センサ400から取得された水位の情報を用水管理サーバ500に送信することができる。これにより、本実施形態においても、例えば各圃場FMの水位に応じて、適切に圃場FMへの給排水が行われるように各給水栓100Aを制御することができる。
【0109】
制御部112の開閉制御に応じて、給水栓100Aは以下のように動作する。
まず、給水栓100Aを閉状態とする場合について
図8を参照して説明する。この場合、制御部112は、大気開放弁151が閉じられる状態となるように制御する。つまり、制御部112は、弁体駆動部170によりアーム171が可動範囲における最も下の位置に移動させるように制御する。これにより、弁体部160は大気開放弁151の開口部151bを塞ぐ状態となり、大気開放弁151が閉じられる状態となる。
【0110】
ここで、中空部121a内の用水は、パイプラインPLからの圧力により、フィルタ141から導水管131を経由して切替弁142に流れていく。この際、切替弁142においては、導水管131と導水管132とを連結している。導水管131を流れた水は、導水管132を介して大気開放弁151の内室151aに流入するが、大気開放弁151は閉じられた状態にある。このため、大気開放弁151の内室151aに流入した水は、内室151aに貯留されていく。
【0111】
そして、導水管132から供給された水により内室が充填されると、さらに内室151aから導水管133を水が流れていく。この際、切替弁142は、導水管133とダイヤフラムケース123内の圧室123aとを連結しており、導水管133を流れた水は圧室123aに貯留される。
【0112】
上記のように圧室123aには水が貯留されていき、圧室123aが水で充填されると、水の圧力によりダイヤフラム124を下方向に押し下げる力が加わる。ここで、ダイヤフラム124の有効重圧面積は、弁体部125よりもはるかに大きいことから、ダイヤフラム124は下方向に押し下げられる。これにより、軸部126を介してダイヤフラム124と連結されている弁体部160も下方向に移動し、開口部121bを塞ぐ状態となる。このようにして給水栓100Aは閉状態となる。
【0113】
次に、給水栓100Aを開状態とする場合について
図9を参照して説明する。この場合、制御部112は、大気開放弁151が開放された状態となるように制御する。つまり、制御部112は、「0」より大きい所定の制御開度に応じた制御量を弁体駆動部170に出力する。弁体駆動部170は、入力された制御量に従ってアーム171を駆動する。これによりアーム171は、可動範囲における最も下よりも上において、制御開度に応じた位置にまで移動される。これにより、弁体部160は大気開放弁151が開口部151bから離れ、大気開放弁151が開放される。なお、同図においては、最も開度の高い開状態とするために、アーム171を可動範囲における最も上まで移動させている例が示されている。
【0114】
この場合にも、中空部121a内の用水は、パイプラインPLからの圧力により、フィルタ141から導水管131を経由して流れ、切替弁142によりさらに導水管132に流れ、大気開放弁151の内室151aに流入する。ただし、この場合には、大気開放弁151は開放されている状態にある。このため、大気開放弁151の内室151aに流入した水は、内室151aに貯留されることなく、開口部151bから外部に排出される。
【0115】
上記の場合、大気開放弁151の内室151aにおいて水が充填されることはない。このために、ダイヤフラムケース123内の圧室123aに圧力を有して水が流入して充填されることもない。
この場合、ダイヤフラム124を下方向に押し下げる力は生じないので、弁体部125が中空部121a側から受ける圧力のほうが高くなる。これによりダイヤフラム124は、上方向に移動し、弁体部125も連動して開口部121bから離れる。これにより、給水栓100Aは開状態となって、用水が中空部121aから中空部122aを介して流れ、吐出口122bから吐出される。
なお、このようにダイヤフラムを備える構成の給水栓100Aの場合、弁体に加わる開方向の力、即ち給水圧が低い場合、弁体部125と直接連動しているダイヤフラム124を上昇させにくくなり、開状態になりにくい場合がある。本実施形態の弁体駆動部170は、このような場合に対応して、電気的な駆動補助として、給水圧の不足分を補助するようにダイヤフラム124を上昇させるための機能も有する。
【0116】
このような構成の給水栓100Aにおいては、例えば導水管131、フィルタ141、切替弁142、開口部151bなどにごみが詰まりやすく、ごみ詰まりによる障害が発生する場合がある。導水管131やフィルタ141にごみ詰まりが発生した場合には、水を圧室123aに送ることができなくなり、栓部を閉状態とすることができなくなる。また、切替弁142、開口部151bなどにごみ詰まりが発生した場合には圧室123aから水を排出できなくなることから、ダイヤフラム124にかかる圧力を減じることができないため、栓部を開状態とすることができなくなる。
そこで、本実施形態では、
図8及び
図9のダイヤフラムを備える構造の給水栓100Aが圃場FMに設置された場合にも対応して、障害発生の判定と、障害の発生に対応する障害対応処理とが可能なように構成される。
【0117】
本実施形態における、ごみ詰まりによる障害発生の判定のための構成は、第1実施形態と同様でもよい。つまり、本実施形態においても、給水栓100Aにおける流路に流れる水の量(流量)を検出する流量センサを設ける。そのうえで、本実施形態においても、開閉制御部が栓部を閉状態とするように制御した状態(もしくは開状態)とするように制御した状態において流量センサにより検出される流量が、閉状態(もしくは開状態)に対応しているか否かに基づいて、障害発生の判定を行うようにしてもよい。
【0118】
なお、本実施形態において、上記のようなごみ詰まりが発生した場合には、
図2の給水栓100の場合のように栓部を開閉させたとしてもごみ詰まりの状態が解消される可能性が低い。
そこで、本実施形態においては、障害解消制御として以下のような構成を採ることができる。
例えば、具体的な図示は省略するが、
図7、
図8に示される弁軸126を中空にして弁体部125にさらに穴を開けることで、中空部121aと圧室123aとを連通させた構造とする。つまり、圧室123a内に水を供給するためのバイパスを設ける。そのうえで、平常時においては、例えば電磁弁などによりバイパスを閉じて中空部121aと圧室123aとが連通した状態とならないようにしておく。そして、用水管理サーバ500が、ごみ詰まりが発生して栓部を閉状態とすることができない状態となったことを判定すると、電磁弁を駆動させてバイパスを通過させ、栓部を閉状態とする。
また、図示は省略するが、導水管路131を複数設けてもよい。この場合、用水管理サーバ500は、閉状態とするように制御したのにもかかわらず閉状態とならないことを判定した場合には、導水管路131の電磁弁を開くように制御し、ごみ詰まりの発生していない導水管路131から圧室123aに水を供給する。これにより、栓部を閉状態とすることができる。
また、開状態とならない状態に対応しては、大気開放弁151とは別にダイヤフラム124から外部に通じるもう1つの補助開放弁を設ける。そして、用水管理サーバ500が栓部を開状態とするように制御したのにもかかわらず開状態とならないことを判定した場合には、補助開放弁を開くように制御して、圧室123aから外部に水を排出させることで栓部を開状態とすることができる。
また、本実施形態においても、先の各実施形態と同様に障害発生通知が行われるようにすればよい。
【0119】
なお、
図8及び
図9の構造による給水栓100Aを備える場合においても、第2実施形態または第3実施形態の障害の発生の有無の判定と、発生した障害に対応する処理とを適用できる。
【0120】
また、第1実施形態と第4実施形態とのいずれかと、第2実施形態、第3実施形態とを適宜組み合わせて構成することができる。
【0121】
また、本実施形態における給水栓の構造としては、
図2、
図3、
図8、
図9により例示したものに限定されるものではなく、他の構造が採られていてもよい。また、例えば、本実施形態において障害の発生の有無の判定対象となる水栓装置としては、例えば、給水栓だけではなく、排水栓も含まれてよい。また、圃場に備えられる給水栓、排水栓などに限らず、例えば、障害の発生の有無の判定対象となる水栓装置は、ダムや河川などにおいて備えられるスライドゲートなどの水門であってもよい。
【0122】
なお、上述の用水管理サーバ500や給水栓100、100Aなどの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述の用水管理サーバ500や給水栓100、100Aの処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD−ROM等の非一過性の記録媒体であってもよい。また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部または外部に設けられた記録媒体も含まれる。配信サーバの記録媒体に記憶されるプログラムのコードは、端末装置で実行可能な形式のプログラムのコードと異なるものでもよい。すなわち、配信サーバからダウンロードされて端末装置で実行可能な形でインストールができるものであれば、配信サーバで記憶される形式は問わない。なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に端末装置で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。