【実施例】
【0114】
下記の合成および生物学的実施例は、本発明を例証するために提供されるものであり、本発明の範囲をいかようにも限定するものとして解釈されるべきではない。以下の実施例において、下記の略語は、別段の指示がない限り、下記の意味を有する。以下で定義されていない略語は、それらの一般に認められている意味を有する。
ACN=アセトニトリル
DCM=ジクロロメタン
DIPEA=N,N−ジイソプロピルエチルアミン
DMF=N,N−ジメチルホルムアミド
EtOAc=酢酸エチル
h=時間
HATU=N,N,N’,N’−テトラメチル−O−(7−アザベンゾトリアゾール−1−イル)ウロニウムヘキサフルオロホスフェート
IPA=イソプロピルアルコール
IPAc=酢酸イソプロピル
MeOH=メタノール
min=分
Pd(PPh
3)
4=テトラキス(トリフェニルホスフィン)パラジウム(0)
RT=室温
TFA=トリフルオロ酢酸
THF=テトラヒドロフラン
ビス(ピナコラト)ジボロン=4,4,5,5,4’,4’,5’,5’−オクタメチル−[2,2’]ビ[[1,3,2]ジオキサボロラニル]
【0115】
試薬および溶媒は、商業供給業者(Aldrich、Fluka、Sigma等)から購入し、さらに精製することなく使用した。反応混合物の進行を、薄層クロマトグラフィー(TLC)、分析用高速液体クロマトグラフィー(分析用HPLC)および質量分析によってモニターした。反応混合物を、各反応において具体的に記述されている通りに後処理し、一般には、反応混合物を、抽出、ならびに、温度および溶媒依存性結晶化、および沈殿等の他の精製方法によって精製した。加えて、反応混合物を、カラムクロマトグラフィーによってまたは分取HPLCによって、典型的には、C18またはBDSカラムパッキングおよび従来の溶離液を使用して、慣用的に精製した。典型的な分取HPLC条件を以下に記述する。
【0116】
反応生成物の特徴付けは、質量分析および
1H−NMR分光分析によって慣用的に行った。NMR分析のために、試料を重水素化溶媒(CD
3OD、CDCl
3またはd
6−DMSO等)に溶解し、標準的な観察条件下、Varianジェミニ2000機器(400MHz)で
1H−NMRスペクトルを獲得した。化合物の質量分析同定は、自動精製システムと接続された、Applied Biosystems(Foster City、CA)モデルAPI150EX機器またはWaters(Milford、MA)3100機器を用いるエレクトロスプレーイオン化法(ESMS)によって実施した。
【0117】
分取HPLC条件
カラム:C18、5μm。21.2×150mmまたはC18、5μm 21×250またはC14、5μm 21×150mm
カラム温度:室温
流量:20.0mL/分
移動相:A=水+0.05%TFA
B=ACN+0.05%TFA、
注入体積:(100〜1500μL)
検出器波長:214nm
【0118】
粗化合物を、1:1 水:酢酸に、約50mg/mLで溶解した。2.1×50mm C18カラムを使用して4分間の分析スケールテスト実行を、続いて、分析スケールテスト実行のB保持%に基づく勾配で100μLの注射を使用して15または20分間の分取スケール実行を行った。正確な勾配は、試料依存性であった。最良の分離のために、不純物が連なっている試料を21×250mm C18カラムおよび/または21×150mm C14カラムで確認した。所望生成物を含有する画分を、質量分光分析によって同定した。
【0119】
調製1:2−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(9)
【化15】
(a)1−(ベンジルオキシ)−4−ブロモ−5−エチル−2−フルオロベンゼン(21)
ACN(250mL)中の4−ブロモ−5−エチル−2−フルオロフェノール(20)(20g、910.32mmol)の溶液に、K
2CO
3(31.55g、228.3mmol)、続いて、臭化ベンジル(13.10mL、109.58mmol)を滴下添加した。得られた反応混合物を80℃で2時間にわたって撹拌した。水層をEtOAcで抽出し(3回)、合わせ、ブラインで洗浄した。有機層をNa
2SO
4で乾燥させ、減圧下で蒸発させて、表題中間体を淡黄色の油性液体(25g、89%収率)として生じさせた。
1H NMR (400 MHz, クロロホルム-d) δ 7.48 - 7.30 (m, 5H), 7.27 (d, J = 10.5 Hz, 1H), 6.87 (d, J = 8.7 Hz, 1H), 5.12 (s, 2H), 2.66 (q, J = 7.5 Hz, 2H), 1.16 (t, J = 7.5 Hz, 3H).
【0120】
(b)2−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(9)
ジオキサン(100mL)中の前のステップの生成物(21)(12.5g、40.45mmol)の溶液に、ビス(ピナコラト)ジボロン(15.40g、60.67mmol)およびKOAc(11.9g、121.35mmol)を添加した。反応混合物を、窒素で15分間にわたってパージし、続いて、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II),ジクロロメタンとの複合体(1.65g、2.023mmol)を添加した。得られた反応混合物を撹拌し、110℃で3時間にわたって加熱し、セライトに通して濾過し、残留物をEtOAcで洗浄した。濾液を過剰なEtOAc(200mL)で希釈し、水(100mL)、続いてブライン(100mL)で洗浄し、硫酸ナトリウムで乾燥させ、真空で濃縮して、粗生成物を得て、これを、(100〜200)シリカゲルでのカラムクロマトグラフィーによって精製し、3〜5%EtOAc:ヘキサンで溶離して、所望生成物をオフホワイトの固体(9.50g、66%収率)として生じさせた。
1H NMR (400 MHz, クロロホルム-d) δ 7.54 - 7.27 (m, 6H), 6.81 (d, J = 7.9 Hz, 1H), 5.16 (s, 2H), 2.84 (q, J = 7.5 Hz, 2H), 1.32 (s, 12H), 1.14 (t, J = 7.5 Hz, 3H).
【0121】
調製2:6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−3−(トリメチルスタンニル)−1H−インダゾール(3’)
【化16】
(a)6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール(22)
DMF:H
2O(480:120mL)中の6−ブロモ−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール(10)(50g、178.57mmol)および2−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(9)(76.3g、214.29mmol)の溶液に、K
3PO
4(94.64g、446.86mmol)を添加した。反応混合物を窒素で15分間にわたって脱気し、次いで、Pd(PPh
3)
2Cl
2触媒(6.26g、8.93mmol)を添加し、混合物を窒素で5分間にわたって再度脱気し、撹拌し、100〜110℃で5時間にわたって加熱した。反応混合物をセライトに通して濾過し、残留物をEtOAcで洗浄した。濾液をEtOAcで希釈し、冷水およびブラインで洗浄し、硫酸ナトリウムで乾燥させ、真空で濃縮して、粗生成物を提供し、これを、フラッシュカラムクロマトグラフィーによって精製して、表題中間体を白色固体(65g、86%収率)として生じさせた。(m/z):[M+H]
+C
27H
27FN
2O
2の計算値431.21、実測値431.46。
1H NMR (400 MHz, クロロホルム-d) δ 8.06 - 7.98 (m, 2H), 7.70 (d, J = 8.2 Hz, 1H), 7.51 - 7.32 (m, 5H), 7.08 (dd, J = 809.6, 8.3 Hz, 1H), 7.03 (d, J = 11.9 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 5.76 - 5.64 (m, 1H), 5.20 (s, 2H), 4.04 (d, J = 10.1 Hz, 1H), 3.72 (t, J = 9.7 Hz, 1H), 2.52 (q, J = 7.5 Hz, 2H), 2.22 - 2.02 (m, 3H), 1.80 - 1.71 (m, 3H), 1.06 (t, J = 7.5 Hz, 3H).
【0122】
(b)6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−1H−インダゾール(23)
メタノール(700mL)中の前のステップの生成物(22)(65g、151.16mmol)の溶液に、濃HCl(120mL)を添加し、得られた溶液を60〜65℃で3時間にわたって加熱し、室温に冷却し、真空で濃縮した。残留物をEtOAcに溶解し、飽和NaHCO
3水溶液および水で洗浄した。有機層を無水Na
2SO
4で乾燥させ、真空で濃縮して、表題中間体を白色固体(52g、99%(粗製物))として生じさせた。
1H NMR (400 MHz, クロロホルム-d) δ 8.13 (s, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.59 - 7.30 (m, 6H), 7.10 (d, J = 8.3 Hz, 1H), 7.01 (d, J = 11.8 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 5.21 (s, 2H), 2.53 (q, J = 7.5 Hz, 2H), 1.05 (t, J = 7.5 Hz, 3H).
【0123】
(c)6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−3−ヨード−1H−インダゾール(24)
DMF(400mL)中の6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−1H−インダゾール(23)(56g、161.18mmol)の溶液に、KOH(36.2g、647.39mmol)を添加し、混合物を5分間にわたって撹拌した。DMF(100mL)中のヨウ素(82.2g、323.69mmol)の溶液を0℃でゆっくりと添加し、室温で30分間にわたって撹拌し、水(3×150mL)で希釈し、EtOAc(3×200mL)で抽出した。有機層を飽和メタ重亜硫酸ナトリウム水溶液(3×200mL)および水(400mL)で洗浄し、無水Na
2SO
4で乾燥させ、減圧下で濃縮して、粗生成物を得て、これを、フラッシュカラムクロマトグラフィーによって精製して、表題中間体を帯褐色半固体(64g、84%収率)として生じさせた。
1H NMR (400 MHz, クロロホルム-d) δ 10.49 (s, 1H), 7.57 - 7.32 (m, 7H), 7.16 (d, J = 8.3 Hz, 1H), 7.04 - 6.91 (m, 2H), 5.20 (s, 2H), 2.51 (q, J = 7.4 Hz, 2H), 1.04 (t, J = 7.5 Hz, 3H).
【0124】
(d)6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−3−ヨード−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール(25)
DCM(700mL)中の前のステップの生成物(24)(60g、127.12mmol)の氷冷溶液に、p−トルエンスルホン酸(p-toluensulfonic acid)(4.84g、25.423mmol)、続いて、3,4−ジヒドロ−2H−ピラン(17.43mL、190.68mmol)を滴下添加した。反応混合物を室温で終夜撹拌し、DCMで希釈し、飽和NaHCO
3水溶液およびブラインで洗浄した。有機層を無水Na
2SO
4で乾燥させ、減圧下で濃縮して、粗生成物を提供し、これをフラッシュクロマトグラフィー(シリカゲル)によって精製して、表題中間体をオフホワイトの固体(64g、91%収率)として生じさせた。(m/z):[M+H]
+C
27H
26FIN
2O
2の計算値557.10、実測値557.30。
1H NMR (400 MHz, クロロホルム-d) δ 7.56 - 7.31 (m, 7H), 7.14 (d, J = 8.3 Hz, 1H), 7.01 (d, J = 11.8 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 5.68 (d, J = 9.3 Hz, 1H), 5.20 (s, 2H), 4.08 - 3.99 (m, 1H), 3.77 - 3.64 (m, 1H), 2.50 (q, J = 7.2 Hz, 2H), 2.23 - 1.97 (m, 3H), 1.81 - 1.68 (m, 3H), 1.06 (t, J = 7.4 Hz, 3H).
【0125】
(e)6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−3−(トリメチルスタンニル)−1H−インダゾール(3’)
トルエン(150mL)中の6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−3−ヨード−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール(25)(20g、35.97mmol)の溶液に、ヘキサメチルジスズ(9.2mL、43.17mmol)を添加した。反応混合物を窒素で20分間にわたって脱気し、続いて、テトラキス(2.0g、1.80mmol)を添加し、次いで、100℃で2時間にわたって撹拌し、室温に冷却し、セライトに通して濾過し、残留物をEtOAcで洗浄した。濾液を濃縮し、カラムクロマトグラフィー(中性アルミナ)によって精製し、2〜5%EtOAc:ヘキサンで溶離して、表題化合物(17.50g、82%収率)を生じさせた。(m/z):[M+H]
+C
27H
26FIN
2O
2の計算値557.10、実測値557.30。(m/z):[M+H]
+C
30H
35FN
2O
2Snの計算値595.17、593.17、実測値595.49、593.55。
1H NMR (400 MHz, クロロホルム-d) δ 7.68 (d, J = 8.0 Hz, 1H), 7.57 - 7.29 (m, 6H), 7.13 - 7.00 (m, 2H), 6.96 (d, J = 8.4 Hz, 1H), 5.81 - 5.68 (m, 1H), 5.21 (s, 2H), 4.13 - 4.00 (m, 1H), 3.81 - 3.66 (m, 1H), 2.54 (q, J = 7.3 Hz, 2H), 2.23 - 2.00 (m, 2H), 1.87 - 1.59 (m, 4H), 1.08 (t, J = 7.5 Hz, 3H), 0.47 (s, 9H).
【0126】
調製3:5−(tert−ブチル)6−メチル(S)−2−ヨード−3−((2−トリメチルシリル)エトキシ)メチル)−3,4,6,7−テトラヒドロ−5H−イミダゾ[4,5−c]ピリジン−5,6−ジカルボキシレート(4’)
【化17】
(a)(S)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸(11)
水(420mL)中のL−ヒスチジン(26)(50g、322.24mmol)の撹拌懸濁液に、濃HCl(29mL)を0℃で滴下添加し、続いて、ホルムアルデヒド(55mL、676.72mmol)を0℃で一度に添加した。得られた反応混合物を30分間にわたって撹拌し、次いで、75℃で6時間にわたって加熱し、濃縮した。得られた粗製物をジエチルエーテルとともに2時間にわたって撹拌し、濾過し、IPA:THF(100:300mL)で洗浄して、表題中間体のHCl塩をオフホワイトの固体(75g 99%収率(粗製物))として提供した。(m/z):[M+H]
+C
7H
9N
3O
2の計算値168.07、実測値168.17。
【0127】
(b)メチル(S)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボキシレート(27)
メタノール(1500mL)中の前のステップの生成物(11)(75.0g、312.5mmol)の撹拌溶液に、SOCl
2(45.6mL、625mmol)を0℃で滴下添加し、室温で16時間にわたって撹拌し、次いで、1時間にわたって還流状態まで加熱した(70℃)。溶媒を蒸留によって除去し、粗生成物を、メタノール、続いて、ジエチルエーテルで磨砕して、表題中間体の粗HCl塩をオフホワイトの固体(80g粗製物)として提供した。
1H NMR (400 MHz, DMSO-d
6) δ 9.05 (s, 1H), 4.71 (dd, J = 9.4, 5.2 Hz, 1H), 4.36 (d, J = 15.5 Hz, 1H), 4.30 (d, J = 15.6 Hz, 1H), 3.82 (s, 3H), 3.44 - 3.21 (m, 2H).
【0128】
(c)5−(tert−ブチル)6−メチル(S)−3,4,6,7−テトラヒドロ−5H−イミダゾ[4,5−c]ピリジン−5,6−ジカルボキシレート(28)
メタノール(1000mL)中の前のステップの生成物(27)(80.0g、314.96mmol)の撹拌溶液に、DIPEA(282mL、1574mmol)、続いて、二炭酸ジ−tert−ブチル(172mL、787.48mmol)を0℃で添加した。反応混合物を室温で16時間にわたって撹拌し、次いで、液体NH
3(150mL、水中25%)を添加し、反応混合物を室温で16時間にわたって再度撹拌し、メタノールを蒸留によって除去し、残留物をDCM(3×200mL)中で抽出した。合わせた有機抽出物を無水Na
2SO
4で乾燥させ、濃縮し、フラッシュクロマトグラフィー(100〜200メッシュシリカゲル)によって精製し、5%MeOH:DCMで溶離して、表題中間体(41g、46%収率)を生じさせた。(m/z):[M+H]
+C
13H
19N
3O
4の計算値282.14、実測値282.21。
1H NMR (400 MHz, DMSO-d
6) δ 11.85 (s, 1H), 7.50 (s, 1H), 5.18 (dd, J = 49.3, 5.1 Hz, 1H), 4.51 (t, J = 14.2 Hz, 1H), 4.09 (dd, J = 43.9, 16.1 Hz, 1H), 3.59 (s, 3H), 3.08 (d, J = 15.5 Hz, 1H), 2.94 (d, J = 15.1 Hz, 1H), 1.45 (s, 9H).
【0129】
(d)5−(tert−ブチル)6−メチル(S)−2−ヨード−3,4,6,7−テトラヒドロ−5H−イミダゾ[4,5−c]ピリジン−5,6−ジカルボキシレート(29)
THF(500mL)中の前のステップの生成物(29)(41.0g、145.9mmol)の溶液に、N−ヨードスクシンイミド(66.0g、291.8mmol)を0℃で添加し、得られた溶液を室温で4時間にわたって撹拌し、水で希釈し、酢酸エチルで抽出した。有機部分を10%チオ硫酸ナトリウム溶液(3×200mL)で洗浄した。合わせた有機層を無水硫酸ナトリウムで乾燥させ、濃縮して、表題化合物60g(粗製物)を提供し、これを、さらに精製することなく次のステップにおいて使用した。(m/z):[M+H]
+C
13H
18IN
3O
4の計算値408.03、実測値408.31。
1H NMR (400 MHz, DMSO-d
6) δ 12.48 (s, 1H), 5.34 - 4.97 (m, 1H), 4.67 - 4.35 (m, 1H), 4.12 - 3.95 (m, 1H), 3.60 (s, 3H), 3.14 - 2.82 (m, 2H), 1.44 (s, 9H).
【0130】
(e)5−(tert−ブチル)6−メチル(S)−2−ヨード−3−((2−トリメチルシリル)エトキシ)メチル)−3,4,6,7−テトラヒドロ−5H−イミダゾ[4,5−c]ピリジン−5,6−ジカルボキシレート(4’)
DMF(150mL)中の5−(tert−ブチル)6−メチル(S)−2−ヨード−3,4,6,7−テトラヒドロ−5H−イミダゾ[4,5−c]ピリジン−5,6−ジカルボキシレート(29)(40g、0.098mol)の撹拌溶液に、DIPEA(35.1mL、0.19mol)を0℃で添加した。反応混合物を10分間にわたって撹拌し、次いで、2−(トリメチルシリル)−エトキシメチルクロリド(19.1mL、0.10mol)を0℃で滴下添加した。得られた反応混合物を室温で3時間にわたって撹拌した。4時間後、冷やした水を添加し、反応混合物をEtOAc(2×200mL)で抽出した。有機層を無水硫酸ナトリウムで乾燥させ、濃縮し、フラッシュカラムクロマトグラフィーによって精製し、20〜35%EtOAc:ヘキサンで溶離して、表題生成物を淡黄色の粘性液体(27g)として生じさせた。(m/z):[M+H]
+C
19H
32IN
3O
5Siの計算値538.12、実測値538.42。
1H NMR (400 MHz, DMSO-d
6) δ 5.33 - 5.04 (m, 3H), 4.79 - 4.56 (m, 1H), 4.54 - 4.14 (m, 1H), 3.60 (s, 3H), 3.47 (t, J = 7.8 Hz, 2H), 3.31 - 3.16 (m, 1H), 2.97 (t, J = 18.9 Hz, 1H), 1.44 (s, 9H), 0.92 - 0.74 (m, 2H), -0.03 (s, 9H).
【0131】
調製4:(6S)−5−(tert−ブトキシカルボニル)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール−3−イル)−3−((2−(トリメチルシリル)エトキシ)メチル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸(7’)
【化18】
(a)5−(tert−ブチル)6−メチル(6S)−2−(6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール−3−イル)−3−((2−(トリメチルシリル)エトキシ)メチル)−3,4,6,7−テトラヒドロ−5H−イミダゾ[4,5−c]ピリジン−5,6−ジカルボキシレート(5’)
トルエン(500mL)中の5−(tert−ブチル)6−メチル(S)−2−ヨード−3−((2−トリメチルシリル)エトキシ)メチル)−3,4,6,7−テトラヒドロ−5H−イミダゾ[4,5−c]ピリジン−5,6−ジカルボキシレート(4’)(17.0g、31.65mmol)の撹拌溶液に、6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−3−(トリメチルスタンニル)−1H−インダゾール(3’)(20g、34.82mmol)を添加した。反応混合物をアルゴンで15分間にわたってパージし、Pd(PPh
3)
4(3.6g、3.16mmol)およびヨウ化銅(1.20g、6.33mmol)を添加し、反応混合物を120℃で16時間にわたって撹拌した。反応混合物をセライトに通して濾過し、濾液を減圧下で濃縮し、シリカゲルカラムクロマトグラフィー(レディセップ80gカラム)によって精製し、DCMで10分間にわたって、次いで、ヘキサン中15〜20%EtOAcで溶離して、表題中間体を黄色固体(15.10g、58%収率)として生じさせた。(m/z):[M+H]
+C
46H
58FN
5O
7Siの計算値840.41、実測値840.54。
1H NMR (400 MHz, クロロホルム-d) δ 8.43 (s, 1H), 7.54 - 7.33 (m, 6H), 7.20 (s, 1H), 7.05 (d, J = 11.4 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 6.09 - 5.69 (m, 3H), 5.59 - 5.36 (m, 1H), 5.20 (s, 2H), 4.97 - 4.80 (m, 1H), 4.12 - 3.90 (m, 1H), 3.68 (s, 3H), 3.57 - 3.47 (m, 2H), 3.40 (d, 1H), 3.21 - 3.05 (m, 1H), 2.74 - 2.34 (m, 4H), 2.25 - 2.07 (m, 2H), 1.94 - 1.65 (m, 4H), 1.54 (s, 9H), 1.12 - 0.99 (m, 3H), 0.91 - 0.75 (m, 2H), -0.12 (s, 9H).
【0132】
(b)6−ベンジル5−(tert−ブチル)(6S)−2−(6−(4−(ベンジルオキシ)−2−エチル−5−フルオロフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール−3−イル)−3−((2−(トリメチルシリル)エトキシ)メチル)−3,4,6,7−テトラヒドロ−5H−イミダゾ[4,5−c]ピリジン−5,6−ジカルボキシレート(6’)
丸底フラスコに、トルエン(400mL)中の前のステップの生成物(5’)(15.0g、17.85mmol)、ベンジルアルコール(46.3mL)およびTi(OEt)
4(7.15mL、35.70mmol)を添加し、反応混合物を48時間にわたって激しく還流させ(140℃)、水で希釈し、DCMで抽出した。懸濁液を濾過し、濾液をNa
2SO
4で乾燥させ、減圧下で濃縮し、シリカゲルカラムクロマトグラフィー(レディセップ80gカラム、ヘキサン中0〜5%EtOAc)によって20分間にわたって精製して、過剰なベンジルアルコールを除去し、次いで、ヘキサン中10〜15%EtOAcで溶離して、表題中間体を提供した。
1H NMRは構造と一致している。(m/z):[M+H]
+C
52H
62FN
5O
7Siの計算値916.44、実測値916.86。
【0133】
(c)(6S)−5−(tert−ブトキシカルボニル)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール−3−イル)−3−((2−(トリメチルシリル)エトキシ)メチル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸(7’)
1:1 IPA:THF(400mL)中の前のステップの生成物(6’)(21.0g、22.92mmol)の撹拌溶液に、Pd(OH)
2(5.0g)を添加した。反応混合物を、水素バルーン下、室温で16時間にわたって撹拌し、セライトに通して濾過し、減圧下で濃縮し、シリカゲルカラムクロマトグラフィー(レディセップ80gカラム、ヘキサン中25〜40%EtOAcで溶離)によって精製して、表題化合物(6.1g、8.29mmol)をオフホワイトの固体として提供した。(m/z):[M+H]
+C
38H
50FN
5O
7Siの計算値736.35、実測値736.5。
1H NMRは構造と一致している。(m/z):[M+H]
+C
38H
50FN
5O
7Siの計算値736.35、実測値736.5。
1H NMR (400 MHz, DMSO-d
6) δ 12.94 (s, 1H), 9.86 (s, 1H), 8.34 (t, J = 7.6 Hz, 1H), 7.66 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.03 (d, J = 11.8 Hz, 1H), 6.93 (d, J = 9.1 Hz, 1H), 6.11 - 5.77 (m, 3H), 5.33 - 5.06 (m, 1H), 4.87 - 4.56 (m, 1H), 4.52 - 4.14 (m, 1H), 3.97 - 3.69 (m, 2H), 3.53 - 3.40 (m, 2H), 3.23 - 3.11 (m, 1H), 3.11 - 2.93 (m, 1H), 2.47 - 2.44 (m, 2H), 2.13 - 1.96 (m, 2H), 1.68 (d, J = 70.9 Hz, 4H), 1.48 (s, 9H), 1.02 (t, J = 7.5 Hz, 3H), 0.86 - 0.68 (m, 2H), -0.17 (s, 9H).
【0134】
調製5:(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸(8’)
【化19】
5:1 ジオキサン:水(60mL)中の(6S)−5−(tert−ブトキシカルボニル)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1−(テトラヒドロ−2H−ピラン−2−イル)−1H−インダゾール−3−イル)−3−((2−(トリメチルシリル)エトキシ)−メチル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸(7’)(5.7g、7.75mmol)の撹拌溶液に、濃HCl(20mL)を0℃で滴下添加した。反応混合物を加温し、90℃で16時間にわたって撹拌し、真空下で蒸留して、粗残留物を提供し、これを、冷やしたジエチルエーテルおよびアセトニトリルで順次に磨砕して、表題化合物のHCl塩(3.6g、95%収率)を薄褐色固体として提供した。(m/z):[M+H]
+C
22H
20FN
5O
3の計算値422.16、実測値422.24。
1H NMR (400 MHz, D
20/DMSO-d
6) δ 8.22 (d, J = 8.4 Hz, 1H), 7.49 (s, 1H), 7.19 (d, J = 8.1 Hz, 1 H), 6.99 (d, J = 11.9 Hz, 1 H), 6.91 (d, J = 9.0 Hz, 1H), 4.56 - 4.51 (m, 1H), 4.36 (d, J = 15.5 Hz, 1H), 4.30 (d, J = 15.5 Hz, 1H), 3.35 - 3.25 (m, 1H), 3.15 - 3.05 (m, 1H), 2.4 - 2.55 (m, 2H), 0.97 (t, J = 7.5 Hz, 3H).
【0135】
調製6:(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−プロピル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸
【化20】
DMF(7mL)中の、(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,HCl(400mg、0.874mmol)(8’)およびプロピオンアルデヒド(0.095mL、1.310mmol)の溶液に、シアノ水素化ホウ素ナトリウム(165mg、2.62mmol)を添加し、反応混合物を室温で終夜撹拌した。水素化ホウ素ナトリウム(33mg、0.874mmol)を添加し、溶液を濃縮し、分取HPLCによって精製して、表題化合物のTFA塩(179mg、37%収率)を提供した。(m/z):[M+H]
+C
25H
26FN
5O
3の計算値464.20、実測値464.5。
【0136】
調製7:(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−イソプロピル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸
【化21】
DMF(7mL)中の、(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,HCl(8’)(400mg、0.874mmol)、アセトン(0.192mL、2.62mmol)および酢酸(0.150mL、2.62mmol)の溶液に、シアノ水素化ホウ素ナトリウム(274mg、4.37mmol)を添加し、反応混合物を室温で終夜撹拌した。水素化ホウ素ナトリウム(33mg、0.874mmol)を添加し、溶液を濃縮し、分取HPLCによって精製して、表題化合物のTFA塩(115mg、23%収率)を提供した。(m/z):[M+H]
+C
25H
26FN
5O
3の計算値464.20、実測値464.5。
【0137】
調製8:(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−メチル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸
【化22】
DMF(5mL)中の、(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,HCl(8’)(300mg、0.655mmol)および水中37wt.%ホルムアルデヒド(0.059mL、0.786mmol)の溶液に、シアノ水素化ホウ素ナトリウム(165mg、2.62mmol)を添加し、反応混合物を室温で終夜撹拌した。水素化ホウ素ナトリウム(25mg、0.655mmol)を添加し、溶液を濃縮し、フラッシュクロマトグラフィー(100gカラム、5〜75%ACN/水)によって精製して、表題化合物のTFA塩(85mg、24%収率)を提供した。(m/z):[M+H]
+C
23H
22FN
5O
3の計算値436.17、実測値436.45。
【0138】
調製9:(S)−5−エチル−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸
【化23】
DMF(7mL)中の、(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,HCl(8’)(450mg、0.983mmol)およびアセトアルデヒド(0.083mL、1.474mmol)の溶液に、シアノ水素化ホウ素ナトリウム(247mg、3.93mmol)を添加し、反応混合物を室温で終夜撹拌した。水素化ホウ素ナトリウム(112mg、2.95mmol)を添加し、溶液を濃縮し、1:1 酢酸:水+300μLのTFA(7mL)に溶解し、フラッシュクロマトグラフィー(100gカラム、5〜65%ACN/水)によって精製して、表題化合物のTFA塩(165mg、0.293mmol、30%収率)を提供した。(m/z):[M+H]
+C
24H
24FN
5O
3の計算値450.19、実測値450。
【0139】
(実施例2)
(S)−(3−(ジメチルアミノ)アゼチジン−1−イル)(2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−イソプロピル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−イル)メタノン
【化24】
DMF(4mL)中の、(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−イソプロピル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,TFA(179mg、0.310mmol)、N,N−ジメチルアゼチジン−3−アミン,2HCl(107mg、0.465mmol)およびDIPEA(0.162mL 0.930mmol)の溶液に、HATU(177mg、0.465mmol)を添加し、反応混合物を室温で終夜撹拌した。ヒドラジン(5当量)を添加し、反応混合物を濃縮し、分取HPLCによって精製して、表題化合物のTFA塩(63mg、26%収率)を提供した。(m/z):[M+H]
+C
30H
36FN
7O
2の計算値546.29、実測値546.7。
1H NMR (400 MHz, DMSO-d
6) δ 9.90 (s, 1H), 8.29 (dd, 1H), 7.34 (s, 1H), 7.07 (d, 1H), 7.01 (d,1H), 6.89 (d, 1H), 4.35 - 4.18 (m, 1H), 4.11 - 3.94 (m, 1H), 3.94 - 3.73 (m,3H), 3.70 - 3.57 (m, 2H), 3.06 - 2.94 (m, 2H), 2.87 - 2.66 (m, 2H), 2.48 - 2.40(m, 2H), 2.13 - 2.00 (m, 6H), 1.07 (t, 3H), 1.03 - 0.93 (m, 6H).
【0140】
(実施例4)
(S)−(3−(ジメチルアミノ)アゼチジン−1−イル)(2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−プロピル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−イル)メタノン
【化25】
DMF(1.5mL)中の、(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−プロピル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,TFA(30mg、0.052mmol)、N,N−ジメチルアゼチジン−3−アミン,2HCl(27.0mg、0.156mmol)およびDIPEA(0.064mL、0.364mmol)の溶液に、HATU(29.6mg、0.078mmol)を添加し、反応混合物を室温で終夜撹拌した。ヒドラジン(5当量)を添加し、反応混合物を室温で10分間にわたって撹拌し、濃縮し、分取HPLCによって精製して、表題化合物のTFA塩(29.6mg、74%収率)を提供した。(m/z):[M+H]
+C
30H
36FN
7O
2の計算値546.29、実測値546.6。
【0141】
(実施例8)
(S)−(3−(ジメチルアミノ)−3−メチルアゼチジン−1−イル)(2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−プロピル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−イル)メタノン
【化26】
DMF(1mL)中の、(S)−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−5−プロピル−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,TFA(30mg、0.052mmol)、N,N−3−トリメチルアゼチジン−3−アミン,2HCl(29.2mg、0.156mmol)およびDIPEA(0.073mL、0.416mmol)の溶液に、HATU(29.6mg、0.078mmol)を添加し、反応混合物を室温で終夜撹拌した。ヒドラジン(5当量)を添加し、反応混合物を濃縮し、分取HPLCによって精製して、表題化合物のTFA塩(24.7mg、60%収率)を提供した。(m/z):[M+H]
+C
31H
38FN
7O
2の計算値560.31、実測値560.2。
【0142】
(実施例8−22)
(S)−(3−(ジメチルアミノ)アゼチジン−1−イル)(5−エチル−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−イル)メタノン
【化27】
(S)−5−エチル−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,TFA(30mg、0.053mmol)、N,N−ジメチルアゼチジン−3−アミン(16mg、0.16mmol)およびDIPEA(0.037mL、0.213mmol)を、DMF(1.0ml)に溶解し、次いで、HATU(30.4mg、0.080mmol)を添加し、反応混合物を室温で6時間にわたって撹拌した。ヒドラジン(15μL)を添加し、次いで、溶液を濃縮し、分取HPLCによって精製して、表題化合物のTFA塩(27mg、66%収率)を提供した。(m/z):[M+H]+C
29H
34FN
7O
2の計算値532.6、実測値532.2。
【0143】
(実施例8−23)
(S)−(3−(ジメチルアミノ)−3−メチルアゼチジン−1−イル)(5−エチル−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−イル)メタノン
【化28】
(S)−5−エチル−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,TFA(30mg、0.053mmol)、N,N,3−トリメチルアゼチジン−3−アミン(18mg、0.16mmol)およびDIPEA(0.037mL、0.213mmol)を、DMF(1.0ml)に溶解し、次いで、HATU(30.4mg、0.080mmol)を添加し、反応混合物を室温で6時間にわたって撹拌した。ヒドラジン(15μL)を添加し、次いで、溶液を濃縮し、分取HPLCによって精製して、表題化合物のTFA塩(28mg、68%収率)を提供した。(m/z):[M+H]+C
30H
36FN
7O
2の計算値546.7、実測値546.2。
【0144】
(実施例8−14)
(S)−(5−エチル−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−イル)(3−(ピペリジン−1−イル)アゼチジン−1−イル)メタノン,2TFA
【化29】
(S)−5−エチル−2−(6−(2−エチル−5−フルオロ−4−ヒドロキシフェニル)−1H−インダゾール−3−イル)−4,5,6,7−テトラヒドロ−3H−イミダゾ[4,5−c]ピリジン−6−カルボン酸,TFA(40mg、0.071mmol)、1−(3−アゼチジニル)ピペリジン(29.9mg、0.213mmol)およびDIPEA(0.050ml、0.284mmol)を、DMF(1.5ml)に溶解し、次いで、HATU(40.5mg、0.106mmol)を添加し、反応混合物を室温で2時間にわたって撹拌した。ヒドラジン(0.011ml、0.355mmol)を添加し、反応混合物を室温で10分間にわたって撹拌した。次いで、溶液を濃縮し、分取HPLCによって精製して、表題化合物のTFA塩(36mg、63%収率)を提供した。(m/z):[M+H]+C
32H
38FN
7O
2の計算値572.7、実測値572.5。
【0145】
同様の合成方法を使用して、表1の化合物を調製した。下記の表において、任意の列における空白は、水素原子を示し、表の見出しとなる構造における
*は、キラル中心を示し、置換基の前の表記(R)または(S)は、その置換基が結合している炭素原子の配置を表示する。
【表1】
【0146】
生物学的アッセイ
本発明の化合物を、下記の生物学的アッセイのうちの1つまたは複数において特徴付けた。
【0147】
アッセイ1:生化学的JAKキナーゼアッセイ
4つのランサスクリーンJAK生化学的アッセイ(JAK1、2、3およびTyk2)のパネルを、共通のキナーゼ反応緩衝液(50mM HEPES、pH7.5、0.01%Brij−35、10mM MgCl
2および1mM EGTA)中で行った。組換えGSTタグ付きJAK酵素およびGFPタグ付きSTAT1ペプチド基質を、Life Technologiesから入手した。
【0148】
連続希釈化合物を、4つのJAK酵素のそれぞれおよび基質とともに、白色384ウェルマイクロプレート(Corning)中、周囲温度で1時間にわたってプレインキュベートした。その後、ATPを、1%DMSOを含む10μLの総体積で添加して、キナーゼ反応を開始した。JAK1、2、3およびTyk2についての最終酵素濃度は、それぞれ、4.2nM、0.1nM、1nMおよび0.25nMであり、使用した対応するKm ATP濃度は、25μM、3μM、1.6μMおよび10μMであるのに対し、基質濃度は、4つすべてのアッセイについて200nMである。キナーゼ反応を周囲温度で1時間にわたって進めさせた後、TR−FRET希釈緩衝液(Life Technologies)中のEDTA(10mM最終濃度)およびTb抗pSTAT1(pTyr701)抗体(Life Technologies、2nM最終濃度)の10μLの調製物を添加した。プレートを周囲温度で1時間にわたってインキュベートさせた後、エンビジョンリーダー(Perkin Elmer)で読み取った。放出比シグナル(520nm/495nm)を記録し、DMSOおよびバックグラウンド対照に基づくパーセント阻害値を算出するために利用した。
【0149】
用量応答分析のために、パーセント阻害データを化合物濃度に対してプロットし、IC
50値を4パラメーターロバスト当てはめモデルからプリズムソフトウェア(GraphPad Software)を用いて決定した。結果をpIC
50(IC
50の負の対数)として表現し、その後、チェン−プルソフ式を使用して、pK
i(解離定数Kiの負の対数)に変換した。
【0150】
4つのJAKアッセイのそれぞれにおいて、より低いK
i値またはより高いpK
i値を有する試験化合物は、JAK活性のより大きい阻害を示す。
【0151】
アッセイ2:細胞JAKI効力アッセイ
アルファスクリーンJAKI細胞効力アッセイを、BEAS−2Bヒト肺上皮細胞(ATCC)におけるインターロイキン−13(IL−13、R&D Systems)誘発性STAT6リン酸化を測定することによって行った。抗STAT6抗体(Cell Signaling Technologies)を、アルファスクリーンアクセプタービーズ(Perkin Elmer)とコンジュゲートさせたのに対し、抗pSTAT6(pTyr641)抗体(Cell Signaling Technologies)を、EZ−リンクスルホ−NHS−ビオチン(Thermo Scientific)を使用してビオチン化した。
【0152】
BEAS−2B細胞を、10%FBS(Hyclone)、100U/mLペニシリン、100μg/mLストレプトマイシン(Life Technologies)および2mMグルタマックス(Life Technologies)を補充した50%DMEM/50%F−12培地(Life Technologies)中、5%CO
2加湿インキュベーター内、37℃で増殖させた。アッセイの1日目、細胞を、25μLの培地を加えた白色ポリ−D−リシンコーティング384ウェルプレート(Corning)中に7,500細胞/ウェル密度で播種し、インキュベーター内で終夜接着させた。アッセイの2日目、培地を除去し、用量応答の試験化合物を含有する12μLのアッセイ緩衝液(ハンクス平衡塩類溶液/HBSS、25mM HEPESおよび1mg/mlウシ血清アルブミン/BSA)で置きかえた。化合物をDMSO中で連続希釈し、次いで、培地中でさらに1000倍希釈して、最終DMSO濃度を0.1%にした。細胞を、試験化合物とともに37℃で1時間にわたってインキュベートし、続いて、12μlの予め温めておいたIL−13(アッセイ緩衝液中80ng/mL)を刺激のために添加した。37℃で30分間にわたってインキュベートした後、アッセイ緩衝液(化合物およびIL−13を含有)を除去し、10μLの細胞溶解緩衝液(25mM HEPES、0.1%SDS、1%NP−40、5mM MgCl
2、1.3mM EDTA、1mM EGTA、ならびにRoche Diagnostics製のコンプリートウルトラミニプロテアーゼ阻害剤およびPhosSTOPを補充)。プレートを周囲温度で30分間にわたって振とうした後、検出試薬を添加した。ビオチン抗pSTAT6および抗STAT6コンジュゲートアクセプタービーズの混合物を最初に添加し、周囲温度で2時間にわたってインキュベートし、続いて、ストレプトアビジンコンジュゲートドナービーズ(Perkin Elmer)を添加した。最低でも2時間のインキュベーション後、アッセイプレートをエンビジョンプレートリーダーで読み取った。アルファスクリーン発光シグナルを記録し、DMSOおよびバックグラウンド対照に基づくパーセント阻害値を算出するために利用した。
【0153】
用量応答分析のために、パーセント阻害データを化合物濃度に対してプロットし、IC
50値を4パラメーターロバスト当てはめモデルからプリズムソフトウェアを用いて決定した。結果を、IC
50値の負の対数であるpIC
50として表現してもよい。
【0154】
このアッセイにおいて、より低いIC
50値またはより高いpIC
50値を有する試験化合物は、IL−13誘発性STAT6リン酸化のより大きい阻害を示す。
【0155】
In Vitroアッセイ結果
本発明の選択化合物を、4つのJAK酵素アッセイ;JAK1、JAK2、JAK3およびTyk2、ならびに上述したBEAS−2B細胞効力アッセイにおいて試験した。以下の表19に示されている通り、JAK1酵素効力は、BEAS−2Bアッセイにおいて汎JAK酵素活性および細胞効力の両方を予測するものであることが観察された。したがって、作製された化合物すべてを、JAK1酵素アッセイおよびBEAS−2B細胞アッセイにおいて試験し、大多数をJAK3酵素アッセイにおいても試験した。化合物のすべてが、0.04nMから0.6nMの間のJAK1 K
i値(9.2から10.4の間のpK
i)を呈した。JAK3酵素アッセイにおいて試験した化合物は、0.08nMから0.5nMの間のK
i値(9.3から10.1の間のpK
i)を呈した。試験した化合物は、BEAS−2Bアッセイにおいて、3nMから100nMの間のIC
50値(7から8.5の間のpIC
50)を呈した。
【表2】
【0156】
アッセイ3:マウスの血漿および肺における薬物動態
試験化合物の血漿および肺レベルならびにそれらの比を、下記の様式で決定した。Charles River Laboratories製のBALB/cマウスをアッセイにおいて使用した。試験化合物を、pH4クエン酸緩衝液中の20%プロピレングリコール中、0.2mg/mLの濃度で個々に製剤化し、50μLの投薬溶液を、経口吸引によってマウスの気管に導入した。投薬後種々の時点(典型的には、0.167、2、6、24時間)で、心臓穿刺を介して血液試料を取り出し、無傷の肺をマウスから切除した。血液試料を、およそ12,000rpmにて4℃で4分間にわたって遠心分離(Eppendorf遠心分離、5804R)して、血漿を収集した。肺をパッドで乾燥させ(padded dry)、秤量し、滅菌水中1:3の希釈で均質化した。試験化合物の血漿および肺レベルを、試験マトリックスにおいて標準曲線に構築された分析標準に対するLC−MS分析によって決定した。肺の血漿に対する比を、肺AUC(単位μg時/g)の血漿AUC(単位μg時/mL)に対する比として決定し、ここで、AUCは、試験化合物濃度対時間の曲線下面積として慣例的に定義される。本発明の化合物は、マウスの血漿における曝露よりも1から2桁大きい、肺における曝露を呈した。このアッセイにおいてプロファイルされた化合物のすべてが、約4.5から約14時間の間の半減期を呈した。
【0157】
アッセイ4:肺組織におけるIL−13誘発性pSTAT6誘導のネズミ(マウス)モデル
Il−13は、喘息の病態生理学の根本にある重要なサイトカインである(Kudlaczら、Eur. J. Pharmacol、2008年、582巻、154〜161頁)。IL−13は、細胞表面受容体と結合して、キナーゼのヤヌスファミリー(JAK)のメンバーを活性化させ、次いでこれが、STAT6をリン酸化し、その後、さらなる転写経路を活性化する。記述されているモデルにおいて、ある用量のIL−13を、マウスの肺に局所的に送達してSTAT6のリン酸化(pSTAT6)を誘発した。次いでこれを終点として測定する。
【0158】
Harlan製の成体balb/cマウスをアッセイにおいて使用した。研究1日目、動物にイソフルランで軽く麻酔をかけ、経口吸引を介してビヒクルまたは試験化合物(1mg/mL、数回の呼吸にわたって50μLの総体積)のいずれかを投与した。投薬後、動物を側臥位で寝かせ、麻酔からの完全な回復をモニターした後、ホームケージに戻した。4時間後、動物にもう一度短時間麻酔をかけ、経口吸引を介してビヒクルまたはIL−13(0.03μgの送達される総用量、50μLの総体積)のいずれかで負荷した後、麻酔からの回復をモニターし、ホームケージに戻した。ビヒクルまたはIL−13投与の1時間後、抗pSTAT6 ELISA(ウサギmAb捕捉/コーティング抗体;マウスmAb検出/報告抗体:抗pSTAT6−pY641;二次抗体:抗マウスIgG−HRP)を使用する両方のpSTAT6検出のために肺を採取し、アッセイ3において上述した通り、総薬物濃度について分析した。
【0159】
本発明の選択化合物をアッセイにおいて試験した。モデルにおける活性は、ビヒクル処置したIL−13負荷対照動物と比較した、5時間での処置動物の肺において存在するpSTAT6のレベルの減少によって証明される。ビヒクル処置、IL−13負荷した対照動物と、ビヒクル処置、ビヒクル負荷した対照動物との間の差異は、任意の所与の実験において、それぞれ0%および100%阻害効果を決定付けた。本発明の例示的な化合物をアッセイにおいて試験し、以下で文書化される通り、IL−13負荷後4時間でSTAT6リン酸化の阻害を呈した。
【0160】
JAK−STAT経路の気道炎症への関連を確認したら、IL13誘発性pSTAT6マウスモデルにおけるin vivo標的エンゲージメントを実証した化合物を、その後試験し、アレルゲン誘発性好酸球性炎症のマウスモデルにおいて効果的であることを立証する。
【0161】
In Vivoアッセイ結果
本発明の選択化合物を、薬物動態アッセイ(アッセイ3)および薬力学的アッセイ(アッセイ4)の両方において特徴付けた。投薬後同様の時点での薬物動態アッセイおよび薬力学的アッセイにおいて決定された肺内の試験化合物濃度間には、良好な相関関係が観察された。薬力学的アッセイにおけるマウス肺内の有意な化合物濃度の観察により、IL−13誘発性pSTAT6誘導の観察された阻害が、試験化合物の活性の結果であることを確認した。
【0162】
下記の表において、肺曝露の血漿曝露に対する比(アッセイ3)について、Aは、比100〜200を表示し、Bは、50から100の間の比を表示し、Cは、20から50の間の比を表示する。IL−13誘発性pSTAT6誘導のパーセント阻害(アッセイ4)について、Aは、60%から80%の間の阻害を表し、Bは、40%から60%の間の阻害を表し、Cは、25%から40%の間の阻害を表す。
【表3】
【0163】
アッセイ5:肺のAlternaria alternata誘発性好酸球性炎症のネズミモデル
気道好酸球増加症は、ヒト喘息の特質である。Alternaria alternataは、ヒトにおいて喘息を増悪させることができる真菌エアロアレルゲンであり、マウスの肺において好酸球性炎症を誘発する(Havauxら、Clin Exp Immunol.、2005年2月;139巻(2号):179〜88頁)。マウスにおいて、alternariaは、肺における組織常在性2型自然リンパ球細胞を間接的に活性化し、これが(例えば、IL−2およびIL−7)に応答して、JAK依存性サイトカイン(例えば、IL−5およびIL−13)を放出し、好酸球性炎症と協調することが実証されている(Bartemesら、J Immunol.、2012年2月1日;188巻(3号):1503〜13頁)。
【0164】
Taconic製の7〜9週齢の雄C57マウスを研究において使用した。研究1日目、動物にイソフルランで軽く麻酔をかけ、口腔咽頭吸引を介してビヒクルまたは試験化合物(0.03〜1.0mg/mL、数回の呼吸にわたって50μLの総体積)のいずれかを投与した。投薬後、動物を側臥位で寝かせ、麻酔からの完全な回復をモニターした後、ホームケージに戻した。1時間後、動物にもう一度短時間麻酔をかけ、口腔咽頭吸引を介してビヒクルまたはalternaria抽出物(200ugの送達される総抽出物、50μLの総体積)のいずれかで負荷した後、麻酔からの回復をモニターし、ホームケージに戻した。alternaria投与の48時間後、気管支肺胞洗浄液(BALF)を採取し、アドヴィア120血液学システム(Siemens)を使用してBALF中の好酸球をカウントした。
【0165】
IL−13−pSTAT6薬力学的アッセイにおいてin vivo活性を実証している本発明の選択化合物を、このalternariaアッセイにおいて試験した。モデルにおける活性は、ビヒクル処置したalternaria負荷対照動物と比較した、48時間での処置動物のBALF中に存在する好酸球のレベルの減少によって証明される。データは、ビヒクル処置したalternaria負荷BALF好酸球応答のパーセント阻害として表現される。パーセント阻害を算出するために、各条件についてのBALF好酸球の数を、ビヒクル処置したalternaria負荷BALF好酸球の平均パーセントに変換し、100パーセントから減算する。本発明の例示的な化合物をアッセイにおいて試験し、以下で文書化される通り、alternaria負荷後48時間でBALF好酸球カウントの阻害を呈した。
【0166】
In Vivoアッセイ結果
試験した化合物はすべて、alternaria誘発性BALF好酸球の広範な阻害(73%〜93%)を実証した。下記の表は、好酸球誘導のビヒクル処置したalternaria負荷レベルの統計的に有意な最大パーセント阻害を反映している。
【表4】
【0167】
アッセイ6:IL−5媒介性好酸球生存アッセイ
IL−5媒介性好酸球生存についての試験化合物の効力を、ヒト全血(AllCells)から単離されたヒト好酸球中で測定した。IL−5はJAKを介してシグナル伝達することから、このアッセイは、JAK細胞効力の尺度を提供する。
【0168】
ヒト好酸球を、健康なドナーの新鮮なヒト全血(AllCells)から単離した。血液を、0.9%塩化ナトリウム溶液(Sigma−Aldrich)中4.5%のデキストラン(Sigma−Aldrich)と混合した。赤血球を35分間にわたって沈降させておいた。白血球が豊富な上層を除去し、フィコール・パック(GE Healthcare)の上に重ね、600gで30分間にわたって遠心分離した。血漿および単核細胞層を除去した後、顆粒球層を水で溶解させて、いかなる汚染赤血球も除去した。ヒト好酸球単離キット(Miltenyi Biotec)を使用して、好酸球をさらに精製した。精製された好酸球の画分を、抗CD16 FITC(Miltenyi Biotec)とともに暗所にて4℃で10分間にわたってインキュベートした。LSRIIフローサイトメーター(BD Biosciences)を使用して、純度を分析した。
【0169】
細胞を、37℃、5%CO
2加湿インキュベーター内、10%熱失活ウシ胎仔血清(FBS、Life Technologies)、2mMグルタマックス(Life Technologies)、25mM HEPES(Life Technologies)および1×ペニシリン/ストレプトマイシン(Life Technologies)を補充したRPMI1640(Life Technologies)中で培養した。細胞を、培地(50μL)中に10,000細胞/ウェルで播種した。プレートを300gで5分間にわたって遠心分離し、上清を除去した。化合物をDMSO中で連続希釈し、次いで、さらに500倍希釈して、培地中2×最終アッセイ濃度とした。試験化合物(50μL/ウェル)を細胞に添加し、37℃、5%CO
2で1時間にわたってインキュベートし、続いて、予め温めておいたアッセイ培地(50μL)中のIL−5(R&D Systems;最終濃度1ng/mLおよび10pg/ml)を72時間にわたって添加した。
【0170】
サイトカイン刺激後、細胞を300gで5分間にわたって遠心分離し、冷DPBS(Life Technologies)で2回洗浄した。生存率およびアポトーシスにアクセスするために、細胞を、ヨウ化プロピジウム(Thermo Fisher Scientific)およびAPCアネキシンV(BD Biosciences)とともにインキュベートし、LSRIIフローサイトメーター(BD Biosciences)を使用して分析した。IC
50値を、パーセント細胞生存率対化合物濃度の生存曲線の分析から決定した。データは、pIC
50(IC
50の負の10進対数)値として表現される。実施例2の化合物は、10pg/mlのIL−5の存在下で7.6±0.5のpIC
50値および1ng/mlのIL−5の存在下で6.2±0.1のpIC
50値を呈した。
【0171】
アッセイ7:ヒト3D気道培養物におけるIFNγおよびIL−27誘発性ケモカインCXCL9およびCXCL10の阻害
EpiAirway組織培養物を、Mattek(AIR−100)から入手した。培養物は、喘息ドナーに由来するものであった。細胞培養物インサートにおいて、ヒト由来気管/気管支上皮細胞を増殖させ、多孔膜支持体上で分化させて、細胞の下に温められた培養培地および上に気体試験雰囲気を持つ気液界面を可能にした。組織を、37℃、5%CO2加湿インキュベーター内、維持培地(Mattek、AIR−100−MM)中で培養した。4人のドナーを試験した。0日目、組織培養物を、10μM、1μMおよび/または0.1μMの試験化合物で処理した。化合物を、ジメチルスルホキシド(DMSO、Sigma)中で0.1%の最終濃度に希釈した。0.1%のDMSOをビヒクル対照として使用した。試験化合物を、培養物とともに、37℃、5%CO
2で1時間にわたってインキュベートし、続いて、IFNγ(R&D Systems)またはIL−27(R&D Systems)を含有する予め温めておいた培地を、100ng/mlの最終濃度で添加した。組織培養物を8日間にわたって維持した。培地を、2日ごとに、化合物およびIFNγまたはIL−27を含有する新鮮培地で置きかえた。8日目、組織培養物および上清を分析のために採取した。ルミネックス分析(EMD Millipore)を使用して、上清試料をCXCL10(IP−10)およびCXCL9(MIG)についてアッセイした。データは、%阻害+/−標準偏差(±STDV)として表現される。パーセント阻害を、ビヒクル処理細胞と比較したIFNγまたはIL−27誘発性CXCL10またはCXCL9分泌に対する化合物阻害効力によって決定した。データは、3または4人のドナーからの平均である。実施例2の化合物は、ビヒクル対照と比較した場合、101%±2.0(10μMで)、65%±29(μMで)および6%±11(0.1μMで)だけ、IFNγ誘発性CXCL10分泌を阻害することができた。実施例2の化合物は、ビヒクルと比較した場合、93%±13(10μMで)および24%±49(1μMで)だけ、IFNγ誘発性CXCL9分泌を阻害することができた。実施例2の化合物は、ビヒクル対照と比較した場合、108%±11(10μMで)、101%±6(1μMで)および69%±10(0.1μMで)だけ、IL−27誘発性CXCL10分泌を阻害することができた。実施例2の化合物は、ビヒクル対照と比較した場合、100%±0(10μMで)、97%±3.6(1μMで)および57%±28(0.1μMで)だけ、IL−27誘発性CXCL9分泌を阻害することができた。
【0172】
アッセイ8:細胞JAK効力アッセイ:ヒトPBMCにおけるIL−2/抗CD3刺激IFNγの阻害
インターロイキン−2(IL−2)/抗CD3刺激インターフェロンガンマ(IFNγ)の阻害についての試験化合物の効力を、ヒト全血(Stanford Blood Center)から単離したヒト末梢血単核細胞(PBMC)において測定した。IL−2はJAKを介してシグナル伝達することから、このアッセイは、JAK細胞効力の尺度を提供する。
【0173】
(1)ヒト末梢血単核細胞(PBMC)を、健康なドナーのヒト全血から、フィコール勾配を使用して単離した。細胞を、37℃、5%CO
2加湿インキュベーター内、10%熱失活ウシ胎仔血清(FBS、Life Technologies)、2mMグルタマックス(Life Technologies)、25mM HEPES(Life Technologies)および1×ペニシリン/ストレプトマイシン(Life Technologies)を補充したRPMI(Life Technologies)中で培養した。細胞を、培地(50μL)中に200,000細胞/ウェルで播種し、1時間にわたって培養した。化合物をDMSO中で連続希釈し、次いで、培地中でさらに500倍希釈した(2×最終アッセイ濃度に)。試験化合物(100μL/ウェル)を細胞に添加し、37℃、5%CO
2で1時間にわたってインキュベートし、続いて、予め温めておいたアッセイ培地(50μL)中のIL−2(R&D Systems;最終濃度100ng/mL)および抗CD3(BD Biosciences;最終濃度1μg/mL)を24時間にわたって添加した。
【0174】
(2)サイトカイン刺激後、細胞を500gで5分間にわたって遠心分離し、上清を除去し、−80℃で冷凍した。IL−2/抗CD3に応答した試験化合物の阻害効力を決定するために、ELISA(R&D Systems)を介して上清IFNγ濃度を測定した。IC
50値を、IFNγの濃度対化合物濃度の阻害曲線の分析から決定した。データは、pIC
50(IC
50の負の10進対数)値として表現される。実施例2の化合物は、このアッセイにおいて約7.1のpIC
50値を呈した。
【0175】
アッセイ9:細胞JAK効力アッセイ:CD4+T細胞におけるIL−2刺激pSTAT5の阻害
インターロイキン−2(IL−2)/抗CD3刺激STAT5リン酸化の阻害についての試験化合物の効力を、ヒト全血(Stanford Blood Center)から単離したヒト末梢血単核細胞(PBMC)中のCD4陽性(CD4+)T細胞において、フローサイトメトリーを使用して測定した。IL−2はJAKを介してシグナル伝達することから、このアッセイは、JAK細胞効力の尺度を提供する。
【0176】
CD4+T細胞を、フィコエリトロビリン(PE)コンジュゲート抗CD4抗体(クローンRPA−T4、BD Biosciences)を使用して同定し、一方、アレクサフルオル647コンジュゲート抗pSTAT5抗体(pY694、クローン47、BD Biosciences)を使用して、STAT5リン酸化を検出した。
【0177】
(1)抗CD3によるサイトカイン刺激を24時間の代わりに30分間にわたって実施したことを除いて、アッセイ8段落(1)のプロトコールに準拠した。
【0178】
(2)サイトカイン刺激後、細胞を、予め温めておいた固定溶液(200μL;BD Biosciences)により、37℃、5%CO
2で10分間にわたって固定し、DPBS緩衝液(1mL、Life Technologies)で2回洗浄し、氷冷パーム緩衝液III(1000μL、BD Biosciences)に4℃で30分間にわたって再懸濁した。細胞を、DPBS中2%FBS(FACS緩衝液)で2回洗浄し、次いで、抗CD4 PE(1:50希釈)および抗CD3アレクサフルオル647(1:5希釈)を含有するFACS緩衝液(100μL)に、暗所にて室温で60分間にわたって再懸濁した。インキュベーション後、細胞をFACS緩衝液中で2回洗浄した後、LSRIIフローサイトメーター(BD Biosciences)を使用して分析した。IL−2/抗CD3に応答した試験化合物の阻害効力を決定するために、pSTAT5のメジアン蛍光強度(MFI)をCD4+T細胞において測定した。IC
50値を、MFI対化合物濃度の阻害曲線の分析から決定した。データは、pIC
50(IC
50の負の10進対数)値として表現される。実施例2の化合物は、このアッセイにおいて約7.3のpIC
50値を呈した。
【0179】
アッセイ10:細胞JAK効力アッセイ:CD3+T細胞におけるIL−4刺激pSTAT6の阻害
インターロイキン−4(IL−4)刺激STAT6リン酸化の阻害についての試験化合物の効力を、ヒト全血(Stanford Blood Center)から単離したヒト末梢血単核細胞(PBMC)中のCD3陽性(CD3+)T細胞において、フローサイトメトリーを使用して測定した。IL−4はJAKを介してシグナル伝達することから、このアッセイは、JAK細胞効力の尺度を提供する。
【0180】
CD3+T細胞を、フィコエリトロビリン(PE)コンジュゲート抗CD3抗体(クローンUCHT1、BD Biosciences)を使用して同定し、一方、アレクサフルオル647コンジュゲート抗pSTAT6抗体(pY641、クローン18/P、BD Biosciences)を使用して、STAT6リン酸化を検出した。
【0181】
ヒト末梢血単核細胞(PBMC)を、アッセイ8および9のように、健康なドナーのヒト全血から単離した。細胞を、培地(200μL)中に250,000細胞/ウェルで播種し、1時間にわたって培養し、次いで、種々の濃度の試験化合物を含有するアッセイ培地(50μL)(0.1%ウシ血清アルブミン(Sigma)、2mMグルタマックス、25mM HEPESおよび1×ペニシリンストレプトマイシンを補充したRPMI)に再懸濁した。化合物をDMSO中で連続希釈し、次いで、アッセイ培地中でさらに500倍希釈した(2×最終アッセイ濃度に)。試験化合物(50μL)を、細胞とともに、37℃、5%CO
2で1時間にわたってインキュベートし、続いて、予め温めておいたアッセイ培地中のIL−4(50μL)(R&D Systems;最終濃度20ng/mL)を30分間にわたって添加した。サイトカイン刺激後、細胞を、予め温めておいた固定溶液(100μL)(BD Biosciences)により、37℃、5%CO
2で10分間にわたって固定し、FACS緩衝液(1mL)(DPBS中2%FBS)で2回洗浄し、氷冷パーム緩衝液III(1000μL)(BD Biosciences)に4℃で30分間にわたって再懸濁した。細胞をFACS緩衝液で2回洗浄し、次いで、抗CD3 PE(1:50希釈)および抗pSTAT6アレクサフルオル647(1:5希釈)を含有するFACS緩衝液(100μL)に、暗所にて室温で60分間にわたって再懸濁した。インキュベーション後、細胞をFACS緩衝液中で2回洗浄した後、LSRIIフローサイトメーター(BD Biosciences)を使用して分析した。
【0182】
IL−4に応答した試験化合物の阻害効力を決定するために、pSTAT6のメジアン蛍光強度(MFI)をCD3+T細胞において測定した。IC
50値を、MFI対化合物濃度の阻害曲線の分析から決定した。データは、pIC
50(IC
50の負の10進対数)として表現される。実施例2の化合物は、このアッセイにおいて7.9のpIC
50値を呈した。
【0183】
アッセイ11:細胞JAK効力アッセイ:CD3+T細胞におけるIL−6刺激pSTAT3の阻害
アッセイ10のものに類似するプロトコールを使用して、インターロイキン−6(interleuken-6)(IL−6)刺激STAT3リン酸化の阻害についての試験化合物の効力を決定した。アレクサフルオル647コンジュゲート抗pSTAT3抗体(pY705、クローン4/P、BD Biosciences)を使用して、STAT3リン酸化を検出した。
【0184】
実施例2の化合物は、このアッセイにおいて7.2のpIC
50値を呈した。
【0185】
結晶構造
ヒトJAK1と結合している実施例2の化合物の共結晶構造を、2.28Åの分解能で取得した。リガンドは、ATP結合部位において結合することが観察された。ドナーおよびアクセプター原子間の3.5Åまたはそれ未満の距離に基づき、7つの特異的な水素結合相互作用を同定した。特に留意すべきは、実施例2の化合物の環外アミドのカルボニルとJAK1のArg879の側鎖との間で水素結合相互作用が同定されたことである。初期のモデリング研究において、この相互作用は、他のチロシンキナーゼよりもJAK1に対して選択性を提供する手法として提案されていたが、そうでなければ、密接に関連しているキナーゼ(例えば、TRKA、VEGFR、ABL1)は、同等の場所においてアルギニン残留物を保有しなかった。結晶構造における水素結合相互作用の観察結果および環外アミドを保有しないシリーズと比較したキノーム選択性の改善は、この設計仮説を立証する。
【0186】
本発明について、その具体的な態様または実施形態を参照して記述してきたが、本発明の真の趣旨および範囲から逸脱することなく、種々の変更が為され得るまたは同等物で代用され得ることが、当業者には理解されるであろう。加えて、適用される特許法および規制によって許可される程度まで、本明細書において引用されているすべての刊行物、特許および特許出願は、各文書が参照により本明細書に個々に組み込まれたのと同程度まで、参照によりその全体が本明細書に組み込まれる。