(58)【調査した分野】(Int.Cl.,DB名)
レンギョウ200〜300重量部、マオウ60〜100重量部、ダイオウ40〜60重量部、ギョセイソウ200〜300重量部、キンギンカ200〜300重量部、バンランコン200〜300重量部、コウカッコウ60〜100重量部、メンマカンジュウ200〜300重量部、コウケイテン60〜100重量部、ハッカノウ5〜9重量部、クキョウニン60〜100重量部、カンゾウ60〜100重量部、セッコウ200〜300重量部から製造された漢方薬組成物から8種の成分を分離する方法であって、
(1)前記漢方薬組成物の総エキスをマクロポーラス樹脂で吸着し、水、10%エタノール、30%エタノール、50%エタノールで溶出し、各部分の溶出液をそれぞれ採取し、濃縮させて各部分のエキスを得るステップと、
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキスに、ODS逆相シリカゲルを加えて攪拌し、サンプルを自然乾燥させた後、サンプルをローディングし、逆相オープンカラムを用いて分離し、体積比が20:80、40:60、60:40、80:20のメタノール−水、100%メタノールで溶出し、順に分画A〜分画Eを得るステップと、
(3)ステップ(2)で得た分画Aのサンプルに、ODS逆相シリカゲルを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより各三角フラスコ中の分画を検証し、同じ成分の分画を合わせて再度減圧濃縮させ、溶出順に分画A−1〜分画A−7を得るステップと、
(4)ステップ(3)で得た分画A−2のサンプルにシリカゲルを加えて攪拌し、シリカゲルカラムに入れて、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより各分画を検証し同じ成分の分画を合わせ、溶出順に分画A−2−1〜分画A−2−4を得るステップと、
(5)ステップ(4)で得た分画A−2−2のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行い、
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを取得し、
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを取得し、
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得るステップと、
(6)ステップ(4)で得た分画A−2−3のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収し、17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドであり、10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得るステップと、
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、化合物8であるカフェー酸エチルを取得し、14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得るステップとを含むことを特徴とする8種の成分の分離方法。
前記漢方薬組成物は、レンギョウ200重量部、キンギンカ300重量部、バンランコン200重量部、ダイオウ40重量部、コウカッコウ60重量部、メンマカンジュウ300重量部、コウケイテン100重量部、ハッカノウ9重量部、マオウ60重量部、クキョウニン100重量部、ギョセイソウ200重量部、カンゾウ100重量部、セッコウ200重量部から製造されることを特徴とする請求項1又は2に記載の8種の成分の分離方法。
前記漢方薬組成物は、レンギョウ300重量部、キンギンカ200重量部、バンランコン300重量部、ダイオウ60重量部、コウカッコウ100重量部、メンマカンジュウ200重量部、コウケイテン60重量部、ハッカノウ5重量部、マオウ100重量部、クキョウニン60重量部、ギョセイソウ300重量部、カンゾウ60重量部、セッコウ300重量部から製造されることを特徴とする請求項1又は2に記載の8種の成分の分離方法。
前記漢方薬組成物は、レンギョウ278重量部、キンギンカ294重量部、バンランコン285重量部、ダイオウ55重量部、コウカッコウ95重量部、メンマカンジュウ290重量部、コウケイテン87重量部、ハッカノウ8.5重量部、マオウ88重量部、クキョウニン80重量部、ギョセイソウ284重量部、カンゾウ95重量部、セッコウ277重量部から製造されることを特徴とする請求項1又は2に記載の8種の成分の分離方法。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本発明は、漢方薬組成物から8種の化合物を分離する方法を提供する。
【課題を解決するための手段】
【0004】
当該漢方薬組成物は、レンギョウ200〜300重量部、マオウ60〜100重量部、ダイオウ(Rheum rhabarbarum)40〜60重量部、ギョセイソウ(Houttuynia cordata)200〜300重量部、キンギンカ200〜300重量部、バンランコン(Isatis tinctoria)200〜300重量部、コウカッコウ(Pogostemon cablin)60〜100重量部、メンマカンジュウ(Dryopteris crassirhizoma)200〜300重量部、コウケイテン(Rhodiola rosea)60〜100重量部、ハッカノウ(メントール)5〜9重量部、クキョウニン(Armeniacae Semen)60〜100重量部、カンゾウ(Glycyrrhiza uralensis)60〜100重量部、セッコウ200〜300重量部から製造される。
【0005】
本発明に係る分離方法は、以下のステップ(1)〜(7)を含む。
(1)当該漢方薬組成物の総エキスをAB−8マクロポーラス樹脂で吸着し、水、10%エタノール、30%エタノール、50%エタノールで溶出し、各部分の溶出液をそれぞれ採取し、濃縮させて各部分のエキスを得る。
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキスに、逆相シリカゲルODS−AQ−HGを加えて攪拌し、サンプルを自然乾燥させた後、サンプルをローディングし、逆相ODS−AQ−HGオープンカラムを用いて分離し、体積比が20:80、40:60、60:40、80:20のメタノール−水、100%メタノールで溶出し、順に分画A〜分画Eを得る。
(3)ステップ(2)で得た分画Aのサンプルに、逆相シリカゲルODS−AQ−HGを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより検証し分画を合併して再度減圧濃縮させて、分画A−1〜分画A−7を得る。
(4)ステップ(3)で得た分画A−2のサンプルにシリカゲルを加えて攪拌し、シリカゲルカラムに入れて、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより検証し分画を合併して分画A−
2−1〜分画A−
2−4を得る。
(5)ステップ(4)で得た分画A−
2−2のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行う。
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを得る。
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを得る。
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得る。
(6)ステップ(4)で得た分画A−
2−3のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収する。17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドである。10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得る。
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、
化合物8であるカフェー酸エチルを得る。14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得る。
【0006】
好ましくは、本発明に係る分離方法は、以下のステップ(1)〜(7)を含む。
(1)当該漢方薬組成物の総エキス5kgをAB−8マクロポーラス樹脂で吸着し、水150L、10%エタノール87.5L、30%エタノール225L、50%エタノール250Lで溶出し、濃縮させて各部分のエキスを得る。
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキス200gに、200gの逆相シリカゲルODS−AQ−HG S−50μmを加えて攪拌し、ODS化サンプルを自然乾燥させた後、サンプルをローディングし、逆相ODS−AQ−HG S−50μmオープンカラムを用いて分離し、サンプル層とブランク層の高さの比を1:4として、減圧の方式により体積比が20:80のメタノール−水6Lで溶出し、同40:60の7Lで溶出し、同60:40の7Lで溶出し、同80:20の5Lで溶出し、100%メタノール3Lで溶出して、順に分画A〜分画Eを得る。
(3)ステップ(2)で得た分画Aのサンプル50.0gに、50gの逆相シリカゲルODS−AQ−HG S−50μmを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、分離カラムのフィラーにODS−AQ−HG S−50μmを用い、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより検証し分画を合併して再度減圧濃縮させて、分画A−1〜分画A−7を得る。
(4)ステップ(3)で得た分画A−2のサンプル3.2gに200〜300メッシュのシリカゲル6.4gを加えて攪拌し、シリカゲルカラムに入れて、サンプル層とブランク層の高さの比を1:50として、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより検証し分画を合併して分画A−
2−1〜分画A−
2−4を得る。
(5)ステップ(4)で得た分画A−
2−2のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行う。
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを得る。
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを得る。
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得る。
(6)ステップ(4)で得た分画A−
2−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収する。17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドである。10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得る。
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、
化合物8であるカフェー酸エチルを得る。14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得る。
【0007】
好ましくは、当該漢方薬組成物は、以下の重量部の生薬から製造される。
レンギョウ200、キンギンカ300、バンランコン200、ダイオウ40、コウカッコウ60、メンマカンジュウ300、コウケイテン100、ハッカノウ9、マオウ60、クキョウニン100、ギョセイソウ200、カンゾウ100、セッコウ200。
【0008】
好ましくは、当該漢方薬組成物は、以下の重量部の生薬から製造される。
レンギョウ300、キンギンカ200、バンランコン300、ダイオウ60、コウカッコウ100、メンマカンジュウ200、コウケイテン60、ハッカノウ5、マオウ100、クキョウニン60、ギョセイソウ300、カンゾウ60、セッコウ300。
【0009】
好ましくは、当該漢方薬組成物は、以下の重量部の生薬から製造される。
レンギョウ278、キンギンカ294、バンランコン285、ダイオウ55、コウカッコウ95、メンマカンジュウ290、コウケイテン87、ハッカノウ8.5、マオウ88、クキョウニン80、ギョセイソウ284、カンゾウ95、セッコウ277。
【0010】
本発明に係る漢方薬組成物の総エキスは、以下のステップで調製される。
(1)重量比で生薬を秤量し、洗浄し、適宜破砕する。
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備える。
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備える。
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.10〜1.15であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備える。
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.15〜1.20であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備える。
【発明の効果】
【0011】
本発明の分離方法は、10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)、アロエ−エモジン−8−O−β−D−グルコピラノシド、クェルシトリン、マタイレシノール−4′−O−グルコシド(matairesinol−4′−O−glucoside)、リクイリチンアピオシド、エピボゲロシド(epi−vogeloside)、ボゲロシド(vogeloside)、カフェー酸エチルの8種の化合物を分離できる。
【発明を実施するための形態】
【0012】
(実施例1)
レンギョウ20kg、キンギンカ30kg、バンランコン20kg、ダイオウ4kg、コウカッコウ6kg、メンマカンジュウ30kg、コウケイテン10kg、ハッカノウ0.9kg、マオウ6kg、クキョウニン10kg、ギョセイソウ20kg、カンゾウ10kg、セッコウ20kgを秤量し、以下のプロセスで抽出する。
(1)重量比で生薬を秤量し、洗浄し、適宜破砕する。
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備える。
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備える。
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.15であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備える。
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.20であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備える。
【0013】
分離方法のステップは以下のとおりである。
1.装置と材料
Bruker Alpha赤外線分光計(スイスBruker社)、Bruker AVIIIHD 600核磁気共鳴分光計(スイスBruker社)、Synapt G2−S Mass質量分析計(米Waters社)、Combi Flash Rf中低圧分取液体クロマトグラフ(米Teledvne ISCO社)、NP7000分取液体クロマトグラフ(江蘇漢邦科技有限公司)、Milli−Q純水装置(米Millipore社)、AL204分析用電子天秤(米Mettler Toledo社)、YMC ODS−
AQ−HG 50μm逆相シリカゲル(日本YMC)、カラムクロマトグラフィー用シリカゲル(100〜200メッシュ、200〜300メッシュ、青島海洋化工厂)、薄層クロマトグラフィー用シリカゲルシートGF
254(青島海洋化工厂)、YMC−Pack R&D ODS−A(250×20mm、S−10μm、日本YMC)、本発明の漢方薬組成物の総エキス(石家庄以嶺薬業股フン有限公司、ロットナンバー:B1509001)、クロマトグラフィー用アセトニトリル、メタノール(上海阿達瑪斯試剤公司)、分析試薬(北京化工厂)。
【0014】
2.抽出と分離
(1)当該漢方薬組成物の総エキス5kgをAB−8マクロポーラス樹脂で吸着し、水150L、10%エタノール87.5L、30%エタノール225L、50%エタノール250Lで溶出し、濃縮させて各部分のエキスを得る。
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキス200gに、200gの逆相シリカゲルODS−AQ−HG S−50μmを加えて攪拌し、ODS化サンプルを自然乾燥させた後、サンプルをローディングし、逆相ODS−AQ−HG S−50μmオープンカラムを用いて分離し、サンプル層とブランク層の高さの比を1:4として、減圧の方式により体積比が20:80のメタノール−水6Lで溶出し、同40:60の7Lで溶出し、同60:40の7Lで溶出し、同80:20の5Lで溶出し、100%メタノール3Lで溶出して、順に分画A〜分画Eを得る。
(3)ステップ(2)で得た分画Aのサンプル50.0gに、50gの逆相シリカゲルODS−AQ−HG S−50μmを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、分離カラムのフィラーにODS−AQ−HG S−50μmを用い、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより検証し分画を合併して再度減圧濃縮させて、分画A−1〜分画A−7を得る。
(4)ステップ(3)で得た分画A−2のサンプル3.2gに200〜300メッシュのシリカゲル6.4gを加えて攪拌し、シリカゲルカラムに入れて、サンプル層とブランク層の高さの比を1:50として、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより検証し分画を合併して分画A−
2−1〜分画A−
2−4を得る。
(5)ステップ(4)で得た分画A−
2−2のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行う。
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを得る。
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを得る。
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得る。
(6)ステップ(4)で得た分画A−
2−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収する。17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドである。10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得る。
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、
化合物8であるカフェー酸エチルを得る。14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得る。
【0015】
3.構造同定
3.1.新規化合物の構造同定
化合物1:淡黄色の粉末、UV λ
max(MeOH):228、312nm。赤外分光測定でヒドロキシ基(3330cm
−1)、α,β−不飽和カルボニル基(1680、1630cm
−1)、ベンゼン環(1603、1514cm
−1)を有することが示される。HR−ESI−MS m/z:521.1699[M−H]
−(計算値:521.1659)で、NMRデータと組み合わせて当該化合物の分子式をC
25H
30O
12に決定する。不飽和度は11である。
【0016】
1H−NMR(DMSO−d
6,600MHz)スペクトル(表1)より、当該化合物は1対のトランス二重結合δ7.56(1H,d,J=16.2Hz)と6.39(1H,d,J=16.2Hz)、AB系芳香族水素δ7.55(2H,d,J=8.4Hz)と6.79(2H,d,J=8.4Hz)を含むことが示される。
1H−NMRスペクトルの化学シフトは4.52(1H,d,J=7.8Hz)であり、糖の末端水素として推定される。
【0017】
13C−NMR(DMSO−d
6,150MHz)スペクトル(表1)より、当該化合物は2つの共役カルボニル炭素(δ
C:168.4、167.2)と、2つの明確な断片とを含むことが示される。δ
C:116.2(2C)、130.8(2C)、160.2はパラヒドロキシフェニル基断片、δ
C:99.3、77.6、77.1、73.6、70.4,61.6はグルコシル基断片として推定される。
【0018】
HMBCにより、二重結合δ
H7.56、6.39がフェニル基炭素δ
C125.5に関係があり、二重結合δ
H6.39と−CH
2−δ
H4.12はいずれもカルボニル基δ
C167.2に関係があることが判明し、上記の断片が他のC、H化学シフトと関係がないため、当該断片は独立なパラヒドロキシシンナモイル基断片で、残りの部分から糖基断片を除去したものは母核であると推定される。計算の結果、母核の不飽和度は4である(1つのカルボニル基と二重結合を含む)ため、当該母核が二環構造であると推定される。HSQC、HMBCにより帰属を決定し関連付けを行うと、当該化合物はイリドイド系化合物であると推定される。文献を検索すると、当該化合物の母核はアドキソシド酸(adoxosidic acid)であることが決定される。
【0019】
残りの断片はパラヒドロキシケイ皮酸であり、しかも母核のアドキソシド酸(adoxosidic acid)の10位にエステルを形成していることが分かる。SciFinder、Reaxysのデータベースを検索して、当該化合物が新規化合物で(本試験では当該化合物の配置が確認されず、後続の研究において確認する)、10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)であることが決定される。
【0020】
[表1]化合物1のNMRデータ
a 化学シフトの入れ替えが必要である可能性あり。
【0022】
3.2既存化合物の構造同定
化合物2:黄色の粉末、ESI−MS m/z:431[M−H]
−。NMRデータと組み合わせて当該化合物の分子式をC
21H
20O
10に決定する。
1H−NMR(DMSO−d
6,600MHz)δ
H:12.88(1H,s,OH),7.89(1H,dd,J=1.2,8.4Hz,H−5),7.86(1H,t,J=7.8Hz,H−6),7.72(1H,dd,J=1.2,8.4Hz,H−7),7.66(1H,brs,H−4),7.28(1H,brs,H−2),5.17(1H,d,J=7.8Hz,anomeric−H),4.62(2H,s,CH
2OH),3.72〜3.23(Glc−H)。
13C−NMR(DMSO−d
6,150MHz)δ
H:188.8(C−9),182.6(C−10),162.2(C−1),158.7(C−8),152.7(C−3),136.4(C−6),135.3(C−10a),132.7(C−4a),122.9(C−7),121.2(C−2),121.0(C−5),116.4(C−8a,C−9a),100.9(C−1′),77.7(C−5′),77.0(C−3′),73.7(C−2′),70.0(C−4′),62.5(CH
2OH),61.0(C−6′)。
上記の
1H−NMRスペクトルの特徴及び
13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をアロエ−エモジン−8−O−β−D−グルコピラノシドに同定する。
【0023】
化合物3:黄色の粉末、ESI−MSm/z:447[M−H]
−。NMRデータと組み合わせて当該化合物の分子式をC
21H
20O
11に決定する。
1H−NMR(DMSO−d
6,600MHz)δ
H:12.66(1H,s,5−OH),7.31(1H,d,J=2.4Hz,H−2′),7.26(1H,d,J=2.4,8.4Hz,H−6′),6.87(1H,d,J=8.4Hz,H−5′),6.39(1H,d,J=2.4Hz,H−8),6.21(1H,d,J=2.4Hz,H−6),5.26(1H,d,J=1.8Hz,anomeric−H),0.82(3H,d,J=6.0Hz,CH
3)。
13C−NMR(DMSO−d
6,150MHz)δ
C:178.2(C−4),164.6(C−7),161.7(C−5),157.7(C−2),156.9(C−9),148.9(C−4′),145.6(C−3′),134.7(C−3),121.5(C−6′),121.2(C−1′),116.1(C−5′),115.9(C−2′),104.5(C−10),102.3(C−1′′),99.1(C−6),94.1(C−8),71.6(C−4′′),71.0(C−3′′),70.8(C−2′′),70.5(C−5′′),17.9(C−6′′)。
上記の
1H−NMRスペクトルの特徴及び
13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をクェルシトリンに同定する。
【0024】
化合物4:黄色の粉末、ESI−MSm/z:519[M−H]
−。NMRデータと組み合わせて当該化合物の分子式をC
26H
32O
11に決定する。
1H−NMR(DMSO−d
6,600MHz)δ
H:6.99(1H,d,J=8.4Hz,H−5),6.78(1H,d,J=1.8Hz,H−2′),6.67(2H,m,H−5,H−6′),6.63(1H,s,H−2),6.50(1H,dd,J=1.8,8.4Hz,H−6),4.84(1H,d,J=7.8Hz,H−1′′),4.09(1H,t,J=7.8Hz,H−9a),3.86(1H,t,J=8.4Hz,H−9b),3.72(6H,d,J=2.4Hz,2×OCH
3)。
13C−NMR(DMSO−d
6,150MHz)δ
C:178.9(C−9′),149.1(C−3′),147.9(C−3),145.7(C−4′),145.4(C−4),132.2(C−1′),130.0(C−1),121.8(C−6′),121.2(C−6),115.9(C−5′),115.6(C−5),114.3(C−2′),113.1(C−2),100.6(C−1′′),77.4(C−5′′),77.3(C−3′′),73.7(C−2′′),71.1(C−9),70.1(C−4′′),61.1(C−6′′),56.1(OCH
3),56.0(OCH
3),46.0(C−8′),41.3(C−8),37.3(C−7),33.9(C−7′)。
上記の
13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をマタイレシノール−4′−O−グルコシド(matairesinol−4′−O−glucoside)に同定する。
【0025】
化合物5:白色の粉末、ESI−MS m/z:549[M−H]
−。NMRデータと組み合わせて当該化合物の分子式をC
26H
30O
13に決定する。
1H−NMR(CD
3OD,600MHz)δ
H:7.70(1H,d,J=9.0Hz,H−5),7.40(2H,d,J=8.4Hz,H−2′,6′),7.09(2H,d,J=9.0Hz,H−3′,5′),6.48(1H,dd,J=2.4,9.0Hz,H−6),6.34(1H,d,J=2.4Hz,H−8),5.46(1H,d,J=1.2Hz,H−1′′′),5.39(1H,dd,J=2.4,13.2Hz,H−2),4.98(1H,d,J=7.2Hz,H−1′′),4.04(1H,d,J=9.6Hz,H−5′′′a),3.89(1H,d,J=1.2Hz,H−2′′′),3.88(1H,dd,J=1.2,12.0Hz,H−6′′a),3.79(1H,d,J=9.6Hz,H−5′′′b),2.99(1H,m,H−3a),2.74(1H,dd,J=2.4,16.8Hz,H−3b)。
13C−NMR(CD
3OD,150MHz)δ
C:193.2(C−4),166.7(C−7),165.3(C−8a),159.0(C−4′),134.3(C−1′),129.9(C−5),128.8(C−2′,6′),117.6(C−3′,5′),114.9(C−4a),111.8(C−6),110.7(C−1′′′),103.8(C−8),100.7(C−1′′),80.7(C−2),80.6(C−3′′′),78.8(C−5′′),78.6(C−2′′′),78.0(C−2′′),77.9(C−3′′),75.4(C−4′′′),71.4(C−4′′),66.0(C−5′′′),62.4(C−6′′),44.9(C−3)。
上記の
1H−NMRスペクトルの特徴及び
13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をリクイリチンアピオシドに同定する。
【0026】
化合物6:白色の粉末、ESI−MS m/z:387[M−H]
−。NMRデータと組み合わせて当該化合物の分子式をC
17H
24O
10に決定する。
1H−NMR(CD
3OD,600MHz)δ
H:7.60(1H,d,J=2.4Hz,H−3),5.55(1H,d,J=1.8Hz,H−1),5.48(1H,m,H−8),5.31(1H,s,H−7),5.29(1H,m,H−10a),5.25(1H,m,H−10b),4.67(1H,d,J=7.8Hz,H−1′),3.50(1H,s,7−OCH
3),3.18(1H,m,H−5),2.63(1H,m,H−9),1.85(1H,dd,J=6.0,13.2Hz,H−6a),1.69(1H,td,J=3.0,13.8Hz,H−6b)。
13C−NMR(CD
3OD,150MHz)δ
C:167.4(C−11),154.4(C−4),133.3(C−8),121.0(C−10),105.3(C−4),103.3(C−7),100.3(C−1′),98.5(C−1),78.3(C−5′),78.0(C−3′),74.6(C−2′),71.4(C−4′),62.6(C−6′),57.0(7−OCH
3),43.5(C−9),30.2(C−6),22.8(C−5)。
上記の
1H−NMRスペクトルの特徴及び
13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をエピボゲロシド(epi−vogeloside)に同定する。
【0027】
化合物7:白色の粉末、ESI−MS m/z:387[M−H]
−。NMRデータと組み合わせて当該化合物の分子式をC
17H
24O
10に決定する。
1H−NMR(CD
3OD,600MHz)δ
H:7.58(1H,d,J=2.4Hz,H−3),5.55(1H,d,J=1.2Hz,H−1),5.47(1H,m,H−8),5.31(1H,s,H−7),5.29(1H,m,H−10a),5.26(1H,m,H−10b),4.66(1H,d,J=7.8Hz,H−1′),3.54(1H,s,7−OCH
3),3.16(1H,m,H−5),2.67(1H,m,H−9),1.97(1H,m,H−6a),1.44(1H,m,H−6b)。
13C−NMR(CD
3OD,150MHz)δ
C:167.6(C−11),154.1(C−4),133.0(C−8),121.1(C−10),105.4(C−4),105.1(C−7),99.7(C−1′),97.9(C−1),78.4(C−5′),77.8(C−3′),74.7(C−2′),71.5(C−4′),62.6(C−6′),57.1(7−OCH
3),43.7(C−9),31.7(C−6),25.3(C−5)。
上記の
1H−NMRスペクトルの特徴が文献の報告とほぼ一致しており、炭素信号の帰属を決定して当該化合物をボゲロシド(vogeloside)に同定する。
【0028】
化合物8:白色の粉末、ESI−MS m/z:209[M+H]
+。NMRデータと組み合わせて当該化合物の分子式をC
11H
12O
4に決定する。
1H−NMR(DMSO−d
6,600MHz)δ
H:7.46(1H,d,J=15.9Hz,H−7),7.04(1H,brs,H−2),6.99(1H,d,J=8.1Hz,H−6),6.75(1H,d,J=8.1Hz,H−5),6.24(1H,d,J=15.9Hz,H−8),4.15(2H,q,J=7.1Hz,H−10),1.24(3H,t,J=7.1Hz,H−11)。
13C−NMR(DMSO−d
6,150MHz)δ
C:166.5(C−9),148.6(C−4),145.0(C−7),145.6(C−3),121.3(C−6),125.3(C−1),115.7(C−5),114.7(C−2),113.9(C−8),59.6(C−10),14.3(C−11)。
上記の
1H−NMRスペクトルの特徴及び
13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をカフェー酸エチルに同定する。
【0029】
(実施例2)
レンギョウ30kg、キンギンカ20kg、バンランコン30kg、ダイオウ6kg、コウカッコウ10kg、メンマカンジュウ20kg、コウケイテン6kg、ハッカノウ0.5kg、マオウ10kg、クキョウニン6kg、ギョセイソウ30kg、カンゾウ6kg、セッコウ30kgを秤量し、以下のプロセスで抽出する。
(1)重量比で生薬を秤量し、洗浄し、適宜破砕する。
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備える。
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備える。
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.10であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備える。
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.15であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備える。
【0030】
1.装置と材料は実施例1と同じである。
2.抽出と分離:
本発明の漢方薬組成物の総エキス5kgをd−101マクロポーラス樹脂で吸着し、水、10%エタノール、30%エタノール、50%エタノールで溶出し、濃縮させて各部分のエキスを得る。残りのステップは実施例1と同じである。
3.結果の同定:
実施例1と同じである。分離した8種の化合物は実施例1で得たものと完全に同じである。
【0031】
(実施例3)
生薬の配合は、レンギョウ27.8kg、キンギンカ29.4kg、バンランコン28.5kg、ダイオウ5.5kg、コウカッコウ9.5kg、メンマカンジュウ29kg、コウケイテン8.7kg、ハッカノウ0.85kg、マオウ8.8kg、クキョウニン8kg、ギョセイソウ28.4kg、カンゾウ9.5kg、セッコウ27.7kgである。以下のプロセスで抽出する。
(1)重量比で生薬を秤量し、洗浄し、適宜破砕する。
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備える。
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備える。
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.13であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備える。
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.18であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備える。
【0032】
1.装置と材料は実施例1と同じである。
2.抽出と分離:
本発明の漢方薬組成物の総エキス5kgをHPD−100マクロポーラス樹脂で吸着し、水、10%エタノール、30%エタノール、50%エタノールで溶出し、濃縮させて各部分のエキスを得る。残りのステップは実施例1と同じである。
3.結果の同定:
実施例1と同じである。分離した8種の化合物は実施例1で得たものと完全に同じである。
【0033】
上述した内容は、本発明の好ましい実施例に過ぎず、本発明を限定するためのものではない。本発明の趣旨の範囲内でなされた補正、同等な差し替え又は改善等は、いずれも本発明の保護範囲に含まれる。