特許第6974330号(P6974330)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エセックス古河マグネットワイヤジャパン株式会社の特許一覧

<>
  • 特許6974330-絶縁電線、コイルおよび電気・電子機器 図000003
  • 特許6974330-絶縁電線、コイルおよび電気・電子機器 図000004
  • 特許6974330-絶縁電線、コイルおよび電気・電子機器 図000005
  • 特許6974330-絶縁電線、コイルおよび電気・電子機器 図000006
  • 特許6974330-絶縁電線、コイルおよび電気・電子機器 図000007
  • 特許6974330-絶縁電線、コイルおよび電気・電子機器 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6974330
(24)【登録日】2021年11月8日
(45)【発行日】2021年12月1日
(54)【発明の名称】絶縁電線、コイルおよび電気・電子機器
(51)【国際特許分類】
   H01B 7/02 20060101AFI20211118BHJP
   H01F 5/06 20060101ALI20211118BHJP
【FI】
   H01B7/02 Z
   H01B7/02 A
   H01F5/06 Q
【請求項の数】8
【全頁数】16
(21)【出願番号】特願2018-539730(P2018-539730)
(86)(22)【出願日】2017年9月12日
(86)【国際出願番号】JP2017032936
(87)【国際公開番号】WO2018051991
(87)【国際公開日】20180322
【審査請求日】2020年4月27日
【審判番号】不服2021-5173(P2021-5173/J1)
【審判請求日】2021年4月21日
(31)【優先権主張番号】特願2016-179039(P2016-179039)
(32)【優先日】2016年9月13日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】320003426
【氏名又は名称】エセックス古河マグネットワイヤジャパン株式会社
(74)【代理人】
【識別番号】110002631
【氏名又は名称】特許業務法人イイダアンドパートナーズ
(74)【代理人】
【識別番号】100076439
【弁理士】
【氏名又は名称】飯田 敏三
(74)【代理人】
【識別番号】100161469
【弁理士】
【氏名又は名称】赤羽 修一
(72)【発明者】
【氏名】八本 智子
(72)【発明者】
【氏名】福田 秀雄
(72)【発明者】
【氏名】友松 功
【合議体】
【審判長】 辻本 泰隆
【審判官】 ▲吉▼澤 雅博
【審判官】 小田 浩
(56)【参考文献】
【文献】 国際公開第2015/186730(WO,A1)
【文献】 国際公開第2015/098638(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01B 7/02
H01F 5/06
(57)【特許請求の範囲】
【請求項1】
単体または複数のそれぞれの導体の外周に絶縁層を有し、該絶縁層の外周に接着層を有する絶縁電線であって、
前記接着層の厚さが2〜200μmであり、前記接着層を構成する樹脂が、融点を持たず、250℃における引張弾性率が0.6×10〜10×10Paであり、かつアミノ基を2個以上持つ物質を前記接着層表面に有する樹脂である絶縁電線。
【請求項2】
前記接着層の外周にフィルム層を有し、該フィルム層を構成する樹脂が、融点を持たず、かつ250℃における引張弾性率が0.6×10〜10×10Paである樹脂である請求項1に記載の絶縁電線。
【請求項3】
前記フィルム層が、ポリエーテルイミド、ポリカーボネイト、ポリスルホンからなる群から選択される少なくとも1種の樹脂を含有する請求項2に記載の絶縁電線。
【請求項4】
前記接着層が、ポリエーテルイミド、ポリカーボネイト、ポリスルホン、ポリフェニルスルホン、ポリエーテルスルホンからなる群から選択される少なくとも1種の樹脂を含有する請求項1〜3のいずれか1項に記載の絶縁電線。
【請求項5】
前記接着層が多孔質である、請求項1〜4のいずれか1項に記載の絶縁電線。
【請求項6】
請求項1〜5のいずれか1項に記載の絶縁電線を用いたコイル。
【請求項7】
請求項1〜5のいずれか1項に記載の絶縁電線を用いた超電導用コイル。
【請求項8】
請求項6に記載のコイルを有する電気・電子機器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁電線コイルおよび電気・電子機器に関する。
【背景技術】
【0002】
インバータ関連機器、例えば高速スイッチング素子、インバータモータ、変圧器等の電気・電子機器用コイルには、マグネットワイヤとして、絶縁電線が用いられている。絶縁電線には、いわゆるエナメル線からなる絶縁電線(絶縁ワイヤ)や、エナメル樹脂からなる層と、エナメル樹脂とは別種の樹脂からなる被覆層とを含む多層の被覆層を有する絶縁電線等がある。
【0003】
電気・電子機器用コイルにおいて絶縁電線(巻線)を固定化したり、絶縁性を高めたりするために、様々な技術が開発されている。例えば、特許文献1には、絶縁被膜で外周が被覆された平角導体が積層され、その外周にエポキシ樹脂組成物が用いられてなる熱硬化性接着剤層が形成されたシート状基材が被覆されている構成が開示されている。また特許文献2には、回転電機のステータコアに形成されたコイル収容溝部に絶縁紙を配置し、ワニスによりコイルをコイル収容溝部に固定して、コイルとステータコア間を絶縁しながら固定する技術が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−126684号公報
【特許文献2】特開2007−166731号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1記載の技術では、シート基材に形成された熱硬化性接着剤層がエポキシ系樹脂組成物からなるため、高温環境(例えば200℃以上)で使用すると熱硬化性接着層が軟化して接着性が失われた。特許文献2記載の技術では、ステータのコイル収容溝部内にワニスを入れて絶縁電線をコアに固定するため、溶剤を使用するワニスが必要となっていた。
【0006】
本発明は、高温環境における固着力に優れ、部分放電電圧が高く、曲げ加工性に優れた絶縁電線のみで、ワニスを使用せずに他の部品に固定することが可能な絶縁電線、この絶縁電線を用いたコイル、およびそのコイルを用いた電気・電子機器の関する。
【課題を解決するための手段】
【0007】
本発明者らは、導体を被覆する絶縁層の外周に特定の接着層を有する絶縁電線が、高温下(例えば、200℃)であっても、接着層が強固な固着力で他の部材に固着できることを見出した。さらに、この絶縁電線が、曲げ部のPDIVが高くまた耐熱性にも優れていることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
【0008】
すなわち、本発明の上記課題は、以下の手段によって解決された。
(1)単体または複数のそれぞれの導体の外周に絶縁層を有し、該絶縁層の外周に接着層を有する絶縁電線であって、
前記接着層の厚さが2〜200μmであり、前記接着層を構成する樹脂が、融点を持たず、250℃における引張弾性率が0.6×10〜10×10Paであり、かつアミノ基を2個以上持つ物質を前記接着層表面に有する樹脂である絶縁電線。
(2)前記接着層の外周にフィルム層を有し、該フィルム層を構成する樹脂が、融点を持たず、かつ250℃における引張弾性率が0.6×10〜10×10Paである樹脂である(1)に記載の絶縁電線。
(3)前記フィルム層が、ポリエーテルイミド、ポリカーボネイト、ポリスルホンからなる群から選択される少なくとも1種の樹脂を含有する(2)に記載の絶縁電線。
(4)前記接着層が、ポリエーテルイミド、ポリカーボネイト、ポリスルホン、ポリフェニルスルホン、ポリエーテルスルホンからなる群から選択される少なくとも1種の樹脂を含有する(1)〜(3)のいずれか1項に記載の絶縁電線。
(5)前記接着層が多孔質である、(1)〜(4)のいずれか1項に記載の絶縁電線。
(6)(1)〜(5)のいずれか1項に記載の絶縁電線を用いたコイル。
(7)(1)〜(5)のいずれか1項に記載の絶縁電線を用いた超電導用コイル。
(8)(6)に記載のコイルを有する電気・電子機器。
【0009】
本発明において、「〜」を用いて表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む範囲を意味する。
【発明の効果】
【0010】
本発明の絶縁電線は、接着層が他の部材に対して強固な接着力で固着することができ、曲げ部の部分放電開始電圧(PDIV)が高く、耐熱性に優れる。また本発明の絶縁電線を用いたコイル、当該コイルを用いた電気・電子機器は、絶縁性に優れる。
【0011】
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
【図面の簡単な説明】
【0012】
図1】本発明の絶縁電線の好ましい実施形態の一例を示した概略斜視断面図である。
図2】本発明の絶縁電線の別の好ましい実施形態の一例を示した概略斜視断面図である。
図3】本発明の絶縁電線の好ましい別の実施形態の一例を示した概略断面図である。
図4】コイルの好ましい実施形態の一例を示した概略部分断面図である。
図5】電気・電子機器に用いられるステータの好ましい実施形態の一例を示した概略斜視図である。
図6】電気・電子機器に用いられるステータの好ましい実施形態の一例を示した概略分解斜視図である。
【発明を実施するための形態】
【0013】
[絶縁電線]
本発明の絶縁電線は、断面が矩形の導体の外周に絶縁層を有し、この絶縁層の外周に接着層を有している。さらに、この接着層の外周にフィルム層を有していることが好ましい。絶縁電線を構成する導体、各層の組成については後述する。
【0014】
以下、本発明の絶縁電線の好ましい実施形態を、図面を参照して説明する。
本発明は、本発明で規定されること以外は下記実施形態に限定されるものではない。また、各図面に示される形態は、本発明の理解を容易にするための模式図であり、各部材の大きさ、厚さ、相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。さらに、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。
【0015】
図1に示した本発明の好ましい絶縁電線1は、導体11と、導体11の外周面に形成された樹脂被覆層14、とフィルム層15とを有する。
導体11は、断面形状が矩形(平角形状)である。本発明において、断面が矩形である導体は、断面が長方形の導体と、断面が正方形の導体とを包含する。また、断面角部に丸みを有する導体も包含する。
樹脂被覆層14は、導体11の外周面と接触する最も内側の絶縁層12と、絶縁層12の外周面と接触する接着層13とからなる2層構造になっている。樹脂被覆層14の総厚は65〜330μmに設定されていることが好ましい。
本明細書において、樹脂被覆層ないし樹脂被覆層を構成する各層の厚さは、マイクロスコープを用いて、絶縁電線をその長手軸方向に対して垂直に切断した断面を観察して求める。そして、測定対象の樹脂層に隣接する内側の層(測定対象の層が導体と接している場合は導体)の外周から測定対象の層の外周までの最短距離を、無作為に選択した16点について測定し、それらの平均値として算出される値である。
【0016】
図2に断面図を示した本発明の好ましい絶縁電線2は、絶縁層22が絶縁層22Aと絶縁層22Bとの2層構造になっていること以外は、絶縁電線1と同様の構成である。
【0017】
以下、図1および2を参照して本発明の絶縁電線を構成する導体、絶縁層、接着層およびフィルム層について説明する。
【0018】
<導体11、21>
本発明に用いる導体11、21としては、絶縁電線で用いられている通常のものを広く使用することができ、例えば、銅線、アルミニウム線等の金属導体を用いることができる。さらに、細分化した導体を複数備えた分割導体でもよい。好ましくは、酸素含有量が30ppm以下の低酸素銅、さらに好ましくは20ppm以下の低酸素銅または無酸素銅の導体である。酸素含有量が30ppm以下であれば、導体を溶接するために熱で溶融させた場合、溶接部分に含有酸素に起因するボイドの発生がなく、溶接部分の電気抵抗が悪化することを防止するとともに溶接部分の強度を保持することができる。
【0019】
本発明で使用する導体11、21は、その断面形状が矩形(平角形状)である。平角形状の導体は、円形のものと比較し、巻線時にステータコアのスロットに対する占積率を高めることができる。
平角形状の導体は、角部からの部分放電を抑制する点において、図1または2に示すように、導体の幅方向断面の4隅に面取り(曲率半径r)を設けた形状であることが好ましい。曲率半径rは、0.6mm以下が好ましく、0.2〜0.4mmがより好ましい。
導体の大きさは、特に限定されないが、平角導体の場合、矩形の断面形状において、幅(長辺)は1.0〜5.0mmが好ましく、1.4〜4.0mmがより好ましく、厚さ(短辺)は0.4〜3.0mmが好ましく、0.5〜2.5mmがより好ましい。幅(長辺)と厚さ(短辺)の長さの割合(厚さ:幅)は、1:1〜1:4が好ましい。一方、断面形状が円形の導体の場合、直径は0.3〜3.0mmが好ましく、0.4〜2.7mmがより好ましい。なお、幅(長辺)と厚さ(短辺)の長さの割合(厚さ:幅)が1:1のとき、長辺とは1対の対向する辺を意味し、短辺とは他の1対の対向する辺を意味する。
【0020】
<絶縁層12、22>
本発明の絶縁電線において、絶縁層12、22は、(焼付塗装した後の)熱硬化性樹脂からなる層であることが好ましい。
本発明において、「樹脂(樹脂Z)からなる層」という場合、樹脂Zのみから形成された層と、樹脂Zと他の成分(例えば、樹脂Z以外の樹脂または添加剤)とで形成された層との両態様を包含する意味に用いる。ここで、樹脂Zからなる層中における上記「他の成分」の含有率は、目的の効果を損なわない限り特に限定されるものではなく、通常は、0質量%より大きく、10質量%以下(好ましくは5質量%以下)である。
本発明において熱硬化性樹脂層とは、硬化した状態の樹脂層を意味し、硬化前の樹脂層を意味するものではない。
【0021】
本発明の絶縁電線において、絶縁層12、22Aは熱硬化性樹脂のワニスを通常の焼付け塗布等により処理して硬化させた樹脂層であることが好ましい。
絶縁層12、22Aに用いる熱硬化性樹脂としては、特に限定されないが、例えば、熱硬化性ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエステルイミド、ポリエステル(PEst)、ポリウレタン、等が挙げられる。なかでも、ポリイミドおよびポリアミドイミドから選択される少なくとも1種がより好ましい。
例えば、PIのワニスは、PIをジメチルアセトアミド等に樹脂分が15〜30質量%になるように溶解したものを用いることができる。またPAIのワニスは、PAIをN−メチル2−ピロリドンに樹脂分が15〜30質量%になるように溶解したものを用いることができる。
絶縁層12、22Aには、熱硬化性樹脂を1種単独で用いてもよく、2種以上を併用してもよい。
【0022】
絶縁層12、22Aを構成し得るポリイミドは、特に限定されず、全芳香族ポリイミドおよび熱硬化性芳香族ポリイミドなど、通常のポリイミドを用いることができる。また、常法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、焼付け時の加熱処理によってイミド化させることによって得られるものを用いることができる。
絶縁層12、22Aを構成し得るポリアミドイミドは、特に限定されないが、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート化合物を直接反応させて得たものが挙げられる。または、極性溶媒中でトリカルボン酸無水物にジアミン化合物を先に反応させて、まずイミド結合を導入し、次いでジイソシアネート化合物でアミド化して得られるものが挙げられる。
【0023】
絶縁層12、22を構成しうるポリエステルイミドは、分子内にエステル結合とイミド結合を有するポリマーであって熱硬化性のものであれば特に限定されない。例えば、トリカルボン酸無水物とアミン化合物からイミド結合を形成し、アルコールとカルボン酸またはそのアルキルエステルからエステル結合を形成して、イミド結合の遊離酸基または無水基がエステル形成反応に加わることで得られるものを用いることができる。このようなポリエステルイミドは、例えば、トリカルボン酸無水物、ジカルボン酸化合物又はそのアルキルエステル、アルコール化合物およびジアミン化合物を通常の方法で反応させて得られるものを用いることもできる。
また、絶縁層12、22を構成しうるポリエステルは、分子内にエステル結合を有するポリマーであって熱硬化性のものであればよく、H種ポリエステル(HPE)が好ましい。このようなH種ポリエステルとしては、例えば、芳香族ポリエステルのうちフェノール樹脂等を添加することによって樹脂を変性させたもので、耐熱クラスがH種であるものが挙げられる。
【0024】
絶縁層12、22Aの厚さは特に限定されず、通常は30〜200μmであり、より好ましくは40〜180μmである。また絶縁層22Bの厚さも特に限定されず、通常は40〜200μmであり、より好ましくは60〜160μmである。
【0025】
絶縁層12、22Aに用いる熱硬化性樹脂として市販品を用いることができる。例えば、ポリイミドとして、UイミドAR(商品名、ユニチカ社製)、U―ワニス(商品名、宇部興産社製)等が挙げられる。ポリアミドイミドとして、HI406(商品名、日立化成社製)等が挙げられる。絶縁層12、22Aは、その層中に気泡が存在した形態であってもよい。
【0026】
<接着層13、23>
接着層13、23は、例えばコアと接着することができ、結果、絶縁電線をコアに固定化することができる。コアとしては、例えば、コイルのコア、具体的には回転機械のステータコア、ロータコア等が挙げられる。この接着層13、23とコアとをフィルム層15を介して接触させた状態で、170℃以上210℃以下の加熱処理に付す。接着のための加熱処理温度は170〜210℃とすることが好ましく、180〜200℃とすることがより好ましい。接着のための加熱処理時間は10〜40分間とし、10〜30分間とすることがより好ましい。加熱温度が高すぎると熱可塑性樹脂が溶け出してしまい、加熱温度が低すぎると接着力を発現しなくなる。
【0027】
接着層13、23は特定物性の熱可塑性樹脂からなる。すなわち接着層13、23を構成する熱可塑性樹脂は融点を持たない。接着層を構成する熱可塑性樹脂が融点を持たないことにより、繰り返し高温に曝されたり、長期間高温に曝されたりしても、接着層が硬くなりにくく、対象物との強固な固着状態を安定に、長期間持続的に維持することが可能となる。本発明において「融点を持たない」とは、示差走査熱量計(DSC)測定において結晶融解ピークもしくは結晶化ピークが観測されないことをいう。
【0028】
また接着層13、23を構成する上記熱可塑性樹脂は、250℃における引張弾性率が0.6×10〜10×10Paであり、0.6×10〜4.0×10Paであることが好ましく、0.8×10〜3.5×10Paであることがさらに好ましい。かかる引張弾性率を有することにより、より高温の過酷環境下においても強固な固着力を発現することができる。なお、「250℃における引張弾性率」は、後述の実施例の項に記載の方法で測定することができる。
かつ、接着層13、23を構成する上記熱可塑性樹脂にはアミノ基を2個以上持つ物質を接着層表面に有する。具体的には、接着層13、23を形成する熱可塑性樹脂を冷却した後、例えばスプレーにてこのアミノ基を持つ物質を接着層表面に分散させる。このアミノ基を2個以上持つ物質としては、4,4’−ジアミノジフェニルエーテル、1,4−ブタンジアミン、1,6−ヘキサンジアミンおよび1,10−デカンジアミンが挙げられる。アミノ基を持つ物質は、接着層13に対して3〜15質量%、好ましくは3〜12質量%、より好ましくは4〜10質量%含まれる。アミノ基を持つ物質が多すぎると接着の持続性が弱くなり、少なすぎると接着の為の反応が弱くなる。
【0029】
接着層13、23を構成する熱可塑性樹脂は上記の物性を有すれば特に制限されず、例えば、ポリエーテルイミド(PEI)、ポリカーボネイト(PC)、ポリスルホン(PSU)、ポリフェニルスルホン(PPSU)、およびポリエーテルスルホン(PES)から選ばれる少なくとも1種の樹脂を用いることができ、ポリエーテルイミド(PEI)、ポリカーボネイト(PC)、およびポリスルホン(PSU)から選ばれる少なくとも1種を用いることが好ましい。また、これらの樹脂のブレンド樹脂を用いることも好ましい。
接着層13、23を構成しうる熱可塑性樹脂にアミノ基を2個以上持つ物質としてジアミン化合物を分散させると、接着の際に行う加熱によって熱可塑性樹脂(例えば、ポリエーテルイミド)がジアミン化合物のアミノ基によって架橋反応を起こす。これによって、接着層13、23の接着力が増す。
また、接着層13、23を構成しうるポリカーボネイト、ポリスルホン等も、架橋反応起こすことによって、接着層13、23の接着力が増す。
これによって、強固な接着力を有する状態で接着を行うことができる。
上記接着層13、23を構成する熱可塑性樹脂中、ポリエーテルイミド、ポリカーボネイト、およびポリスルホンの含有量は、合計で50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。
【0030】
接着層13、23の厚さは特に限定されず、十分な固着力とコイルの高密度化(占積率)を両立する観点から2〜200μmであり、好ましくは5〜200μmである。接着層の厚さが厚すぎると曲げ加工時に亀裂が発生する場合があり、薄すぎると接着性が低下することになる。
接着層13、23を構成する熱可塑性樹脂は、多孔質になったものを用いてもよい。製造方法は、多孔質になる方法であれば特に限定されない。例えば、加熱等の工程を含む方法が挙げられる。多孔質であることにより密着性が向上する効果が得られる。
【0031】
<フィルム層15、25>
フィルム層15、25は、例えばハイブリッド車の駆動用モータを構成するステータコイル周りに、丸線や平角線からなる巻線を巻きコイルを形成する工程において使用する絶縁紙と同等の役割を果たすことが求められる。このため、絶縁性に優れ、かつ耐熱性に優れることが求められる。例えば、フィルム層15、25は、ポリエーテルイミド(PEI)、ポリカーボネイト(PC)およびポリスルホン(PSU)から選ばれる少なくとも1種の樹脂を用いることができる。また、これらの樹脂のブレンド樹脂を用いることも好ましい。フィルム層15、25は、例えば、導体上に絶縁層および接着層を形成した絶縁電線の通線中に、所定幅のフィルム層を外周に複数回、巻回し、層として形成される。フィルム層15の層の厚さは、10〜200μmであり、好ましくは50〜180μm程度である。フィルム層の厚さが厚すぎると占積率(導体の占める割合)からの観点から不利となり、薄すぎると曲げ加工時に破断する。
フィルム層15、25は、接着のための加熱処理の際に、接着層13、23とともに加熱され、接着層13、23表面に分散されたアミノ基を2個以上持つ物質と反応して、接着力を発現する。この反応は、接着層13、23とアミノ基を持つ物質との反応と同様である。
【0032】
<絶縁層22B>
本発明において、図1に示した構成を有する絶縁電線1は、絶縁層12と接着層13との間に熱可塑性樹脂からなる絶縁層を配し、図2に示した構成を有してもよい。すなわち、絶縁層が絶縁層22Aと絶縁層22Bの2層で構成されている。
【0033】
絶縁層22Bを構成する熱可塑性樹脂は特に制限されない。絶縁層22Bを構成する熱可塑性樹脂としては、例えば、押出成形可能な熱可塑性樹脂を用いる。この点で、熱可塑性樹脂は、融点が250℃以上、好ましくは270℃以上、さらに好ましくは300℃以上のものが好ましい。この融点は示差走査熱量分析(DSC)により測定することができる。
さらに絶縁層22Bは、部分放電開始電圧をより一層高くできる点で、比誘電率が4.5以下であり、好ましくは4.0以下であり、さらに好ましくは3.8以下であることが好ましい。この比誘電率は市販の誘電率測定装置で測定することができる。測定温度、周波数については、必要に応じて変更するものである。本明細書においては、特に記載の無い限り、25℃、50Hzにおいて測定した値である。
【0034】
上記押出成形可能な比誘電率が4.5以下の熱可塑性樹脂としては、ポリエーテルエーテルケトン、変性ポリエーテルエーテルケトン、熱可塑性ポリイミド、等が挙げられる。
上記絶縁層22Bには、融点が270℃以上450℃以下で、比誘電率が4.5以下である熱可塑性樹脂を用いることが特に好ましい。例えば、ポリエーテルエーテルケトン(PEEK:融点343℃、比誘電率3.2)、熱可塑性ポリイミド(TPI:融点388℃、比誘電率3.2)、変性ポリエーテルエーテルケトン(変性PEEK:融点345℃、比誘電率3.2)が挙げられる。この他には、ポリアリールエーテルケトン(PAEK:融点343℃、比誘電率3.2)、ポリフェニレンサルファイド(PPS:融点280℃、比誘電率3.5)、等が挙げられる。好ましくは、PEEK、PPS、変性PEEKから選ばれる少なくとも1種の樹脂が用いられる。
絶縁層22Bに用いる熱可塑性樹脂は1種単独でもよく、2種以上を用いてもよい。2種以上混合の場合で融点が2種類以上存在する場合は270℃以上の融点を有する樹脂を含めるとよい。
【0035】
[絶縁電線の製造方法]
本発明の絶縁電線は、導体の外周面に、絶縁層と接着層とを被覆することで形成される。また接着層の外周面にフィルム層を被覆することで形成される。
上記絶縁層および接着層を押出成形する際の押出温度条件は、用いる熱可塑性樹脂に応じて適宜に設定される。好ましい押出温度の一例を挙げると、具体的には、押出被覆に適した溶融粘度にするために融点よりも約40℃から60℃高い温度に押出温度を設定する。このように、温度設定された押出成形によって熱可塑性樹脂の絶縁層および接着層を形成する。この場合、製造工程にて絶縁層や接着層を形成する際に焼付炉を通す必要がないため、絶縁層や接着層の厚さを厚くできるという利点がある。
【0036】
フィルム層15、25の形成方法は特に限定されないが、絶縁層12、22と接着層13の形成後に、通線しながら、フィルム巻用設備を用いて通線方向を軸としてらせん状に複数層、フィルムを巻き付けることにより、フィルム層として形成することができる。
したがって、絶縁電線1,2は、絶縁層22B、接着層13、23のいずれも押出成形によって形成することができるため、ワニスを調製して用いる必要がない。このため、溶剤を用いることなく形成することができるため、環境に優しく製造することができる。
【0037】
また、図3に示すように、絶縁電線2が複数層に積層されていてもよい。絶縁電線2が積層された構成では、フィルム層25は、積層された絶縁電線の最外周に形成されている。すなわち、フィルム層25が、各絶縁電線2を積層した状態の最外周(接着層23表面)に形成されていて、絶縁電線2間には形成されていない構成であってもよい。図示はしていないが、絶縁電線1も絶縁電線2と同様の構成で積層することが可能である。
【0038】
[コイルおよび電気・電子機器]
本発明の絶縁電線は、コイルとして、各種電気・電子機器など、電気特性(耐電圧性)や耐熱性を必要とする分野に利用可能である。例えば、本発明の絶縁電線はモータやトランス等に用いられ、高性能の電気・電子機器を構成できる。特にハイブリッドカー(HV)および電気自動車(EV)の駆動モータ用の巻線として好適に用いられる。このように、本発明によれば、本発明の絶縁電線を用いたコイル、そのコイルを用いた電気・電子機器、特にHVやEVの駆動モータを提供できる。また、本発明の絶縁電線は、導体に超電導体を用いることによって、超電導用コイルに用いることができる。この絶縁電線を用いた超電導用コイルは、例えば、超電導磁石として好適に用いることができ、超電導リニアモーターを提供できる。
【0039】
本発明のコイルは、各種電気・電子機器に適した形態を有していればよく、本発明の絶縁電線をコイル加工して形成したもの、本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるもの等が挙げられる。
本発明の絶縁電線をコイル加工して形成したコイルとしては、特に限定されず、長尺の絶縁電線を螺旋状に巻き回したものが挙げられる。このようなコイルにおいて、絶縁電線の巻線数等は特に限定されない。通常、絶縁電線を巻き回す際には鉄芯等が用いられる。
【0040】
例えば、図4に示すように、コア41に形成された溝42内に絶縁電線1または2(図面には絶縁電線2を示した)を複数回巻いて、コイル40が形成されている。コイル40は、巻線後に加熱処理を行って、絶縁電線2の接続層23およびフィルム層25を溶融させて、絶縁電線2同士、および絶縁電線2を溝42の内壁を構成するコア41に融着させる。加熱処理は、接着層の種類にもよるが、180〜200℃、20〜30分行う。このようにして、ワニスを用いることなく、溝42内に絶縁電線2を固定することができる。
【0041】
絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるものとして、回転電機等のステータに用いられるコイルが挙げられる。このようなコイルは、例えば、図6に示されるように、図1図2に示す構成を有する本発明の絶縁電線を所定の長さに切断してU字形状等に曲げ加工して複数の電線セグメント54を作製する。そして、各電線セグメント54のU字形状等の2つの開放端部(末端)54aを互い違いに接続してなるコイル53(図5参照)が挙げられる。本発明の絶縁電線を用いた場合、コイル53を、例えば170℃以上の温度に加熱することにより、接着層13とスロット52とをフィルム層15を介して固着することができ、コイルが固定化される。例えば、巻き線後に紛体塗装が行われるが、この紛体塗装時の加熱によって、絶縁電線の融着を行うことができる。このように、他工程の加熱工程を利用して融着が行えるので、工程数の削減が図れる。また、本発明の絶縁電線で形成したコイルの固定にワニスを用いる必要がない。このため、紛体塗装後のワニスの塗布、昇温、ワニスの硬化の各工程を省略することが可能になる。よって、さらに工程数が削減され、製造コストが削減される。
【0042】
このコイルを用いてなる電気・電子機器としては、特に限定されない。このような電気・電子機器の好ましい一態様として、例えば、図5に示されるステータ50を備えた回転電機(特にHVおよびEVの駆動モータ)が挙げられる。この回転電機は、ステータ50を備えていること以外は、従来の回転電機と同様の構成とすることができる。
ステータ50は、電線セグメント54が本発明の絶縁電線で形成されていること以外は従来のステータと同様の構成とすることができる。すなわち、ステータ50は、図5に示されるように、ステータコア51と、コイル53とを有している。コイル53は、例えば図6に示されるように、図1または図2に示した構成を有する本発明の絶縁電線からなる電線セグメント54がステータコア51のスロット52に組み込まれ、開放端部54aが電気的に接続されてなる。ここで、電線セグメント54は、スロット52に1本で組み込まれてもよいが、好ましくは図6に示したように2本一組として組み込まれる。このステータ50は、上記のように曲げ加工した電線セグメント54を、その2つの末端である開放端部54aを互い違いに接続してなるコイル53が、ステータコア51のスロット52に収納されている。このとき、電線セグメント54の開放端部54aを接続してからスロット52に収納してもよく、また、絶縁セグメント54をスロット52に収納した後に、電線セグメント54の開放端部54aを折り曲げ加工して接続してもよい。
本発明の絶縁電線は、断面形状が矩形の導体を用いているため、例えば、ステータコアのスロット断面積に対する導体の断面積の比率(占積率)を高めることができ、電気・電子機器の特性を向上させることができる。
【0043】
以下に、本発明を実施例に基づいて、さらに詳細に説明するが、本発明をこれらに限定されない。
【実施例】
【0044】
[実施例、比較例]
<実施例1>
図2に示す構造を有する実施例1の絶縁電線を製造した。
<導体11>
導体11として、断面平角(長辺3.2mm×短辺2.4mmで、四隅の面取りの曲率半径r=0.3mm)の平角導体(酸素含有量15ppmの銅)を用いた。
【0045】
<絶縁層22A>
ポリアミドイミド(PAI)ワニスを導体に接する最も内側の熱硬化性樹脂層の断面の外形の形状が図1に示す断面形状と相似形のダイスを使用して、導体の表面に塗布した。PAIワニスは、N−メチル2−ピロリドンにPAIを溶解したものである。そして450℃に設定した炉長8mの焼付け炉内を通過時間15秒となる速度で通過させた。この一回の焼付け工程で平均厚さ5μmの層を形成した。これを繰り返し8回行うことで厚さ40μmの絶縁層22A(下表1における絶縁層(A))を形成した。
【0046】
<絶縁層22B>
押出機のスクリューは、30mmフルフライト、L/D=25、圧縮比3を用いた。材料はポリエーテルエーテルケトン(PEEK)(ビクトレックスジャパン社製、商品名:450G、比誘電率3.2)を用い、押出温度条件は次のようにした。
(押出温度条件)
C1:260℃
C2:300℃
C3:380℃
H :380℃
D :380℃
押出ダイを用いてPEEKの押出被覆を行った後、2秒の時間を空けて水冷して導体11の外側に厚さ160μmの絶縁層22B(下表1における絶縁層(B))を形成した。
【0047】
<接着層13>
押出機のスクリューは、30mmフルフライト、L/D=25、圧縮比3を用いた。材料は、ポリエーテルイミド(PEI)(サビック社製、商品名:ウルテム1000、比誘電率3.2)を用い、押出温度条件は次のようにした。
(押出温度条件)
C1:260℃
C2:300℃
C3:300℃
H :360℃
D :360℃
押出ダイを用いてPEEKの押出被覆を行った後、2秒の時間を空けて水冷して絶縁層22Bの外側に厚さ50μmの接着層23(下表1における接続層(C))を形成した。
そして、接着層13、23を形成する熱可塑性樹脂を冷却させた後、例えばスプレーにて、接着層13、23表面に、アミノ基を持つ物質として4,4’−ジアミノジフェニルエーテルを、接着層13、23に対する質量比が8質量%となるように分散させた。
【0048】
<フィルム層15>
フィルム層15には厚さ100μmのポリカーボネイト(PC)フィルム(住化スタイロンポリカーボネート社製、商品名:ガリバー300)を用いた。このフィルムを通線しながら、フィルム巻用設備を用いて通線方向を軸としてらせん状に複数層、フィルムを巻き付けることにより、アミノ基を持つ物質が分散された接着層13の表面に厚さ150μmのフィルム層15を形成した。
【0049】
<実施例2〜10、比較例1〜5>
各層を形成する樹脂の種類と各層厚を下表1に示す通りに変更したこと以外は、上記実施例1と同様にして、下表に示す実施例2〜5、10(図2に示した絶縁電線)、6〜9(図1に示した絶縁電線)を得た。また、比較例1〜5の絶縁電線を得た。
なお、下表1おいて、「−」は層を設けなかったこと等を意味する。
【0050】
<測定、評価>
(1)接着層を構成する樹脂の250℃における引張弾性率
表1に記載の接着層(A)および(B)に使用する熱可塑性樹脂について、厚さ1.6mmのダンベル片(ASTM D 638)を準備し、動的粘弾性測定装置(商品名:DMA8000、パーキンエルマー社製)を用いて引張弾性率を測定した。引張モードにより、1Hzで、10℃/分の昇温速度で50〜270℃まで昇温しながら引張弾性率を測定し、250℃における引張弾性率を得た。
【0051】
(2)高温雰囲気中(200℃)における固着力(高温固着力)
フィルム層を形成する前の層構成を有する電線2本(各実施例、各比較例において)を重ね合せた2本の絶縁電線を用いて、下記固着力試験により、密着力を評価した。
重ね合せた長さを200mmとし、200℃、30分加熱処理することで2本の絶縁電線を固着させた。この電線を恒温槽付引張試験機(島津製作所社製、商品名:オートグラフ AGS−J、恒温槽温度:200℃)にセットし、50mm/minの引張速度で重ね合せた電線の両端を互いに反対方向に引っ張った。2本の電線の固着状態を破断するのに要した強度を固着力とし、下記基準により評価した。
固着力が2.0MPa以上を「A」、固着力が0.5MPa以上2.0MPa未満を「B」、固着力が0.5MPa未満を「C」とした。本試験において、評価は「B」以上が合格レベルであり、「A」は特に優れたレベルである。
【0052】
(3)電気特性(部分放電開始電圧(PDIV))試験
製造した各絶縁電線の部分放電開始電圧の測定には、部分放電試験機(菊水電子工業社製、商品名:KPD2050)を用いた。
各絶縁電線を、2本の絶縁のフラット面同士を長さ150mmに亘って隙間がないように密着させた試験試料を作製した。この試験試料の2本の導体間に電極をつなぎ、温度25℃にて、50Hzの交流電圧かけながら連続的に昇圧し、10pCの部分放電が発生した時点の電圧をピーク電圧(Vp)で読み取った。ここで、「フラット面」とは、平角形状の絶縁電線の断面形状において、長辺(図1および図2において左右方向に沿う辺)が軸線方向に連続して形成する面をいう。したがって、上記試験試料は、例えば、図1に示した絶縁電線1の上方または下方に別の絶縁電線1を重ねた状態になっている。
ピーク電圧が、1000(Vp)以上であった場合を「A」とし、700(Vp)以上1000(Vp)未満であった場合を「B」とし、700(Vp)未満であった場合を「C」とした。本試験において、評価は「B」以上が合格レベルであり、「A」は特に優れたレベルである。
【0053】
(4)曲げ加工性試験(密着性試験)
絶縁電線における導体と樹脂層との密着性を、下記曲げ加工性試験により、評価した。
製造した各絶縁電線から長さ300mmの直状試験片を切り出した。この直状試験片のエッジ面の樹脂層(A)の中央部に、専用冶具を用いて、長手方向と垂直方向との2方向それぞれに、深さ約5μmで長さ2μmのキズ(切り込み)をつけた(このとき、樹脂層(A)と導体とは密着しており、剥離していない)。ここで、エッジ面とは、平角形状の絶縁電線の断面形状において、短辺(厚さ、図1および図2において上下方向に沿う辺)が軸線方向に連続して形成する面をいう。したがって、上記キズは、図1に示される絶縁電線1の左右側面のいずれか一方の側面に、設けられている。
このキズを頂点として、直径1.0mmの鉄芯を軸として直状試験片を180°(U字状)に曲げ、この状態を5分間維持した。直状試験片の頂点付近に発生する導体と樹脂層(A)との剥離の進行を目視で観察した。
本試験において、樹脂層(A)に形成した、いずれのキズも拡張せず、樹脂層(A)が導体から剥離していなかった場合を合格:「A」とした。また樹脂層(A)に形成したキズの少なくとも1本が拡張して、樹脂層(A)の全体が導体等から剥離した場合を不合格:「C」とした。
【0054】
上記の結果を下記表1にまとめて示す。下表に記載の樹脂の詳細は下記の通りである。
PAI:ポリアミドイミド(商品名:HI406、日立化成社製、樹脂をワニス化した後、焼付塗布して層を形成)
PI:ポリイミド(商品名:UイミドAR、ユニチカ社製、樹脂をワニス化した後、焼付塗布して層を形成)
PEEK:ポリエーテルエーテルケトン(商品名:キータスパイアKT−820、ソルベイスペシャルティポリマーズ社製、樹脂を溶融させた後、押出被覆して層を形成)
PC:ポリカーボネイト(商品名:ガリバー300、住化スタイロンポリカーボネート社製、樹脂を溶融させた後、押出被覆して層を形成)
PSU:ポリスルホン(商品名:ユーデルP3703、ソルベイスペシャルティポリマーズ社製、樹脂を溶融させた後、押出被覆して層を形成)
PPSU:ポリフェニルスルホン(商品名:レーデルR5800、ソルベイスペシャルティポリマーズ社製、樹脂を溶融させた後、押出被覆して層を形成)
PES:ポリエーテルスルホン(商品名:スミカエクセル4800G、住友化学社製、樹脂を溶融させた後、押出被覆して層を形成)
PEI:ポリエーテルイミド(商品名:ウルテム1000、サビック社製、樹脂を溶融させた後、押出被覆して層を形成)
エポキシ樹脂:ビスフェノールA型エポキシ樹脂(商品名:1004、三菱化学社製、使用時にメチルエチルケトン(MEK)を用いてワニス化)
PET:ポリエチレンテレフタレート(商品名:TR8550、帝人社製、樹脂を溶融させた後、押出被覆して層を形成)
【0055】
【表1】
【0056】
<表の注>
絶縁層(A):導体の外周面上に形成された絶縁層
絶縁層(B):絶縁層(A)の外周面上に形成された絶縁層
接着層(C):絶縁層(A)または絶縁層(B)の外周面上に形成された接着層
厚さ:単位はμm
質量比:接着層に対するアミノ基を持つ物質の質量割合
弾性率:250℃における引張弾性率
【0057】
表1から明らかなように、本発明の規定を満たす実施例1〜10の絶縁電線は、200℃において他の部材に対して強固な接着力で固着しており、付加絶縁層を有さずに、曲げ部の部分放電開始電圧(PDIV)が高く、曲げ加工性および耐熱性に優れることがわかる。なお、曲げ加工性に優れることから、ステータコアのスロット内に絶縁電線を挿入する際にフィルム層のズレが生じないことがわかる。
さらに、実施例1〜10の絶縁電線は、接着層を押出成形で作製されることから、ワニスを用いることがないため、溶剤を使用することがない。このため、安全で環境に優しい製造工程になる。
【0058】
比較例1の絶縁電線は、接着層およびフィルム層を有さないため、200℃における固着力が不合格であった。なお、フィルム層を有さないことから曲げ加工試験は行わなかった。比較例2および3の絶縁電線は、接着層を有さないため、200℃における固着力および曲げ加工性が不合格であった。比較例4の絶縁電線は、接着層を構成する樹脂の250℃における引張弾性率が、本発明の規定の範囲外であるため、200℃における固着力が不合格であった。比較例5の絶縁電線は、接着層を構成する樹脂が融点を持つため、曲げ加工性が不合格であった。
【0059】
本発明をその実施形態および実施例とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
【0060】
本願は、2016年9月13日に日本国で特許出願された特願2016−179039に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
【符号の説明】
【0061】
1、2 絶縁電線
11、21 導体
12、22、22A、22B 絶縁層
13、23 接着層
14、24 樹脂被覆層
15、25 フィルム層
40 コイル
41 コア
42 溝
50 ステータ
51 ステータコア
52 スロット
53 コイル
54 電線セグメント
54a 開放端部
図1
図2
図3
図4
図5
図6