(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【0006】
本発明の目的は、低粘着性材料が頂点にわたって浸透するリスクなしにカナルが該材料で充填されることができるようにカナルを閉鎖するための方法を提供することである。
【0007】
本発明の更なる目的は、レーザビームによる、円周方向に閉鎖されたカナルの洗浄のための方法および装置を提供することである。これに関連して、一方では、カナルが損傷されないことが保証されなければならない。他方では、人がレーザビームによる危険にさらされないことも保証されなければならない。本発明の別の態様は、簡単な方法でカナルの洗浄が行われ得るという可能性を提供し、手順は、エラーを回避することに役立つ。本発明の別の態様は、洗浄として処置が行われるコンパクトなユニットを提供することである。
【0008】
装置は、特に、誤った処置の危険を冒すことなくその使用を可能にするべきである。それは、自動化されたカナル洗浄およびカナル処置の可能性を提供するべきである。
【0009】
1つまたは複数の態様を解決するために、本発明は、閉鎖要素を提供しており、該閉鎖要素はレーザビームを導く光ガイドの一方の自由端に固定され、閉鎖要素を有する光ガイドがカナル内に導入され、閉鎖要素が密封されるべきカナルの領域内に位置決めされ、閉鎖要素の位置決め後、エネルギーが導入され、閉鎖要素が溶融および/または軟化し、カナル内のこの位置に残存し、それをしっかりと密封することが提供される。
【0010】
さらなる独立した提案によれば、閉鎖要素が、光ガイドを通って伝送されるレーザ放射によって、または電気エネルギーによって溶融されることが提供される。
【0011】
さらなる独立した提案によれば、閉鎖要素が、その溶融温度T1が閉鎖要素の材料の溶融温度T2よりも高い接続材料によって光ガイドの自由端に接続されることが提供される。
【0012】
さらなる独立した提案によれば、特にその開口部におけるカナルの密封後、閉鎖材料がカナル内に導入され、閉鎖材料内の光ガイドが、レーザビームが導入されるのと同時に、カナルの長手方向軸方向に移動されることが提供される。
【0013】
さらなる独立した提案によれば、レーザ放射を介して閉鎖材料に導入されるエネルギーの機械的効果が、導入された熱エネルギーのマクロ的な効果よりも大きいことが提供される。
【0014】
さらなる独立した提案によれば、熱エネルギーの導入によって溶融および/または発泡し、冷却後に閉鎖気孔カナルシールを形成する密封材料が使用され、特に、ガッタパーチャ材料(gutta percha material)によって覆われた炭酸水素ナトリウムが密封材料として使用されることが提供される。
【0015】
さらなる独立した提案によれば、体積が膨張するように互いに反応する第1の成分と第2の成分とを備える材料が密封材料として使用されることが提供される。
【0016】
さらなる独立した提案によれば、特に体積散乱コア材料と、それを覆う膨張材料とを備える材料が閉鎖要素として使用されることが提供される。
【0017】
さらなる独立した提案によれば、Er:YAGレーザ、Er:YSGGレーザ、またはCTEレーザがレーザとして使用されることが提供される。
【0018】
さらなる独立した提案によれば、レーザが、5μsと1000μsとの間、好ましくは25μsと400μsとの間、特に好ましくは50μsと200μsとの間のパルス持続時間で動作されることが提供される。
【0019】
さらなる独立した提案によれば、0.5mJと50mJとの間、特に、1mJと10mJとの間の光ガイドから出るパルスエネルギーを有するレーザビームが使用されることが提供される。
【0020】
独立した解決策によれば、本発明は、レーザビームを導く光ガイドによる、円周方向に閉じたカナルの洗浄のための方法を提供し、光ガイドへのレーザビームの進入は、光ガイドの自由端がカナルの外側にあるときに妨げられ、ならびに/または、カナル内の光ガイドの動きが監視され、動きが存在しないか、もしくは動きがしきい値未満である場合、信号がトリガされ、および/もしくは、レーザ放射がオフにされ、もしくはその出力が低減される。
【0021】
問題を解決するための独立した提案は、カナル内の光ガイドの自由端の位置がチェックおよび/または監視されることを提供する。
【0022】
さらなる独立した提案によれば、カナルの内側に存在する材料が、レーザ誘起流体力学的流体運動(laser-induced hydrodynamic fluid movement)によって除去されることが提供される。
【0023】
さらなる独立した提案によれば、光ガイドがカナルの内側にあるかまたはカナルの外側にあるのかの検証が、
a)光ガイドを囲む領域から得られる光ガイドによって受け取られる放射線、および/または、
b)光ガイドの端部において反射される放射線の変化する反射成分によって、および/または、
c)光ガイドの外側の金属化によるインピーダンスの変化の測定
によって行われることが提供される。
【0024】
さらなる独立した提案によれば、光ガイドの位置決めが、特に、ステップa)+b)またはa)+c)またはb)+c)によって、特に好ましくはa)+b)+c)によって冗長に検証されることが提供される。
【0025】
本発明の主題はまた、レーザ放射源と、レーザビームを導く光ガイドと、ハンドピースとを備える装置であり、ハンドピースが、少なくともレーザビームおよび流体がハンドピースに供給され得る送達デバイスに取外し可能に、好ましくは回転可能に接続され、ならびに、開口側が光ガイドの領域内に延在する第1のラインが流体を導き、レーザビームがハンドピースに取外し可能に接続された光ガイドを介してカナル内に向けられることを提供する。
【0026】
本発明によるさらなる提案は、ハンドピースが、そこからラインが出て、その開口部が光ガイド側に延在する少なくとも1つの洗浄液コンテナに接続されるか、またはそのようなコンテナを有することを提供する。
【0027】
本発明によるさらなる提案は、洗浄液コンテナがハンドピースから取り外され得るか、またはハンドピースに差し込まれ得るように、洗浄液コンテナがハンドピースに接続されることを提供する。
【0028】
本発明によるさらなる提案は、デバイスが、歯科用タービンコネクタによって提供される歯科用椅子の圧縮空気によって加圧された、異なる(減菌水および/またはNaOClおよび/またはEDTAおよび/またはPDT流体のような)洗浄液のための交換可能な使い捨てコンテナをさらに有することを提供する。
【0029】
本発明によるさらなる提案は、洗浄液コンテナには、マイクロコントローラによって制御される電磁気的に作動可能な弁によって制御され得る閉鎖可能な出口開口部が設けられることを提供する。
【0030】
本発明によるさらなる提案は、電磁弁が、磁気コイルを有する励起部分と、ハンドピース内の強磁性コア、およびコンテナ内の出口弁の一部としての弁オープナとしての強磁性材料の部分とに分離されることを提供する。
【0031】
本発明によるさらなる提案は、可撓性の膜またはピストンが流体を空気入口から分離することを提供する。
【0032】
本発明によるさらなる提案は、光ガイドがその外面上に金属皮膜を有することを提供する。
【0033】
本発明によるさらなる提案は、光ガイドがその外面上に、互いに対して電気的に絶縁された2つの領域を有する金属皮膜を有することを提供する。
【0034】
本発明によるさらなる提案は、互いに絶縁された領域が少なくとも光ガイドの先端において櫛状に互いに絡み合うことを提供する。
【0035】
本発明によるさらなる提案は、金属皮膜が光ガイドの少なくとも前部1/3にわたって疎水性特性を有することを提供する。
【0036】
本発明によるさらなる提案は、運動センサがハンドピースに一体化されることを提供する。
【0037】
本発明によるさらなる提案は、送達システムに対するハンドピースの回転の認識のために、運動センサおよび回転エンコーダがハンドピースに一体化されることを提供する。
【0038】
本発明によるさらなる提案は、送達デバイスとハンドピースとの間の光ガイドが、好ましくは2.69μmと2.94μmとの間の波長範囲における、ならびに、特に加えて、400nmと1000nmとの間の波長範囲における、50mJまでの、および/または5Wの平均レーザ出力のレーザパルスを伝導する、特にGeO、サファイア、またはZrF
4の材料で作られることを提供する。
【0039】
本発明によるさらなる提案は、カナルに導入されるべき光ガイドが、好ましくは2.69μmと2.94μmとの間の波長範囲における、ならびに、特に加えて、400nmと1000nmとの間の波長範囲における、50mJまでの、および/または5Wの平均レーザ出力のレーザパルスを伝導する、特にOH還元シリカ、またはサファイアの材料で作られることを提供する。
【0040】
本発明によるさらなる提案は、光ガイドの光伝導コアの直径が、150μmと600μmとの間、特に180μmと250μmとの間にあり、光ガイドが、好ましくは、その外側に保護層を有することを提供する。
【0041】
本発明によるさらなる提案は、光ガイドが、200μmと300μmとの間の外径、および/または25mmと40mmとの間の長さを有することを提供する。
【0042】
本発明によるさらなる提案は、レーザが、特に、5μsと1000μsとの間、好ましくは25μs〜400μsの範囲内、特に好ましくは50μs〜200μsのパルス持続時間、および/または、0.5mJと50mJとの間、特に1mJと10mJとの間のパルスエネルギー、および/または、50Hz〜2000Hzの範囲内、特に50Hz〜800Hzのパルス繰り返し率で、0.5Wと10Wとの間、特に1Wと3Wとの間の平均出力を有する、ダイオードポンプ式のEr:YAGレーザ、Er:YSGGレーザ、またはCTEレーザであることを提供する。
【0043】
本発明によるさらなる提案は、装置には、タッチスクリーンを有する制御デバイスと、装置が水および/または圧縮空気を供給され得る供給デバイス、特に医療用のものに接続されたレーザを囲むハウジングとが設けられることを提供する。
【0044】
蒸気泡を生成するためにレーザを使用すること、および急速な流体運動を生成することは、小さい器具のカナルの洗浄を著しく改善することができる。もちろん、しばしば、ポリマーおよびプラスチックで作られるカナルの内面を損傷しないことが重要である。したがって、カナル壁の材料のアブレーションしきい値未満の低いパルスエネルギーを有するレーザが必要とされる。ダイオードポンプ式のEr:YAGレーザは、パルス繰り返し率が従来のフラッシュランプポンプ式のレーザシステムよりもはるかに高くあり得、パルスあたりの低いパルスエネルギーを補償することができるので、この目的のために理想的である。
【0045】
作業カナル内の細菌を死滅させることは、上記の明細書で説明されているように過渡的熱パルスを使用することによって強化され得、200〜800Hzパルス繰り返し率を有する0.5Wのオーダにおける低出力Er:YAGレーザ放射は、細菌を死滅させ、カナル壁の材料のベース温度を融点または破壊しきい値未満に保つための100℃を十分上回るカナル壁における過渡局所ピーク温度に達するのに完全に十分である。
【0046】
1つの位置に留まることは、敏感なカナル壁の局所的な過熱を引き起こす可能性があるので、洗浄ファイバで1つの位置に留まらないことが重要である。したがって、ファイバの運動検出は、この洗浄アプリケーションにおける追加の安全機能である。
【0047】
レーザの安全性の理由のため、洗浄ファイバがカナルに導入される前にレーザ放射を回避することがさらに役立つ。したがって、「カナル内のファイバの検出」には、本明細書の他の箇所に記載されている詳細が提供される。
【0048】
加えて、PDT(光線力学療法)プロトコルが、カナル内に適用されるメチレンブルーまたはトルイジンブルーのような流体を使用して適用され得、適切な光が、カナル内を通過する光に結合される。メチレンブルーについて、約150mWの670nmが必要とされ、トルイジンブルーについて、約100mWの635nmが必要とされる。従来のPDT手順を上回る利点は、レーザエネルギーによってPDT流体を撹拌し、蒸気泡、隣接する流体の運動を急速に誘発し、PDT流体を加熱するための、Er:YAG/Er:YSGGレーザエネルギーの同時送達である。これは、細菌および破片との流体のはるかにより激しい接触を可能にする。
【0049】
さらに、根管洗浄の例を用いて本明細書において説明されているように、カナル内の残存細菌を検出することによって、洗浄手順が成功したかどうかを知ることは、有用である。
【0050】
もちろん、これは、この洗浄技術の唯一の用途ではない。多くのバイオテクノロジー手順/バイオリアクタは、提案された手順およびデバイスを用いて洗浄され得る小さいカナル内の細菌、藻類、破片の堆積によって危険にさらされている。
【0051】
そしてもちろん、直径1mmを超えるより大きいカナルは、同様にこの手順を用いて洗浄され得るが、より大きいレーザパルスエネルギーと、たとえば、アレイまたはリング構造において配置された複数の洗浄ファイバを必要とし、必要とされるパルスエネルギーは、そのときは、n×0.1〜50mJのオーダであり、ここで、nは、単一の洗浄ファイバの数である。
【0052】
より長いカナルを洗浄する場合、カナル内に導入される末端ファイバは、OH還元シリカよりも良好な透過率を有さなければならない。その場合、サファイアは、理想的な候補材料である。
【発明を実施するための形態】
【0054】
以下では、本発明が、カナルの洗浄に基づいて説明され、そのようなカナルは、根管であるが、本発明を限定しない。むしろ、本発明による教示は、導入部において説明されているように、小さい直径を有する特定のカナルが、たとえば、医療用器具の場合のように、洗浄および/または閉鎖されるべきすべての場合において適用され得る。
【0055】
従来の根管治療の場合、髄室が開かれ、歯髄組織が除去され、根管の円錐形状が達成されるまで、根管が機械的やすりを用いて拡大される。カナルは、シリンジを介して洗浄液で、手動でフラッシングされる。次いで、カナルは、シーラーを充填され、密度が高い根管充填を達成するために、円錐形のガッタパーチャポイントが塞がれ、カナル内に凝縮される。
【0056】
この手順について、カナルを充填するガッタパーチャポイントの円錐形状と一致するカナルの円錐形状を形成するために、カナルの拡張が必要である。材料の損失は、歯を弱め、手順は、時間がかかり、オーバインスツルメンテーションおよびやすり破折の危険を生じる。成功率は、誰が治療をしているかに応じて70%未満から95%までの範囲である。
【0057】
より簡単で、時間がかからず、技量に敏感でない手順は、平均成功率を上げ、患者にとっての快適性を高めるのに役立つことができる。
【0058】
根管を拡張しない手順は、上述の欠点を回避する。しかしながら、それは、新たな課題を引き起こす。カナルを拡張しないことは、洞窟のような不規則な形状の根管を生じる。したがって、円錐形状のガッタパーチャポイントは、そのような不定形の根管内に挿入され得ないので、従来の根管洗浄および充填は、不可能である。新しい充填技術が必要とされる。
【0059】
レーザ支援根管手順は、すでに機械的やすりを用いて典型的には40番以上のサイズまで円錐形状に拡大された根管を浄化するために、レーザエネルギーによって生成された蒸気泡を使用する。蒸気泡の膨張および収縮は、泡の近くにおいて水の運動を引き起こし、それは、次いで、根管壁を浄化する。
【0060】
Fotona、Biolase、およびKaVoは、そのような歯内治療のために使用され得る歯科用レーザシステムを販売するか、または販売している。これらのレーザは、窩洞の穿孔までの幅広い歯科的適用を提供する。これらのデバイスのパルス繰り返し率は、典型的には、50Hzに制限され、それらは、窩洞の形成に必要な1Jまでのパルスエネルギーを提供する。歯内治療のために、50mJ未満のパルスエネルギーは、50Hz以下のパルス繰り返し率との組合せで十分である(Thermal and acoustic problems on root canal treatment with different lasers、T.Ertl、H.Benthin、G.Mu1Ier、SPIE Vol.2327 Medical Applications of Lasers 11(1994);Application of lasers in endodontics、T.Ertl、H.Benthin、B.Majaron、G.Muller、SPIE Vol3192 Medical Applications of Lasers in Dermatology、Ophtalmology、Dentistry and Endoscopy(1997))and the use of conical shape fiber tips(Canal Enlargement by Er:YAG Laser Using aCone−Shaped Irradiation Tip、S.Shoji、H.Hariu、H.Horiuchi、J ENDONTICS VOL.26、No.8.8月 2000年;454−458)。
【0061】
これらの従来のフラッシュランプポンプ式Er:YAG/YSGGレーザは、3%までのエネルギー変換効率を有し、結果として、大電力供給と、流体冷却を有するかさばるデバイスとをもたらす。これは、高い価格と、したがって、非常に限定された数のユーザとにつながる。
【0062】
加えて、これらのレーザは、クラス4のデバイスであり、規制環境は、遵守するために歯科診療においていくらかの努力を必要とする。レーザ安全領域が宣言され、保護されなければならず、レーザ安全管理者が訓練され、指名されなければならず、DDS、アシスタント、および患者は、眼保護ゴーグルを着用する必要がある。
【0063】
実際のレーザ支援歯内治療根管手順は、象牙質のアブレーションしきい値を上回る5〜30mJの範囲内のパルスエネルギーを使用する。したがって、レーザファイバを根管内に突き出すとき、誤った経路(ヴィアファルサ(via falsa))を生成することが可能である。
【0064】
DiVito(Effectiveness of the Erbium:YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation、E.DiVito、O.A.Peters、G.Olivi、Lasers Med Sci(2012)27:273−280)によって提供されるプロトコルにおいて、レーザアプリケータは、髄室内に配置され、根管内に突き出されない。レーザアプリケータを根管内に突き出す必要がなくても、手順は、25番または30番のサイズへの根管の前処理を必要とする。レーザエネルギーは、根管内に部分的に延びる髄室内の流体運動を生成する。この方法のために、ファイバは、カナル内に突き出されてはならない。しかしながら、欠点は、カナルの幾何学的形状に依存して一貫性のない結果であり、25〜30mJの比較的高いパルスエネルギーのために、髄室からの腐食性洗浄液の飛散が、患者の口から出ることさえ観察される場合がある。
【0065】
最近の技術の進歩は、ダイオードポンプ式Er:YAG/YSGGレーザの設計を可能にした。
【0066】
歯内治療のために特別に開発されたダイオードポンプ式Er:YAG/YSGGレーザは、より小さいデバイスとより経済的なソリューションとを提供する。レーザシステムは、Pantecによって開発されたレーザシステムに基づく。 (WO 2010/145802 A1, Bragangna, Heinrich, Pantec Biosolutions AG)主な理由は、電気エネルギーの光エネルギーへの変換の改善された効率である。これは、はるかにより小さい電力供給を使用することと、冷却の努力を減らすこととを可能にする。
【0067】
より高いパルス繰り返し率(50Hzと比較して2000Hzまで)は、パルスエネルギーを象牙質のアブレーションしきい値未満に減少させることを可能にする。これは、歯内治療における重大な合併症である「ヴィアファルサ」(根管壁を歯周組織内に貫通する)の形成を回避するので、重要である。
【0068】
まったく予想外の、50Hzと2000Hzとの間、好ましくは50Hz〜800Hzのパルス繰り返し率と組み合わせた0.8〜4mJの範囲におけるパルスエネルギーは、効果的な洗浄液と組み合わせて、根管の効率的な洗浄を可能にする。低いパルスエネルギーは、治療中の歯の振動を最小限にし、レーザエネルギー密度が象牙質のアブレーションしきい値を下回るので、治療中のレーザファイバによる根管壁の穿孔を回避する。
【0069】
本発明により開示されるデバイスを用いる根管治療のようなカナル治療は、髄室を開き、髄室内の歯髄組織を除去し、カナル入口を探索し、入口をわずかに拡大することによって従来の手順のように始まり、頂点において少なくとも250μmの直径と、同じまたはより小さい直径を有するレーザファイバを頂点近くに突き出すために必要な、より歯冠側でのより大きい直径とを有する経路を作成した25番のサイズまでのやすりサイズを用いる経路探索が続けられる。さらなる経路拡張は、必要とされない。これは、かなりの作業時間を節約し、患者の快適性を向上させる。
【0070】
髄室および根管は、手動でシリンジを用いて、またはデバイスの流体コンテナから自動的に洗浄液で満たされ、レーザファイバは、頂点の1mm前まで根管内に挿入される。
【0071】
2.69〜2.94μmの波長範囲内のレーザ放射は、水を含む流体によって強く吸収され、流体中の気化によって蒸気泡を作成し、根管内の水の流体力学的運動を引き起こす。この流体運動は、カナルを浄化する。レーザは、活性化され、レーザファイバは、根管の上下に移動される。洗浄は、生活歯髄組織および非生活歯髄組織と、細菌と、膿とを除去することと、象牙細管を開くこととからなる。主な洗浄領域は、ファイバ先端の周囲の1〜2mmであり、根管全体におけるいくらか低い効率の「遠距離」洗浄効果が、根管の幾何学的形状と蒸気泡の形成および崩壊によって引き起こされる弾性波との間の相互作用としての共鳴現象によって主に引き起こされる。
【0072】
1つの流体を用いてカナルを洗浄した後、カナルは、カナルから洗浄液を除去するために、慣例的に、ペーパーポイントまたはレーザエネルギー(または両方を組合せ)を用いて乾燥される。加えて、乾燥プロセスをサポートするアプリケータから出る圧縮空気が使用され得る。次いで、オプションでさらなる洗浄液が根管内に連続的に(シリンジを用いて手動で、またはデバイスを用いて自動的に)満たされ、処理が繰り返される。最後に、カナルは、再び乾燥される。
【0073】
可能な洗浄液は、水、NaOCl(3〜10%)、EDTA(10〜17%)、および/またはH
2O
2(3〜30%)、またはそれらの混合物であり得る。
【0074】
Verdaasdonkら(WO2013/049832A2、Biolase inc.、Netchitailo V.、Boutoussov、D.Verdaasdonk、R.M.ら Pressure wave root canal cleaning system)は、気泡を洗浄液に加えることによる、典型的には1パルスあたり5mJよりも大きいレーザエネルギーを用いる洗浄の改善について報告している。
【0075】
Verdaasdonkのものとは対照的に、提案された範囲における低いパルスエネルギーを用いる開示洗浄は、流体が処理前に気泡を含む場合、効率が悪い。最良の結果は、気泡の追加のない、または脱気さえされた流体を用いて得られる。
【0076】
根管が清浄され、十分に乾いていて、細菌がないかどうかを決定するために、根管の清浄度チェックが行われ得る。レーザファイバ内の照明/励起光を根管内に導き、細菌、破片、およびカナル壁からの送られた光を同じファイバを用いて収集して、分光法/蛍光法が使用され得る。これは、レーザ洗浄と同時に行われ得る。細菌は、UV光(たとえば、405nm)を用いて励起されたとき、可視波長範囲(特に、570nm〜650nm)において蛍光サインを発し、または、600nm〜700nmの赤色光を用いて励起されたとき、近赤外範囲(たとえば、750〜880nm)において蛍光サインを発する。象牙質の自己発光は、530nmの周囲の緑色スペクトル領域において強い発光を有するので、可視範囲における励起が好ましい。
【0077】
代替的には、電気インピーダンス分光法がカナル診断のために用いられ得る。
【0078】
根管内の洗浄後に細菌が残っている場合、細菌は、高い繰り返し率のレーザエネルギーを使用する特定の温度処理によって低減され得、および/または、PDT手順が処理に加えられ得る。
【0079】
熱殺菌のための前提条件は、根管表面におけるレーザ放射の強い吸収である。このために現在使用される750nmと980nmとの間の発光波長を有するダイオードレーザは、象牙質における強い吸収を持たず、したがって、歯周組織および根管内部における温度上昇がほぼ等しいので、部分的に理想的ではなく、危険でさえある。
【0080】
たとえば、提案されているダイオードポンプ式Er:YAGレーザデバイスの2.96〜2.94μmの波長は、タスクにはるかによく適合される。
【0081】
したがって、200〜800Hzのパルス繰り返し率を有する0.5Wのオーダにおける低出力Er:YAGレーザ放射は、殺菌するための100℃を十分上回る根管壁上の局所ピーク温度に到達し、歯周温度を臨界の43℃よりも十分に下に保つ。
【0082】
PDTについて、様々なプロトコルが利用可能である(たとえば、Helbo、Dentofex、Wilson)。この処理のために、メチレンブルーまたはトルイジンブルーのような流体が根管内に適用され、適切な光が根管内に進む光に結合される。メチレンブルーについて、約150mWの670nmが必要とされ、トルイジンブルーについて、約100mWの635nmが必要とされる。従来のPDT手順を上回る利点は、レーザエネルギーによってPDT流体を撹拌し、蒸気泡を急速に誘発し、隣接する流体の運動を引き起こし、PDT流体を加熱するための、Er:YAG/Er:YSGGレーザエネルギーの同時送達である。これは、細菌と流体とのはるかにより激しい接触を可能にし、撹拌なしのPDTまたは超音波による撹拌と比較して、象牙細管への侵入深さを増加させる。
【0083】
根管のような拡張されていないカナル10を充填することは、不規則な根管空間を空隙なしに覆うことができる新しい手法を必要とする。これは、低粘度の閉鎖材料を用いて可能である。しかしながら、リスクは、頂点を越える充填材料の侵入である。低粘度材料でカナルを充填する前に頂点領域において配置された頂点「プラグ」がこれを防止することができる。頂点プラグを配置するための従来の解決策は、すでに開示されているが(たとえば、US2009/0220909A1 Muller、Mannschedel、Coltene/Whaledent)、しかしながら、ISOに従うカナル準備を必要とし、不規則なカナルに提供され得ない。さらに、それらは、プラグを配置するためのレーザシステムの使用を開示していない。
【0084】
レーザファイバのオーダの直径(250〜350μm)を有する小さい頂点の場合、プラグ12は、レーザファイバ14(
図1)に対して軸方向に取り付けられる。ファイバ先端18とプラグ12との間のオプションの接続材料16は、プラグ材料とファイバ先端18との間の接着を改善することができる。
【0085】
プラグ材料は、サーマフィル閉鎖具を予熱するために実際に使用される外部炉内に挿入される前に予熱され得る。
【0086】
プラグ材料は、根管10内に挿入する前に、シーラーで追加的に覆われ得る。シーラーは、US2014/0017636A1 Bergerら、Dentsply intl.inc.において開示されているように構成されうる。
【0087】
プラグ12を有するレーザファイバ14は、根管10内に突き出され、わずかな圧力で適所に押圧される。適切な加工長(頂点まで1mmの長さ)において、レーザは、活性化され、プラグ12または接続材料16は、レーザファイバ14への接続部において溶融し始める。プラグ12は、レーザファイバ14によりわずかに垂直に凝縮され得る。それは、レーザファイバ14を除去する間、プラグ12を定位置に保持する。次のステップにおいて、低粘度材料は、カナル内に充填される。この材料は、たとえば、US2014/0335475A1 Bergerら、Dentsply intl.inc.において開示されているような根管充填材料であり得る。
【0088】
凹部内の、直接アクセス可能な領域ではない根管壁の被覆性を改善するために、低粘度充填材料は、材料によって吸収され、根管壁に対して材料を加速する蒸気泡を作成するレーザ放射を受け得る。最後に、同じまたはより高い粘度を有する材料(たとえば、US2014/0335475A1による)が、残りのカナル容積を閉塞するためにカナル内に充填される。横方向および/または垂直方向の凝縮が適用され得る。
【0089】
プラグ材料の要件:
・生体適合性
・象牙質よりも低い硬度(再治療の場合に関連する)、ガッタパーチャは、オプションである。
【0090】
レーザファイバ14へのガッタパーチャの直接接続の場合、ガッタパーチャ製剤は、室温における保存時およびカナル10内への挿入の間にレーザファイバ14への安定した接続を有さなければならず、50℃と200℃との間で溶融しなければならない。ガッタパーチャは、レーザファイバとの界面の非常に局所的な加熱を確実にする、数十分のマイクロメートルにおいて十分なエネルギーを蓄積するのに十分高い吸収係数を有する。
【0091】
接続材料が使用される場合、接続材料16は、45℃と200℃との間で溶融しなければならず、レーザファイバ14およびプラグ材料に十分に付着しなければならない。レーザ波長における吸収係数は、1〜3秒の範囲内で、2W未満、好ましくは100mW未満の出力で接続材料を溶融するために、十分なエネルギーを数十分のマイクロメートルにおいて堆積させるのに十分なほど高くなければならない。材料は、45℃と200℃との間で溶融し、それは、保存安定性を保証し、加熱中に頂点領域における温度を十分に低く保つ。
【0092】
代替的には、ガッタパーチャプラグは、電気的に加熱されるアプリケータに取り付けられ得る。250μm未満の全直径を有する2本の銅線によって供給されるプラスチックアプリケータの先端における小さいSMD抵抗器(EIA01005、0.2×0.2×0.4mm)または半導体材料が使用され得る。
【0093】
ファイバ径よりもはるかに広い、たとえば、0.5〜1mmの広い頂点20の場合、上記で説明されている方法は、失敗する。
【0094】
そのような状況について、(ポップコーンまたはポリウレタンフォームのような)「要求に応じて」容積を拡大することができる材料が必要とされる。ベース材料が、頂点20における定位置に突き出されたレーザファイバ14に対して再び取り付けられ得、次いで、吸収によって熱に変換されるレーザエネルギー、またはUV光のいずれかによって膨張が開始されるが、プラグ112は、膨張可能材料114を備える。プラグ材料114は、接続材料の溶融温度よりも低い温度において膨張しなければならない。プラグ材料114の膨張の後、プラグ材料114をより固くさせるための数秒の冷却後に、レーザパワーは、接続材料を最終的に溶融し、除去中にプラグ112をその頂点位置からずらす危険なしにカナル10からファイバ先端14を除去するために、短い時間持続時間の間、たとえば、0.5〜2秒の間増加される。
【0095】
理想的には、プラグ材料114の膨張は、カナル壁に向けられる。これを達成するために、膨張可能材料は、接続材料を用いてファイバ先端18に取り付けられた体積散乱材料の側に配置されなければならない。膨張後、この体積散乱材料114は、プラグ112の一部としてカナル16内に残る。ファイバ先端からプラグを分離するために、接続材料は、Er:YAGレーザ放射を用いて加熱される。この場合、接続材料は、膨張可能プラグ材料114を加熱するためにプラグ112の体積散乱部分120によって膨張可能プラグ材料114に散乱される可視範囲における放射に対して透明でなければならない。
【0096】
プラグ材料は、歯科用複合材料であり得る。接続材料は、200℃未満において軟化する(可視波長範囲において)半透明の樹脂であり得る。
【0097】
散乱材料120の中央部分と、コアを取り囲む膨張可能材料114とを有するプラグ112が、
図2および
図3において示されている。
【0098】
別のオプションは、膨張可能プラグ材料としての材料成分Aをレーザファイバに取り付けることであり、第2の材料Bが、根管内への挿入の直前に第1の材料に適用され、それは、体積膨張を伴う反応を開始する。レーザエネルギーは、そのとき、プラグ材料とレーザファイバとの接続を溶融するためにのみ使用され、それは、プラグ材料が膨張によって根管壁にプラグ材料自体を固定する前に、プラグ材料を正確な位置において保った。
【0099】
3の膨張係数を有する材料は、25番(直径250μm)プラグと40番(直径400μm)の頂点直径との間のギャップを充填することができる。7の膨張係数は、60番(600μm)の頂点直径までのギャップを充填することができる。
【0100】
しばしば前歯における場合である、より大きい直径を有するファイバ先端がカナルの拡張なしに挿入され得る場合、3の膨張係数を有する材料は、40番(直径400μm)プラグと70番(直径700μm)の頂点直径との間のギャップを充填することができる。7の膨張係数は、この例において、100番(1000μm)の頂点直径までのギャップを充填することができる。
【0101】
膨張可能材料の例:炭酸水素ナトリウム(重炭酸ナトリウム)+ガッタパーチャ粒子の混合物。光ファイバ先端を介して熱が加えられると、以下の反応、2NaHCO
3→Na
2CO
3+CO
2↑+H
2Oは、CO
2を放出し、溶解したガッタパーチャ粒子と泡を形成する。
【0102】
pHを生理学的範囲内に保つために、湿った環境において追加の泡を生成する酸(たとえば、クエン酸)が加えられ得る。代替的には、両方共Bergerら、Dentsply intl.inc.のUS2014/0017636A1およびUS2014/0335475A1における開示を含むガッタパーチャと組み合わせた任意の生体適合発泡剤が使用され得る。
【0103】
閉鎖された気泡発泡体を作成するために、小さい重炭酸ナトリウム粒子がガッタパーチャ内に封入され得る。
【0104】
異なる種類のプラグ、プラグ材料、接続材料、および膨張可能材料の例は、表1において指定される。
【0106】
本発明によるデバイスは、原則として
図4に示される。デバイスは、タッチスクリーン42を有するデスクトップデバイス40と、一体化された冷却要素44を有するハウジングとを備える。ハウジングは、水および圧縮空気を供給するようになっている歯科ユニット6(コネクタ46)のタービンコネクタに接続される。デスクトップハウジングは、送達システム50を有するハンドピース48に接続される。
【0107】
ハンドピース48は、回転カップリングを介して送達システム50に接続される。ファイバ先端52は、ハンドピースに接続され得、洗浄液を有する使い捨て容器54は、ハンドピースに対して着脱され得る。ハウジングは、接続ライン56を介してハンドピース48に接続される。
【0108】
ポータブルデスクトップデバイス40は、エネルギー源としてレーザを備える。レーザ放射は、水および圧縮空気およびオプションで洗浄液と共に、送達システムによって、取外し可能なファイバ先端52を有するハンドピース48に送られる。
【0109】
エネルギー源は、ダイオードポンプ式ER:YAGレーザ(波長2.94μm)、Er:YSGGレーザ(波長2.78μm)、またはCTEレーザ(波長2.69μm)である。パルス長は、5〜1000μs、好ましくは25〜400μs、最も好ましくは50〜200μsである。パルスエネルギーは、アプリケータの遠位端において、0.5〜50mJ、好ましくは1〜10mJである。これは、窩洞出口において約2倍のパルスエネルギーを必要とする。平均出力は、0.5〜10W、好ましくは1〜3Wであり、ピーク出力は、窩洞出口において<600Wである。
【0110】
さらに、デバイスは、照準ビームおよび頂点プラグ加熱のため、ならびにオプションで細菌検出およびPDTのための光源を備える。
【0111】
照準ビームは、100%反射ミラー側からEr:YAGロッドを介して結合され、頂点プラグ加熱およびPDTのための他の光源は、ダイクロイックビームコンバイナを用いて光路に結合される。高出力LEDまたはレーザダイオード、たとえば、ADL−63V0ANP(レーザ構成要素)が使用され得る。レーザダイオードは、MID IRレーザと並列に動作され得、同時にハンドピースに伝送される。蛍光励起(細菌検出、カナル清浄度検出)のために、350〜700nmの範囲におけるcwまたはパルスレーザダイオードが使用される。
【0112】
デバイスは、好ましくは、レーザキャビティおよび電子機器のための空冷を使用する。
【0113】
レーザシステムの概略図が、自明である
図6において示されている。
【0114】
特に、本発明は、以下の細菌蛍光検出のための励起/検出波長範囲を用いるカナル洗浄のために使用されるのと同じ光ファイバを介して根管のようなカナルの清浄度チェックを提供するダイオードポンプ式Er:YAGレーザ/Er:YSGGレーザ/CTE:YAGレーザによって特徴付けられる。
【0115】
a)励起405〜450nm/検出570〜650nm
b)励起600〜700nm/検出750〜880nm
さらに、本発明は、電気インピーダンス分光法を使用して根管洗浄のために使用される光ファイバ先端上の金属化層を介して根管のようなカナルの清浄度チェックを提供するEr:YAGレーザ/Er:YSGGレーザ/CTE:YAGレーザによって特徴付けられる。
【0116】
加えて、本発明は、100℃を十分上回る根管壁上の局所ピーク温度に到達し、歯周温度を臨界の43℃よりも十分に下に保ち、細菌にとって致命的な温度まで、500μm付近までの放射線吸収によって根管内面を加熱するために、エネルギー(200〜800Hzのパルス繰り返し率による0.05W〜3W)を、光ファイバ先端を介して根管のようなカナルに供給するダイオードポンプ式Er:YAGレーザ/Er:YSGGレーザ/CTE:YAGレーザによって特徴付けられる。
【0117】
本発明のさらなる特徴は、同時に、メチレンブルーまたはトルイジンブルーのような流体を用いてPDTを開始し、急速に誘発された蒸気泡と隣接する流体の運動および熱を用いてレーザエネルギーによってPDT流体を撹拌するために、約80〜200mWにより670nm、および/または50〜150mWにより635nmにおいて発光する追加の光源を提供するダイオードポンプ式Er:YAGレーザ/Er:YSGGレーザ/CTE:YAGレーザである。
【0118】
歯科用タービンコンテナをデバイスのソケットに差し込むことによって、水および圧縮空気が提供される。デバイスは、これらのコンテナ54がハンドピース48において直接配置されない場合、異なる洗浄液(滅菌水、NaOCl、EDTA)のための交換可能なコンテナ54をさらに有することができる。これらの洗浄液コンテナは、歯科用タービンコンテナ46によって提供される歯科用椅子の圧縮空気によって加圧される。
【0119】
これらのコンテナ54からハンドピース48への流体の流れは、μC(埋込み型マイクロコントローラ)を介して動作される電磁弁によって制御される。レーザパラメータと、洗浄液の順序付けと、レーザ支援乾燥と、圧縮空気とを制御することは、1カナルずつ完全に自動化された洗浄プロセスを可能にする(表II)。歯科医は、スタートボタンを押し、次いで、準備完了のサイン(LEDまたはビープ音)が現れるまで、カナル内でファイバを上下にゆっくりと動かすことだけを必要とする。次いで、ファイバ14は、次のカナルに挿入され、手順は、繰り返される。
【0122】
カナルを洗浄するときに使用されるレーザパラメータは、表IIIにおいて指定されている。
【0123】
レーザの安全性のリスクを低減するために、レーザファイバ14が根管10内に配置されている場合にのみレーザが動作することができることを確実にする機構が設けられる。
【0124】
ファイバ先端18が根管10に挿入されているとき、ファイバ14を介して受け取られる光は、周囲光内にあるファイバと比較してはるかに少ない。レーザシステム内の検出器は、ファイバ先端18から戻ってくる光を測定し、絶対的な光レベルと、光レベルにおける変化(一次導関数)とを検出する。この検出は、いかなるマイクロコントローラまたは検出ソフトウェアとも独立して行われ得る。それは、検出ユニットにおけるハードウェア障害の場合にレーザシステムを無効にするフェールセーフ設計を有する固定配線ハードウェアに基づく。
【0125】
電子機器は、ファイバ先端18を根管内に含まれる流体に浸漬させている間に屈折率の差が変化したときにファイバ送達システムに放射される光(たとえば、照準ビーム)の反射の変化をさらに検出することができる。照準ビームの光は、信号を周囲光から区別するために振幅変調される。
【0126】
根管10内のファイバ先端18の位置を検出する別の方法は、ファイバ14の表面を金属化し、測定電流(AC)を電極180、182に注入し、根管10へのファイバの挿入中のインピーダンス変化を測定することである。ファイバ14は、患者によって保持されるか、患者の口に取り付けられた(リップクリップ)対向電極と組み合わせて1つの電極として完全に金属化され得る。しかしながら、好ましい解決策は、対向電極を避ける、二重電極の概念、すなわち、第1および第2の電極180、182である。ファイバ先端にインデックスをつけることによって、明確な接続が保証される。
【0127】
金属化層は、ファイバ先端の円錐部分を除いて光ファイバの完全な被覆から構成され得、または、同じファイバ外面上に1つもしくは複数の電極を形成する構造化層であり得る。
【0128】
金属化先端構成は、好ましくは、二重電極金属化ファイバ先端(
図5参照)を用いる「カナルが依然として湿っている」検出をさらに可能にする。
【0129】
湿ったカナルは、乾燥したカナルと比較してはるかに高い比誘電率定数を有する。
【0137】
に匹敵した。これは、根管の湿度を決定するために利用され得る。測定は、1Hz〜10GHz、好ましくは1kHz〜2.4GHzの範囲内であり得る単一の周波数、または複数の単一の周波数、または周波数帯域にわたる掃引を用いて行われる。電極の直接的な可逆的でない濡れを避けるために、疎水性コーティングが電極の領域において適用される。
【0138】
レーザベースのカナル乾燥手順と組み合わせてカナル湿度検出を使用することは、200〜800Hzのパルス繰り返し率を用いて0.1〜1Wのレーザエネルギーを適用することによって、フィードバック制御のカナル乾燥手順を可能にする。
【0139】
カナル10を洗浄する間の根管10内の細菌検出および長さ測定のために、さらなるインピーダンス分光法が使用され得る。細菌細胞壁によって生成される高調波を分析するNuMed(米国特許9119548B2)によって提供されるインピーダンス分光法の特別な変形例は、提案された洗浄デバイスに組み込まれ得、根管内の細菌検出を可能にする。
【0140】
金属化ファイバ14を使用し、インピーダンス測定を用いる根管長測定は、治療中にファイバ先端18の正確な位置を示し、頂点20を超えないようにするために、洗浄と同時に実行され得る。
【0141】
上顎の治療を下顎の治療と区別するために、たとえば、慣性センサ(MEMデバイス、たとえば、Kionix KXTF9)が使用される。流体補充速度は、上顎を治療する場合または下顎を治療する場合で異なるので、これは、重要である。
【0142】
さらに、この慣性プラットフォームは、ファイバ先端18の移動方向(根管10内へまたは根管10の外に)についてのデータを提供する。これは、用途がアブレーションしきい値を超えるエネルギー密度を必要とする場合、ファイバ先端18を根管10内に押し込むときにレーザをスイッチオフするために重要である。
【0143】
さらに、運動センサによって提供される運動情報は、歯科医がカナル内のファイバを連続的に動かしているかどうかを検出し、歯科医が治療中に運動を停止し、レーザパワーを低減またはスイッチオフする場合、歯科医に警告情報で思い出させるために使用され得る。
【0144】
加えて、慣性プラットフォームデータは、インピーダンスベースのファイバ位置測定から提供されるファイバ位置データとクロスチェックするために使用され得る。
【0145】
送達システム50は、ポータブルデスクトップデバイス40を歯科用ドリルハンドピースと同様のハンドピース48に接続する。
【0146】
光ガイドに対するトルクを回避するために、ハンドピース48は、長手方向軸の周りを低摩擦で回転自在に送達システム50に接続される。
【0147】
レーザ放射は、2.69〜2.94μmおよび追加で400nm〜1000nmの波長範囲における(50mJまでの、5Wの平均出力、500Wのピーク出力までの)放射を伝送することができるGeO、サファイア、ZrF
4、または任意の他の光ガイドを介してハンドピースに伝達される。光ガイドのコア直径は、150と600μmとの間、好ましくは、180〜250μmである。光ガイドの端面は、水分に対して保護され、反射防止材料で被覆され得る。
【0148】
デバイスに接続された歯科用椅子の歯科用ユニットにおいて利用可能な圧縮空気および水は、光ガイドと一緒に送達システムを介して導かれる。デバイスに差し込まれた交換可能なコンテナからのオプションのさらなる洗浄液は、送達デバイス内でハンドピースに輸送され得る。電線は、ハンドピースとデスクトップユニットとの間のデータおよび電力伝送を提供する。ワイヤおよびコネクタの数を低く抑えるために、SPIバスシステムまたはI
2Cバスシステムが使用される。屈曲保護は、ファイバ14が屈曲して振動する許容される屈曲半径を超えて屈曲されないことを保証する。送達システム50は、修理が必要な場合にデバイスから取外し可能であり、ハンドピース48は、洗浄/滅菌のために送達システム50から定期的に取り外され得る。
【0149】
図7は、自明である送達システム50の概略図である。
【0150】
ハンドピース内の運動センサの配置の代替案として、センサは、送達システムの最遠位部分内に配置され得る。これは、センサチップに適用されるべき滅菌サイクルを回避する。しかしながら、その場合、ハンドピースと送達システムとの間の回転位置検出が追加されなければならない。
【0151】
ハンドピース48は、水(ライン60)および加圧空気(ライン62)をハンドピース48に送達することを可能にする回転カップリング58を用いて送達システム58に接続される。空気および水は、ハンドピース48の前部に送達され、ノズル64を用いてファイバ14に向けて適用される。レーザ放射は、光ファイバ66を用いて送達システム50から保護窓68、レンズ70、および偏向ミラー72を介してファイバ14に供給される。流体コンテナ54は、ハンドピース48にスナップ嵌合される。運動センサ74は、送達システム50の前部において配置され、回転エンコーダ76と組み合わせてファイバ先端18(
図8も参照)の運動を検出することができる。
【0152】
ハンドヘルドアプリケータにおいて、取外し可能な使い捨てファイバ14は、ハンドピース48の主方向に対して約70〜130°の角度の下で差し込まれ得る。このファイバ先端18は、根管内に導入される。
【0153】
ハンドピース48は、小さい歯科用ハンドピース、理想的にはコントラアングルに相当する。ハンドピース48は、長手方向軸の周りを回転可能である。取り付け可能なファイバ14への約90°のレーザビームの偏向は、平面ミラー72および別個の集束要素または集束ミラーを用いて実行される。
【0154】
使い捨てファイバ14は、少なくとも2つの電気的接続がハンドピース48内の接点に明確に接続されることを可能にするために、インデックス化接続を用いて固有な位置決めを可能にするコネクタを用いてハンドピース48に接続される。
【0155】
ハンドピース48の単純な変形例において、ハンドピース48からの直接処理のために水および空気のみが利用可能である。他の洗浄液は、シリンジを用いて手動で根管10内に適用される。
【0156】
圧縮空気および水は、ミストを形成することができる。10〜30ml/分の水および5〜10l/分の空気がミストを形成するために使用される。
【0157】
流体ビームは、ファイバ14の長手方向軸から角度ca.10〜20°でファイバ14の最後の1/3に向けられる。ハンドピースの出口における水の速度は、0.6m/sよりも大きい。
【0158】
開始/停止ボタンがハンドピースに組み込まれ得る。
【0159】
その構成要素を有するハンドピース48の概略図が、自明である
図9において示されている。
【0160】
ハンドピース48の変形例では、NaOClおよびEDTAのための使い捨ての流体コンテナ54/(カートリッジとも呼ばれる)がハンドピースに直接取り付けられる。カートリッジ54は、ファイバ14の近くに流体案内を有する(
図10参照)。処理は、流体あたり1〜2ml程度の少量の流体のみを必要とするので、ハンドピース48における直接配置が可能である。主な目的は、部分的に腐食性の流体をハンドピース48、送達システム50、およびデスクトップデバイス40から分離して保つことである。さらなる目的は、使用の前後の滴りを回避することである。これらの目的を達成するための安価な解決策は、電磁バルブ78を、磁気コイル80を有する励起部分と、ハンドピース48内の強磁性コア82および使い捨てカートリッジ54内の出口弁の一部としての弁78オープナとしての強磁性材料の部分とに分離することである。カートリッジ54は、カートリッジ54をハンドピース48内に配置するとき、空気圧の下で設置される。可撓性の膜またはピストン84が、流体を空気入口から分離することができる。さらなる詳細については、
図11を参照されたい。
【0161】
ファイバ材料は、妥当な損失およびコストで、400nmから2.94μmまでの範囲の波長の透過を可能にしなければならない。OH還元シリカファイバは、2.94μm(フレネル反射を含む)において5cmの長さにわたって約50%の減衰を有する許容される妥協点である。ファイバ14は、使い捨てであり、適度な分解で3〜4の根管を生き残る。ファイバ14の端部18は、保護層または金属化のない円錐形状である。代替的には、ファイバ14は、半球状であり得る。ファイバ14は、200〜300μmの外径と、180〜240μmのコア径とを有する。ファイバ14の長さは、30〜40mmである。成形されたプラスチック部分が、ファイバ14をハンドピースに接続する。ファイバ14は、耐破壊性を改善するために追加のコーティングを有することができ、治療中に頂点までの距離を決定するために根管内の挿入長さを測定することを可能にするために表面金属化を有することができる。電極の接触面は、ハンドピース48への結合においてコネクタに接触する。ハンドピース48への結合部は、2つの電極の明確な接続を可能にするために、2つの180°回転された位置のみを可能にする。電極180、182は、疎水性層で覆われ得る。その先端を有するファイバ14のさらなる詳細は、
図12から知られ得る。
【0162】
ソフトウェアは、レーザパラメータ、空気、および水の流れを制御し、拡張されたハンドピース48の変形例では、2つまでの追加の洗浄液の流れを制御する。
【0163】
シーケンサプログラムは、以下の用途のために利用可能である。
【0164】
・洗浄/乾燥
・細菌検出
・熱的細菌減少
・aPDT
・頂点プラグの配置
・閉塞サポート
洗浄/乾燥プログラムは、一連の洗浄および乾燥ステップを提供する(表II参照)。パラメータは、個別にプログラムされ得、「好ましい治療プログラム」として記憶され得る。
【0165】
細菌検出は、蛍光検出を介して根管内の残存細菌および/または細菌残留物を検出するプログラムである。
【0166】
熱的細菌減少は、明確に定義された方法で根管内面を局所的に加熱するプログラムである。好ましくは100Hzと2000Hzとの間のパルス繰り返し率は、低いパルスエネルギー(0.1〜1mJ)と組み合わせて、残存細菌を殺すために十分に高い、根管内面および根管壁内の数100分の1μm以内における温度を局所的に生成するために使用される。流体は、このプログラムにおいては使用されない。局所的な過熱のどのようなリスクも避けるために、ファイバの動きが運動検出器によって監視される。
【0167】
aPDTプログラムは、根管壁に沿った接触および流体交換を高めるために、aPDT染料流体中に運動を生じさせるために、レーザで生成された蒸気泡に、たとえば、Helboから公知の従来のaPDT配列を組み合わせる。洗浄液コンテナの代わりに、aPDT染料がハンドピース内に挿入される。aPDTの後、染料は、レーザで生成された蒸気泡のサポートと共に水を用いてフラッシングすることによって、自動的に根管から洗い流される。
【0168】
不規則な不定形の根管10のために、異なる閉塞戦略が必要とされる。そのような閉塞方法をサポートするために、デバイスは、以下のプログラムを提供する。
【0169】
頂点プラグ配置プログラムは、ガッタパーチャプラグが取り付けられたファイバと組み合わせて使用される。頂点位置においてプラグを部分的に溶融し、それをファイバ先端から取り外すために、レーザを用いて熱が加えられる。
【0170】
閉塞サポートプログラムは、閉塞材料を用いて根管壁全体の密集した範囲を強化するために、根管内の頂点プラグの上に配置された低粘度閉塞材料を根管壁に対して加速するために使用される。そのために、一時的な蒸気泡が根管充填材料内に生成される。加えられた熱は、適用中に粘度をさらに低下させることができ、閉塞材料がカナルの任意のくぼみ内に入り込むことを追加で可能にする。
【0171】
本発明は、レーザパラメータ、ならびに、洗浄液、レーザ支援乾燥、および圧縮空気のシーケンスの自動化制御を提供し、それは、完全に自動化された洗浄プロセスを可能にする。
【0172】
本発明は、根管の洗浄の助けを借りて上記で説明されているが、本発明による教示は、すでに説明されているように、根管の直径のようにより小さい直径のカナルが洗浄されるべきカナル、特に、それらの長手方向において均一に延びないそのようなカナルの洗浄に適している。これに対して、導入部の説明に対して参照が行われる。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1] 円周方向に閉じたカナルの密封のための方法であって、
閉鎖要素が、レーザビームを伝導する光ガイドの一自由端に固定されており、前記閉鎖要素をもつ前記光ガイドは前記カナル中に挿入され、前記閉鎖要素は、密封される前記カナルの領域に位置付けられ、前記閉鎖要素の位置付け後、エネルギーが導入され、前記閉鎖要素は、溶融又は軟化し、前記カナル中のこの位置に留まり、それを堅く密封する、
方法。
[2] 前記閉鎖要素は、電気エネルギーを通じて、又は前記光ガイドを通って透過された前記レーザ放射を通じて溶融される、[1]に記載の方法。
[3] 前記閉鎖要素が、連結材料によって前記光ガイドの前記自由端に連結されており、その溶融温度T1は、前記閉鎖要素材料の溶融温度T2よりも高い、[1]又は[2]に記載の方法。
[4] 閉鎖材料が前記カナル中に挿入され、前記カナル、特にその開口部、の密封後、前記閉鎖材料内で前記光ガイドが前記カナルの長手軸方向に、前記レーザビームが導入されるのと同時に動かされる、[1]〜[3]のうちの少なくとも一項に記載の方法。
[5] 前記レーザ放射を介して前記閉鎖材料中に導入されるエネルギーの機械的効果は、挿入される前記エネルギーのマクロ的な熱効果よりも大きい、[1]〜[4]のうちの少なくとも一項に記載の方法。
[6] 熱エネルギーの前記導入を通じて融解及び/又は発泡し、冷却後に閉気孔カナルシールを形成する密封材料が使用される、特に、ガッタパーチャ材料によって内包される炭酸水素ナトリウムが前記密封材料として使用される、[1]〜[5]のうちの少なくとも一項に記載の方法。
[7] 体積膨張の形で互いに反応する第1のコンポーネント及び第2のコンポーネントを備える材料が密封材料として使用される、[1]〜[6]のうちの少なくとも一項に記載の方法。
[8] 特に体積散乱コア材料及びそれを内包する膨張材料を備える材料が閉鎖要素として使用される、[1]〜[7]のうちの少なくとも一項に記載の方法。
[9] Er:YAGレーザ、Er:YSGGレーザ、又はCTEレーザが、前記レーザとして使用される、[1]〜[8]のうちの少なくとも一項に記載の方法。
[10] 前記レーザが、5μsと1000μsとの間の、好ましくは25μsと400μsとの間の、及びとりわけ好ましくは50μsと200μsとの間のパルス持続時間で操作される、[1]〜[9]のうちの少なくとも一項に記載の方法。
[11] 0.5mJと50mJとの間の、特に1mJと10mJとの間の、前記光ガイドから出るパルスエネルギーを有するレーザビームが使用される、[1]〜[10]のうちの少なくとも一項に記載の方法。