(58)【調査した分野】(Int.Cl.,DB名)
前記金属基材/半導体デバイスアセンブリを電気めっき浴中又は無電解めっき浴中に配置すること、並びに前記金属基材及び前記半導体デバイスに前記MIO層を、電気めっきにより接合するか、又は無電解めっきにより接合することを更に含む、請求項4に記載の方法。
【図面の簡単な説明】
【0008】
図面において明らかにしている実施態様は、実際には例示的かつ典型的なものであり、請求項により規定する主題を限定することを意図していない。例示的な実施態様の次の詳細な説明は、次の図面と共に読むことにより理解することができる。図面では、同様の構造は、同様の参照番号により示している。
【0009】
【
図1】
図1は、ここに図示又は記載されている1又は複数の実施態様による、熱応力補償層により金属基材に接合されているパワー半導体デバイスを有する、パワーエレクトロニクスアセンブリの側面図を概略的に示している;
【
図2】
図2は、ここに図示又は記載されている1又は複数の実施態様による、
図1の熱応力補償層の拡大図を概略的に示している;
【
図3】
図3は、金属逆オパール層における多孔性の関数としての正規化ヤング率を、グラフを使って示している;
【
図4】
図4は、
図1のパワー半導体デバイス及び金属基材に遷移的液相接合されている、
図2の熱応力補償層を概略的に示している;
【
図5】
図5は、ここに図示又は記載されている1又は複数の実施態様による、
図1における熱応力補償層の拡大図を概略的に示している;
【
図6】
図6は、
図1のパワー半導体デバイス及び金属基材に遷移的液相接合されている、
図5の熱応力補償層を概略的に示している;
【
図7】
図7は、ここに図示又は記載されている1又は複数の実施態様による、パワー半導体デバイス及び金属基材への熱応力補償層の接合処理を概略的に示している;
【
図8】
図8は、ここに図示又は記載されている1又は複数の実施態様による、複数のパワーエレクトロニクスアセンブリを有する乗物を概略的に示している。
【発明を実施するための形態】
【0010】
図1は、概してパワーエレクトロニクスアセンブリの1つの実施態様を図示している。パワーエレクトロニクスアセンブリは、熱補償層により金属基材に熱的に接合されているパワー半導体デバイス(半導体デバイス)を具備している。熱補償層は、パワーエレクトロニクスアセンブリの製造及び操作から生み出されるか又はもたらされる熱誘発応力を補償する。熱誘発応力は、パワーエレクトロニクスアセンブリの半導体デバイスと金属基材との間の熱膨張係数(CTE)の不整合に起因する。熱補償層は、複数の中空球及び所定の多孔性を有する金属逆オパール(MIO)層を具備している。熱応力補償層は、MIO層にわたって延在している一対の接合層を具備しており、それによって、一対の接合層の間にMIO層が配置されるようにしてよい。MIO層は、遷移的液相(TLP)焼結温度よりも高い融点を有し、かつ一対の接合層は、TLP焼結温度よりも低い融点を有し、半導体デバイスと、MIO層と、金属基材との間にTLP接合を形成するために用いる。熱応力補償材料、及び熱応力補償層を用いたパワーエレクトロニクスの種々の実施態様を、ここでより詳細に記載する。
【0011】
図1をまず参照して、パワーエレクトロニクスアセンブリ100の一実施態様を説明する。パワーエレクトロニクスアセンブリ100は、概して金属基材110、熱応力補償層130により金属基材110に接合されている2つの半導体デバイス120、冷却構造140、及びパッケージ収納部102を具備している。
【0012】
金属基材110及び半導体デバイス120の厚さは、パワーエレクトロニクスアセンブリ100の意図する使用に依存してよい。1つの実施態様において、金属基材110は、約2.0mm〜約4.0mmの範囲の厚さを有し、かつ半導体デバイス120は、約0.1mm〜約0.3mmの範囲の厚さを有する。例えば、限定されないが、金属基材は、約3.0mmの厚さを有していてよく、かつ半導体デバイス120は、約0.2mmの厚さを有していてよい。他の厚さも採用できることが理解されるべきである。
【0013】
金属基材110は、熱伝導材料から作られており、それによって、半導体デバイス120からの熱を冷却構造140へと移動させるようにされていてよい。金属基材は、銅(Cu)、例えば無酸素Cu、アルミニウム(Al)、Cu合金、Al合金等から作られてよい。半導体デバイス120は、パワー半導体デバイス、例えばパワーIGBT及びパワートランジスタの製造又は生産に適したワイドバンドギャップ半導体材料から作られていてよい。実施態様において、半導体デバイス120は、限定されないが、炭化ケイ素(SiC)、二酸化ケイ素(SiO
2)、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化ホウ素(BN)、ダイヤモンド等を含むワイドバンドギャップ半導体材料から作られていてよい。実施態様において、半導体デバイス120の金属基材110へのTLP焼結を促進するため、金属基材110及び半導体デバイス120は、コーティング、例えばニッケル(Ni)めっきを具備していてもよい。
【0014】
図1に示したように、金属基材110は、熱応力補償層130を介して2つの半導体デバイス120に接合されている。より多くの又はより少ない半導体デバイス120が金属基材110に取り付けられていてもよい。幾つかの実施態様において、パワー半導体デバイス以外の熱を生み出すデバイスが金属基材110に取り付けられていてもよい。半導体デバイス120は、パワー半導体デバイス、例えば絶縁ゲートバイポーラトランジスタ(IGBT:Insulated−Gate Bipolar Transistor)、パワーダイオード、パワー金属酸化膜半導体電界効果トランジスタ(パワーMOSFET:Power Metal−Oxide−Semiconductor Field−Effect Transistor)、パワートランジスタ等であってよい。1つの実施態様において、1又は複数のパワーエレクトロニクスアセンブリの半導体デバイス120は、電気的に結合されて、乗物の用途、例えばハイブリッド自動車又は電気自動車等のためのインバーター回路又はシステムを形成している。
【0015】
金属基材110は、接合層138を介して冷却構造140に熱的に結合されている。1つの実施態様において、冷却構造140は、空冷式ヒートシンクを具備している。代替的な実施態様において、冷却構造140は、液冷式ヒートシンク、例えばジェット衝突式の又は流路をベースとするヒートシンクデバイスを具備している。図示した実施態様の金属基材110は、何らの追加の界面層(例えば追加の金属基板)なしに、接合層138を介して冷却構造140の第一の表面142に直接的に接合されている。金属基材110は、種々の接合技術を用いて、例えばTLP焼結、半田付け、ろう付け、又は拡散接合等により、冷却構造140に接合させることができる。しかしながら、代替的な実施態様において、1又は複数の熱伝導性界面層を、金属基材110と冷却構造140との間に配置してもよい。
【0016】
図1を更に参照すると、金属基材110は、パッケージ収納部102の内部に保持されていてよい。パッケージ収納部102は、非導電性材料、例えばプラスチック等で作られていてよい。パッケージ収納部102は、種々の機械的結合法、例えば締め具又は接着剤等の使用により、冷却構造140に結合されていてよい。
【0017】
パワーエレクトロニクスアセンブリ100の内部には、半導体デバイス120への電力接続を与えるための第一電気コンタクト104a及び第二電気コンタクト104bが存在していてよい。第一電気コンタクト104aは、第一電位に相当していてよく、かつ第二電気コンタクト104bは、第二電位に相当していてよい。図示した実施態様において、第一電気コンタクト104aは、第一電線121aを介して半導体デバイス120の第一の表面に電気的に結合されており、かつ第二電気コンタクト104bは、第二電線121b及び金属基材110を介して半導体デバイス120の第二の表面に電気的に結合されている。他の電気的及び機械的配置が可能であること、並びに実施態様は、図に図示した構成要素の配置によって限定されないことが理解されるべきである。
【0018】
ここで
図2を参照すると、半導体デバイス120を金属基材110に接合する前における、
図1における囲み150により画定されている領域の拡大図が概略的に示されている。実施態様において、半導体デバイス120は、金属基材110にTLP接合されている。かかる実施態様において、金属基材110は、接合層112を具備していてもよく、半導体デバイス120は、接合層122を具備していてもよく、かつ熱応力補償層130は、MIO層132及び一対の接合層134を具備している。MIO層132は、一対の接合層134の間で直接接触して配置されていてよい。MIO層132は、複数の中空球133及び所定の多孔性を有する。実施態様において、MIO層132についての剛性は、MIO層132の多孔性、すなわち多孔性の量の関数である。ここで用いる場合には、剛性との用語は、材料の弾性率(ヤング率としても知られている)、すなわちその材料に力を印加した場合の、弾性変形することに対する材料の耐性の大きさを言及するものである。MIO層132は、詰め込まれたマイクロスフェアの犠牲テンプレートの内部で金属を堆積させ、次いでこのマイクロスフェアを溶解させて、金属の骨格ネットワークを相互連結した中空球の周期的配列と共に残すことにより形成することができる。中空球は、多孔性及び中空球の孔の相互連結を増加させるためにエッチングされていてもよく、又はエッチングされていなくてもよい。金属の骨格ネットワークは、大きな表面積を有し、MIO層132の多孔性の量は、犠牲となるマイクロスフェアの大きさを変更することにより変化させることができる。また、マイクロスフェアの大きさ及びそれに伴う中空球の大きさは、MIO層132の厚さ(Y方向)の関数として変化させて、段階的な多孔性、すなわち段階的な中空球の直径が、厚さの関数として与えられるようにすることができる。上記のとおり、MIO層のヤング率(剛性)は、MIO層における多孔性の関数であることができる。例えば、
図3は、多孔性の関数としてのMIO層のヤング率を、グラフを使って示している。したがって、MIO層132の剛性を変化及び制御させて、半導体デバイス120−金属基材110の所与の組合せについての熱応力を調節することができる。また、MIO層132の厚さに沿った段階的な剛性を与えて、半導体デバイス120−金属基材110の所与の組合せについての熱応力を調節することができる。
【0019】
一対の接合層134は、MIO層132の融点よりも低い融点を有する。特に、一対の接合層134は、半導体デバイス120を金属基材110にTLP接合するために用いるTLP焼結温度よりも低い融点を有し、かつMIO層132は、TLP焼結温度よりも高い融解温度を有する。非限定的な例として、TLP焼結温度は、約280℃〜約350℃であり、かつ一対の接合層134は、約280℃未満の融点を有し、かつMIO層132は、350℃より高い融点を有する。例えば、一対の接合層134は、約232℃の融点を有するスズ(Sn)から作られていてよく、その一方で、MIO層132は、電気めっき又は非電解めっきで堆積することができる随意の材料から作られていてよい。非限定的な例としては、約1085℃、660℃、962℃、420℃及び650℃の融点を各々有するCu、Ni、Al、銀(Ag)、亜鉛(Zn)及びマグネシウム(Mg)等の材料が挙げられる。したがって、半導体デバイス120の金属基材110へのTLP焼結の間に、一対の接合層134は少なくとも部分的に融解し、かつMIO層132は融解しない。
【0020】
ここで記載する熱応力補償層130は、製造条件(例えばTLP焼結)及び操作条件(例えば高い温度変化を引き起こす過渡的な電気負荷)によりもたらされる熱誘発応力、例えば熱冷却応力を補償する。パワーエレクトロニクスアセンブリ100の金属基材110及び半導体デバイス120が異なる材料から作られているため、各々の材料についてのCTEの差が、金属基材110、半導体デバイス120及び熱応力補償層130の内部で大きな熱誘発応力を引き起こす可能性がある。大きな熱誘発応力は、金属基材110の破断、又は金属基材110と半導体デバイス120の一方又は両方との間の従来のTLP接合材料の不具合(例えば剥離)に起因して、パワーエレクトロニクスアセンブリ100の不具合をもたらす可能性があることを理解すべきである。
【0021】
半導体デバイス120にTLP接合するための熱応力補償層130の使用は、かかる応力を緩和するか又は軽減する。すなわち、ここで記載する熱応力補償層130は、金属基材110及び半導体デバイス120が受ける熱膨張及び熱収縮を補償する。幾つかの実施態様において、ここで記載する熱応力補償層130は、金属基材110と半導体デバイス120との間の概して一定の剛性を有するMIO層132で、金属基材110及び半導体デバイス120が受ける熱膨張及び熱収縮を補償する。他の実施態様において、ここで記載する熱応力補償層130は、厚さ方向に段階的な剛性を有するMIO層132で、金属基材110及び半導体デバイス120が受ける熱膨張及び熱収縮を補償する。すなわち、MIO層132の厚さ方向で変化している中空球の大きさ(平均直径)は、MIO層132の厚さ方向に段階的な多孔性及びそれによる段階的な剛性を与える。MIO層132は、厚さ方向に一定の剛性又は段階的な多孔性により、熱応力補償層130が塑性変形すること、及び金属基材110と半導体デバイス120との間のCTE不整合に起因して剥離しないことを可能とする。また、MIO層132は、半導体デバイス120上で行われるその後の製造工程のために、金属基材110上に半導体デバイス120が適切に固定されるようにするのに十分な剛性を与える。熱応力補償層130はまた、200℃に迫り、また200℃を超える可能性がある操作温度の間における、金属基材110と半導体デバイス120との間の十分に高い高温接合強度を与える。
【0022】
概して、MIO層132は、平坦な薄層を具備しており、かつ一対の接合層134は、平坦な薄層を具備している。非限定的な例として、MIO層132の厚さは、約25マイクロメートル(ミクロン)〜約200ミクロンであってよい。実施態様において、MIO層132は、約50ミクロン〜約150ミクロンの厚さを有する。他の実施態様において、MIO層132は、約75ミクロン〜125ミクロンの厚さ、例えば100ミクロンの厚さを有する。一対の接合層134の厚さは、1ミクロン〜20ミクロンであってよい。実施態様において、一対の接合層134は、約2ミクロン〜約15ミクロンの厚さを各々有する。
【0023】
熱応力補償層130は、従来の多層薄膜形成技術を用いて形成することができ、この技術は、一対の接合層134をMIO層132上に化学気相成長させること、一対の接合層134をMIO層132上に物理気相成長させること、一対の接合層134をMIO層132上に電気堆積させること、一対の接合層134をMIO層132上に無電解堆積させること等を実例として含むが、これらに限られない。
【0024】
ここで
図4を参照すると、半導体デバイス120を金属基材110にTLP接合した後における、
図1の囲み150により画定されている領域の拡大図が概略的に示されている。
図4に示したように、MIO層132は、
図2でのように残存しており、すなわち、MIO層132は、TLP接合処理の間に溶融せず、かつ概してTLP接合処理の前と同じ厚さを維持している。対照的に、一対の接合層134は、少なくとも部分的に溶融し、接合層112、122及びMIO層132へと拡散し、そしてTLP接合層112a及び122aを形成する。
図4に示したTLP接合層112a及び122aは、接合層134を消費しているが、実施態様においては、TLP接合層112a及び/又は122aは、接合層134を完全に消費していなくてもよい。すなわち、半導体デバイス120と金属基材110との間でTLP接合した後において、接合層134の薄層が存在していてもよい。他の実施態様においては、接合層134及び接合層112、122のいずれも、TLP接合層112a、122aにより消費されている。すなわち、TLP接合層112a及び/又は122aのみが、MIO層132と金属基材110及び/又は半導体デバイス120との間にそれぞれ存在している。更に他の実施態様においては、TLP接合層112a及び/又は122aは、層を具備していなくてもよい。すなわち、接合層134、112及び122の全てが、MIO層132、金属基材110及び/又は半導体デバイス120へと拡散し、それによって、明確に定まったTLP接合層112a及び/又は122aが存在しなくなる。
【0025】
実施態様において、MIO層132は、銅から作られており、すなわちMIO層132は、銅逆オパール(CIO)層132である。かかる実施態様において、一対の接合層134は、Snから作られていてよく、接合層112、122は、ニッケル(Ni)から作られていてよく、TLP接合層112a及び122aは、Cu及びSnの金属間化合物層を含有していてよい。幾つかの実施態様において、TLP接合層112a及び122aは、Cu、Ni及びSnの金属間化合物層を含有していてよい。例えば、限定されないが、TLP接合層112a及び122aは、金属間化合物Cu
6Sn
5、金属間化合物(Cu,Ni)
6Sn
5、金属間化合物Cu
3Sn、又は金属間化合物Cu
6Sn
5、(Cu,Ni)
6Sn
5、及び/又はCu
3Snの組合せを含有していてよい。Snから作られている接合層134は、TLP焼結温度で少なくとも部分的に溶融し、次いで、Cu
6Sn
5が415℃で融解し始め、かつCu
3Snが約767℃で融解し始めるため、Cu−Sn金属間化合物の形成の間に等温的に凝固することが理解されるべきである。すなわち、TLP接合層112a、122aの融解温度は、一対の接合層134の融解温度よりも高い。
【0026】
ここで
図5を参照すると、別の実施態様に従い、半導体デバイス120を金属基材110に接合する前における、
図1の囲み150により画定されている領域の拡大図が概略的に示されている。特に、熱応力補償層230は、MIO層232、第一の対の接合層234及び第二の対の接合層236を具備している。MIO層232は、第一の対の接合層234の間で直接接触して配置されていてよく、かつ第一の対の接合層234は、第二の対の接合層236の間で直接接触して配置されていてよい。MIO層232は、複数の中空球233、及びMIO層232についての剛性を与える所定の多孔性を有する。
【0027】
MIO層232及び第一の対の接合層234の各々は、TLP焼結温度よりも高い融点を有し、かつ第二の対の接合層236の各々は、TLP焼結温度よりも低い温度を有し、金属基材110と半導体デバイス120との間のTLP接合を形成するために用いる。非限定的な例として、TLP焼結温度は、約280℃〜約350℃であり、かつ第二の対の接合層236の各々は、約280℃より低い融点を有し、かつMIO層232及び第一の対の接合層234の各々は、350℃よりも高い融点を有する。例えば、第二の対の接合層236は、約232℃の融点を有するSnから作られていてよく、その一方で、MIO層232及び第一の対の接合層234は、約1085℃、660℃、962℃、420℃及び650℃の融点を各々有するCu、Al、Ag、Zn及びMg等の材料から作られていてよい。したがって、半導体デバイス120の金属基材110へのTLP接合の間、第二の対の接合層236は、少なくとも部分的に融解し、かつMIO層232及び第一の対の接合層234は、融解しない。
【0028】
熱応力補償層230は、従来の多層薄膜形成技術を用いて形成することができ、この技術は、第一の対の接合層234及び第二の対の接合層236をMIO層232上に化学気相成長させること、第一の対の接合層234及び第二の対の接合層236をMIO層232上に物理気相成長させること、第一の対の接合層234及び第二の対の接合層236をMIO層232上に電気堆積させること、第一の対の接合層234及び第二の対の接合層236をMIO層232上に無電解堆積させること等を実例として含むが、これらに限られない。
【0029】
ここで
図6を参照すると、半導体デバイス120を金属基材110に熱応力補償層230によってTLP接合した後における、
図1の囲み150により画定されている領域の拡大図が概略的に示されている。
図6に示したように、半導体デバイス120を金属基材110にTLP接合した後、MIO層232及び第一の対の接合層234は、
図5でのように残存しており、すなわち、MIO層232及び第一の対の接合層234は、TLP接合処理の間に溶融せず、かつ概してTLP接合処理の前と同じ厚さを維持している。対照的に、第二の対の接合層236は、少なくとも部分的に溶融し、そしてTLP接合層212a及び222aを形成する。
図6に示したTLP接合層212a及び222aは、それぞれ1つの層を具備しているが、実施態様においては、TLP接合層212a及び/又は222aは、接合層110と隣接する第一の接合層234との間、及び接合層122と隣接する第一の接合層234との間にそれぞれ2つ又はそれ以上の層を具備していてよい。他の実施態様において、TLP接合層212a及び/又は222aは、層を具備していなくてもよい。すなわち、接合層234、112及び122の全てが、MIO層232、金属基材110及び/又は半導体デバイス120へと拡散し、それによって、明確に定まったTLP接合層212a及び/又は222aが存在しなくなる。
【0030】
ここで
図7を参照すると、熱応力補償層により金属基材にパワー半導体デバイスを接合する方法が示されている。特に、工程300において、MIO層を上記のように形成し、そして工程310において、熱補償層を金属基材110と半導体デバイス120との間に配置して、電子デバイスアセンブリを形成する。幾つかの実施態様において、熱補償層を、金属基材110と半導体デバイス120との間でTLP接合させる。かかる実施態様において、熱応力補償層130を一対の接合層134の間に配置し(
図2)、又は代替態様では、一対の第二の対の接合層236の間に配置されている一対の第一の接合層234の間に、熱応力補償層230を配置する(
図5)。工程310では、熱応力補償層130(又は熱応力補償層230)を、金属基材110及び半導体デバイス120と直接接触させて、電子デバイスアセンブリを形成する。幾つかの実施態様において、力Fを半導体デバイス120に印加して、接合層112と、熱応力補償層130と、接合層122との間の接触がTLP接合処理の間に維持されることを確実にする。また、力Fは、半導体デバイス120がTLP接合処理の間に金属基材110に対して移動しないことを確実にすることができる。電子デバイスアセンブリを、工程320で加熱炉中に配置する。工程330で、電子デバイスアセンブリを、TLP焼結温度まで加熱し、そして一対の接合層134を少なくとも部分的に溶融させ、そしてTLP接合層112aを、MIO層132と金属基材110との間に形成し、かつTLP接合層122aを、MIO層132と半導体120との間に形成する。TLP焼結温度へと加熱した後、金属基材/半導体デバイスアセンブリを周囲温度まで冷却する。ここで用いる場合には、用語「周囲温度」は、室温を言及するものであり、例えば約25℃未満、例えば約20℃〜22℃を言及するものである。電子デバイスアセンブリをTLP焼結温度まで加熱するための加熱炉は、不活性又は還元ガス雰囲気を含んでいてよいことが理解されるべきである。不活性ガス雰囲気の実例としては、ヘリウム、アルゴン、ネオン、キセノン、クリプトン、ラドン、及びこれらの組合せの雰囲気が挙げられるが、これに限られない。還元ガス雰囲気の実例としては、水素、アルゴンと水素、ヘリウムと水素、ネオンと水素、キセノンと水素、クリプトンと水素、ラドンと水素、及びこれらの組合せが挙げられるが、これに限られない。
【0031】
他の実施態様において、熱応力補償層130(又は熱応力補償層230)を、金属基材110と半導体デバイス120との間で電気めっきにより接合するか、又は無電解めっきにより接合する。かかる実施態様において、工程340では、電子デバイスアセンブリを、電気めっき浴又は無電解めっき浴中に配置し、工程350では、接合層の電気めっき堆積又は無電解めっき堆積により、金属基材110及び半導体デバイス120に、MIO層132を電気めっきにより接合するか、又は無電解めっきにより接合する。
【0032】
上記のように、ここで記載する金属基材及びパワーエレクトロニクスアセンブリは、直流電力を交流電力へと変換し、特定の用途に応じてその逆を行うインバーター回路又はシステムに組み込まれていてよい。例えば、
図8に示したハイブリッド電気自動車の用途においては、幾つかのパワーエレクトロニクスアセンブリ100a〜100fを、互いに電気的に結合させて、電池の層164により提供された直流電力を、自動車160の車輪168と結合されている電気モーター166を駆動させるために用いる交流電力へと変換する駆動回路を形成して、電力を用いて自動車160を推進させることができる。駆動回路において用いるパワーエレクトロニクスアセンブリ100a〜100fは、電気モーター166の使用及び回生制動によりもたらされる交流電力を、電池の層164に貯蔵するために直流電力に戻すために用いてもよい。
【0033】
かかる自動車用途において利用されるパワー半導体デバイスは、操作中に有意な量の熱を生じる可能性があり、それによって、より高い温度及びCTE不整合に起因する熱誘発応力に耐えることができる、半導体デバイスと金属基材との間の接合が要求される。ここで記載しかつ図示している熱応力補償層は、半導体デバイスの金属基材への熱接合、及び/又はパワー半導体デバイスの操作の間に生じる熱誘発応力を、熱応力補償層の厚さ方向の一定の又は段階的な剛性により補償することができる一方で、小型のパッケージデザインを提供することができる。
【0034】
ここで記載するパワーエレクトロニクスアセンブリ及び自動車に組み込まれる複層の複合材料は、追加の界面層の必要なしに、CTE不整合に起因する熱誘発応力を補償するために利用することができ、それによって、低減された耐熱性を有するより小型のパッケージデザインを提供することができることが、ここで理解されるべきである。
【0035】
用語「約」及び「概して」は、任意の定量比較、数値、測定値、又は他の表現に起因する不確定性の固有の程度を表現するためにここで利用できることに留意する。この用語は、議論している主題の基本的な機能の変化をもたらすことなく、定量的表現が言及した記載から変化することができる程度を示すためにもここで利用することができる。
【0036】
特定の実施態様をここで図示及び記載してきたが、特許請求した主題の主旨及び範囲を逸脱することなく、種々の他の変更態様及び修正態様が可能であることを理解すべきである。更に、特許請求した主題の種々の側面をここで記載してきたが、かかる側面は、組み合わせて利用することを必要としない。したがって、添付の特許請求の範囲は、特許請求された主題の範囲内にある全てのかかる変更態様及び修正態様に及ぶことが意図されている。
本発明の実施態様の一部を以下の項目〈1〉−〈20〉に記載する。
〈1〉少なくとも一対の接合層の間に配置されている熱応力補償層であって、複数の中空球及び所定の多孔性を有する金属逆オパール(MIO)層を具備している、熱応力補償層;
を具備しており、
前記熱応力補償層が、TLP焼結温度より高い融点を有し、かつ前記少なくとも一対の接合層が、各々前記TLP焼結温度より低い融点を有している、
遷移的液相(TLP)接合層。
〈2〉前記MIO層が、第一の表面、第二の表面、及び前記第一の表面と前記第二の表面との間の段階的な多孔性を含む、態様1に記載のTLP接合層。
〈3〉前記MIO層が、第一の表面、第二の表面、及び前記第一の表面と前記第二の表面との間の段階的な剛性を含む、態様1に記載のTLP接合層。
〈4〉前記少なくとも一対の接合層が、第一の対の接合層及び第二の対の接合層を具備しており:
前記第一の対の接合層が、前記MIO層と前記第二の対の接合層との間に配置されており;
前記第一の対の接合層の各々が、前記TLP焼結温度よりも高い融点を有し;かつ
前記第二の対の接合層の各々が、前記TLP焼結温度よりも低い融点を有する、
態様1に記載のTLP接合層。
〈5〉前記MIO層が、銅逆オパール(CIO)層であり、前記第一の対の接合層が、ニッケル、銀又はこれらの合金から形成されており、かつ前記第二の対の接合層が、スズ、インジウム又はこれらの合金から形成されている、態様4に記載のTLP接合層。
〈6〉前記MIO層が、約50ミクロン〜約150ミクロンの厚さを有する、態様1に記載のTLP接合層。
〈7〉前記複数の中空球が、約5μm〜約50μmの平均直径を有する、態様1に記載のTLP接合層。
〈8〉前記一対の接合層が、各々約2ミクロン〜約10ミクロンの厚さを有する、態様1に記載のTLP接合層。
〈9〉以下を具備している、パワーエレクトロニクスアセンブリ:
金属基材;
半導体デバイス;並びに
前記半導体デバイスと前記金属基材との間に配置されており、かつこれらに接合されており、複数の中空球及び所定の多孔性を有する金属逆オパール(MIO)層を具備している、熱応力補償層。
〈10〉前記MIO層が、第一の表面、第二の表面、並びに前記第一の表面と前記第二の表面との間の段階的な多孔性を含む、態様9に記載のパワーエレクトロニクスアセンブリ。
〈11〉前記MIO層が、第一の表面、第二の表面、及び前記第一の表面と前記第二の表面との間の段階的な剛性を含む、態様9に記載のパワーエレクトロニクスアセンブリ。
〈12〉前記複数の中空球が、約5μm〜約50μmの平均直径を有する、態様9に記載のパワーエレクトロニクスアセンブリ。
〈13〉一対の接合層を更に具備している、態様9に記載のパワーエレクトロニクスアセンブリであって:
前記MIO層が、前記一対の接合層の間に配置されており、かつ前記金属基材及び前記半導体デバイスに遷移的液相(TLP)接合されており;かつ
前記一対の接合層の各々が、TLP焼結温度より高い融点を有する、
パワーエレクトロニクスアセンブリ。
〈14〉前記MIO層が、前記金属基材及び前記半導体デバイスに、電気めっきで接合されているか、又は無電解めっきで接合されている、態様9に記載のパワーエレクトロニクスアセンブリ。
〈15〉以下を含む、パワーエレクトロニクスアセンブリの製造方法:
金属基材と半導体デバイスとの間に熱応力補償層を配置して、金属基材/半導体デバイスアセンブリを提供すること、ここで、前記熱応力補償層が金属逆オパール(MIO)層を具備している;並びに
前記MIO層を、前記金属基材及び前記半導体デバイスに接合させること。
〈16〉前記熱応力補償層が更に、少なくとも一対の接合層を、前記一対の接合層の間に前記MIO層が配置されるようにして具備しており、かつ以下を更に含む、態様15に記載の方法:
前記金属基材/半導体デバイスアセンブリを、約280℃〜350℃の遷移的液相(TLP)焼結温度まで加熱すること、ここで、前記少なくとも一対の接合層が、各々前記TLP焼結温度よりも低い融点を有しており、かつ前記MIO層が、前記TLP焼結温度よりも高い融点を有しており、それによって、前記少なくとも一対の接合層が少なくとも部分的に溶融し、前記MIO層と前記金属基材との間、及び前記MIO層と前記半導体デバイスとの間に、TLP接合を形成するようにする;並びに
前記パワーエレクトロニクスアセンブリを、前記TLP焼結温度から冷却すること、ここで、前記TLP焼結温度から周囲温度への冷却の間における、前記半導体デバイスと前記金属基材との間の熱収縮不整合を、前記熱補償層が補償する。
〈17〉前記少なくとも一対の接合層が、第一の対の接合層及び第二の対の接合層を具備しており:
前記第一の対の接合層が、前記MIO層と前記第二の対の接合層との間に配置されており;
前記第一の対の接合層の各々が、前記TLP焼結温度よりも高い融点を有し;かつ
前記第二の対の接合層の各々が、前記TLP焼結温度よりも低い融点を有する、
態様16に記載の方法。
〈18〉前記金属基材/半導体デバイスアセンブリを電気めっき浴中又は無電解めっき浴中に配置すること、並びに前記金属基材及び前記半導体デバイスに前記MIO層を、電気めっきにより接合するか、又は無電解めっきにより接合することを更に含む、態様15に記載の方法。
〈19〉前記MIO層が、第一の表面、第二の表面、並びに前記第一の表面と前記第二の表面との間の段階的な多孔性を含む、態様15に記載の方法。
〈20〉前記MIO層が、第一の表面、第二の表面、及び前記第一の表面と前記第二の表面との間の段階的な剛性を含む、態様15に記載の方法。