特許第6976429号(P6976429)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 石家庄以嶺薬業股▲ふん▼有限公司の特許一覧

特許6976429漢方薬組成物から8種の成分を分離する方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6976429
(24)【登録日】2021年11月11日
(45)【発行日】2021年12月8日
(54)【発明の名称】漢方薬組成物から8種の成分を分離する方法
(51)【国際特許分類】
   G01N 30/88 20060101AFI20211125BHJP
   B01J 20/287 20060101ALI20211125BHJP
   G01N 30/34 20060101ALI20211125BHJP
   G01N 30/90 20060101ALI20211125BHJP
   G01N 30/80 20060101ALI20211125BHJP
   B01J 20/283 20060101ALI20211125BHJP
   G01N 30/00 20060101ALI20211125BHJP
   G01N 30/74 20060101ALI20211125BHJP
【FI】
   G01N30/88 N
   B01J20/287
   G01N30/34 E
   G01N30/90
   G01N30/80 C
   B01J20/283
   G01N30/00 E
   G01N30/74 E
【請求項の数】6
【全頁数】19
(21)【出願番号】特願2020-523706(P2020-523706)
(86)(22)【出願日】2018年10月25日
(65)【公表番号】特表2021-500578(P2021-500578A)
(43)【公表日】2021年1月7日
(86)【国際出願番号】CN2018111846
(87)【国際公開番号】WO2019091287
(87)【国際公開日】20190516
【審査請求日】2020年4月27日
(31)【優先権主張番号】201711103420.2
(32)【優先日】2017年11月10日
(33)【優先権主張国】CN
(73)【特許権者】
【識別番号】514092032
【氏名又は名称】石家庄以嶺薬業股▲ふん▼有限公司
【氏名又は名称原語表記】SHIJIAZHUANG YILING PHARMACEUTICAL CO., LTD.
(74)【代理人】
【識別番号】110001139
【氏名又は名称】SK特許業務法人
(74)【代理人】
【識別番号】100130328
【弁理士】
【氏名又は名称】奥野 彰彦
(74)【代理人】
【識別番号】100130672
【弁理士】
【氏名又は名称】伊藤 寛之
(72)【発明者】
【氏名】張創峰
(72)【発明者】
【氏名】沈碩
(72)【発明者】
【氏名】宋聯強
【審査官】 大瀧 真理
(56)【参考文献】
【文献】 特開昭58−173464(JP,A)
【文献】 特開2012−116838(JP,A)
【文献】 国際公開第2017/148418(WO,A1)
【文献】 国際公開第2017/148426(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 20/281 − 20/292
G01N 30/00 − 30/96
(57)【特許請求の範囲】
【請求項1】
レンギョウ200〜300重量部、マオウ60〜100重量部、ダイオウ40〜60重量部、ギョセイソウ200〜300重量部、キンギンカ200〜300重量部、バンランコン200〜300重量部、コウカッコウ60〜100重量部、メンマカンジュウ200〜300重量部、コウケイテン60〜100重量部、ハッカノウ5〜9重量部、クキョウニン60〜100重量部、カンゾウ60〜100重量部、セッコウ200〜300重量部から製造された漢方薬組成物から8種の成分を分離する方法であって、
(1)前記漢方薬組成物の総エキスをマクロポーラス樹脂で吸着し、水、10%エタノール、30%エタノール、50%エタノールで溶出し、各部分の溶出液をそれぞれ採取し、濃縮させて各部分のエキスを得るステップと、
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキスに、ODS逆相シリカゲルを加えて攪拌し、サンプルを自然乾燥させた後、サンプルをローディングし、逆相オープンカラムを用いて分離し、体積比が20:80、40:60、60:40、80:20のメタノール−水、100%メタノールで溶出し、順に分画A〜分画Eを得るステップと、
(3)ステップ(2)で得た分画Aのサンプルに、ODS逆相シリカゲルを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより各三角フラスコ中の分画を検証し、同じ成分の分画を合わせて再度減圧濃縮させ、溶出順に分画A−1〜分画A−7を得るステップと、
(4)ステップ(3)で得た分画A−2のサンプルにシリカゲルを加えて攪拌し、シリカゲルカラムに入れて、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより各分画を検証し同じ成分の分画を合わせ、溶出順に分画A−−1〜分画A−−4を得るステップと、
(5)ステップ(4)で得た分画A−−2のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行い、
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを取得し、
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを取得し、
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得るステップと、
(6)ステップ(4)で得た分画A−−3のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収し、17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドであり、10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得るステップと、
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、化合物8であるカフェー酸エチルを取得し、14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得るステップとを含むことを特徴とする8種の成分の分離方法。
【請求項2】
(1)前記漢方薬組成物の総エキス5kgをマクロポーラス樹脂で吸着し、水150L、10%エタノール87.5L、30%エタノール225L、50%エタノール250Lで溶出し、濃縮させて各部分のエキスを得るステップと、
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキス200gに、200gのODS逆相シリカゲルを加えて攪拌し、ODS化サンプルを自然乾燥させた後、サンプルをローディングし、逆相オープンカラムを用いて分離し、サンプル層とブランク層の高さの比を1:4として、減圧の方式により体積比が20:80のメタノール−水6Lで溶出し、同40:60の7Lで溶出し、同60:40の7Lで溶出し、同80:20の5Lで溶出し、100%メタノール3Lで溶出して、順に分画A〜分画Eを得るステップと、
(3)ステップ(2)で得た分画Aのサンプル50.0gに、50gのODS逆相シリカゲルを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、分離カラムのフィラーにODS逆相シリカゲルを用い、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより各三角フラスコ中の分画を検証し、同じ成分の分画を合わせて再度減圧濃縮させ、溶出順に再度減圧濃縮させて、分画A−1〜分画A−7を得るステップと、
(4)ステップ(3)で得た分画A−2のサンプル3.2gに200〜300メッシュのシリカゲル6.4gを加えて攪拌し、シリカゲルカラムに入れて、サンプル層とブランク層の高さの比を1:50として、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより各分画を検証し、同じ成分の分画を合わせ、溶出順に分画A−−1〜分画A−−4を得るステップと、
(5)ステップ(4)で得た分画A−−2のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行い、
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを取得し、
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを取得し、
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得るステップと、
(6)ステップ(4)で得た分画A−−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収し、17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドであり、10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得るステップと、
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、化合物8であるカフェー酸エチルを取得し、14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムに液体クロマトグラフィーカラムを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得るステップとを含むことを特徴とする請求項1に記載の8種の成分の分離方法。
【請求項3】
前記漢方薬組成物は、レンギョウ200重量部、キンギンカ300重量部、バンランコン200重量部、ダイオウ40重量部、コウカッコウ60重量部、メンマカンジュウ300重量部、コウケイテン100重量部、ハッカノウ9重量部、マオウ60重量部、クキョウニン100重量部、ギョセイソウ200重量部、カンゾウ100重量部、セッコウ200重量部から製造されることを特徴とする請求項1又は2に記載の8種の成分の分離方法。
【請求項4】
前記漢方薬組成物は、レンギョウ300重量部、キンギンカ200重量部、バンランコン300重量部、ダイオウ60重量部、コウカッコウ100重量部、メンマカンジュウ200重量部、コウケイテン60重量部、ハッカノウ5重量部、マオウ100重量部、クキョウニン60重量部、ギョセイソウ300重量部、カンゾウ60重量部、セッコウ300重量部から製造されることを特徴とする請求項1又は2に記載の8種の成分の分離方法。
【請求項5】
前記漢方薬組成物は、レンギョウ278重量部、キンギンカ294重量部、バンランコン285重量部、ダイオウ55重量部、コウカッコウ95重量部、メンマカンジュウ290重量部、コウケイテン87重量部、ハッカノウ8.5重量部、マオウ88重量部、クキョウニン80重量部、ギョセイソウ284重量部、カンゾウ95重量部、セッコウ277重量部から製造されることを特徴とする請求項1又は2に記載の8種の成分の分離方法。
【請求項6】
前記漢方薬組成物の総エキスは、
(1)重量比で生薬を秤量し、洗浄し、適宜破砕するステップと、
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備えるステップと、
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備えるステップと、
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.10〜1.15であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備えるステップと、
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.15〜1.20であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備えるステップとにより調製されることを特徴とする請求項1又は2に記載の8種の成分の分離方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、漢方薬組成物から複数種の成分を分離する方法に関する。
【背景技術】
【0002】
漢方薬は主に配合処方の形態で使用されている。数千年の臨床的使用において、配合処方は単一種類の生薬よりも優れた治療効果があることから、配合処方の合理性が十分に証明されている。本発明に係る医薬組成物は、レンギョウ(Forsythia suspensa)、キンギンカ(Lonicera japonica)、シャマオウ(Ephedra Herb)等の13種類の生薬からなり、感染性の発熱及びそれに伴う症状と肺の症状を改善する効果があり、インフルエンザの治療に用いられる。臨床試験により、本発明に係る医薬組成物でインフルエンザ、急性上気道感染症を治療する場合は、確実で且つ明らかな効果があることが証明されている。配合処方の薬理作用の原理及び配合医薬品における配合規則の科学的原理を釈明するために、それを構成する基本物質に対する系統的な研究は特に必要である。これを踏まえて、本発明に係る医薬組成物の化学成分について高度な研究を行って、10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)、アロエ−エモジン−8−O−β−D−グルコピラノシド、クェルシトリン、マタイレシノール−4′−O−β−D−グルコシド(matairesinol−4′−O−glucoside)、リクイリチンアピオシド、エピボゲロシド(epi−vogeloside)、ボゲロシド(vogeloside)、カフェー酸エチルの8種の化合物を分離していることで、本発明に係る医薬組成物の品質管理のための新規な方法を提供している。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本発明は、漢方薬組成物から8種の化合物を分離する方法を提供する。
【課題を解決するための手段】
【0004】
当該漢方薬組成物は、レンギョウ200〜300重量部、マオウ60〜100重量部、ダイオウ(Rheum rhabarbarum)40〜60重量部、ギョセイソウ(Houttuynia cordata)200〜300重量部、キンギンカ200〜300重量部、バンランコン(Isatis tinctoria)200〜300重量部、コウカッコウ(Pogostemon cablin)60〜100重量部、メンマカンジュウ(Dryopteris crassirhizoma)200〜300重量部、コウケイテン(Rhodiola rosea)60〜100重量部、ハッカノウ(メントール)5〜9重量部、クキョウニン(Armeniacae Semen)60〜100重量部、カンゾウ(Glycyrrhiza uralensis)60〜100重量部、セッコウ200〜300重量部から製造される。
【0005】
本発明に係る分離方法は、以下のステップ(1)〜(7)を含む。
(1)当該漢方薬組成物の総エキスをAB−8マクロポーラス樹脂で吸着し、水、10%エタノール、30%エタノール、50%エタノールで溶出し、各部分の溶出液をそれぞれ採取し、濃縮させて各部分のエキスを得る。
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキスに、逆相シリカゲルODS−AQ−HGを加えて攪拌し、サンプルを自然乾燥させた後、サンプルをローディングし、逆相ODS−AQ−HGオープンカラムを用いて分離し、体積比が20:80、40:60、60:40、80:20のメタノール−水、100%メタノールで溶出し、順に分画A〜分画Eを得る。
(3)ステップ(2)で得た分画Aのサンプルに、逆相シリカゲルODS−AQ−HGを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより検証し分画を合併して再度減圧濃縮させて、分画A−1〜分画A−7を得る。
(4)ステップ(3)で得た分画A−2のサンプルにシリカゲルを加えて攪拌し、シリカゲルカラムに入れて、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより検証し分画を合併して分画A−−1〜分画A−−4を得る。
(5)ステップ(4)で得た分画A−−2のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行う。
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを得る。
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを得る。
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得る。
(6)ステップ(4)で得た分画A−−3のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収する。17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドである。10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得る。
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、化合物8であるカフェー酸エチルを得る。14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得る。

【0006】
好ましくは、本発明に係る分離方法は、以下のステップ(1)〜(7)を含む。
(1)当該漢方薬組成物の総エキス5kgをAB−8マクロポーラス樹脂で吸着し、水150L、10%エタノール87.5L、30%エタノール225L、50%エタノール250Lで溶出し、濃縮させて各部分のエキスを得る。
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキス200gに、200gの逆相シリカゲルODS−AQ−HG S−50μmを加えて攪拌し、ODS化サンプルを自然乾燥させた後、サンプルをローディングし、逆相ODS−AQ−HG S−50μmオープンカラムを用いて分離し、サンプル層とブランク層の高さの比を1:4として、減圧の方式により体積比が20:80のメタノール−水6Lで溶出し、同40:60の7Lで溶出し、同60:40の7Lで溶出し、同80:20の5Lで溶出し、100%メタノール3Lで溶出して、順に分画A〜分画Eを得る。
(3)ステップ(2)で得た分画Aのサンプル50.0gに、50gの逆相シリカゲルODS−AQ−HG S−50μmを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、分離カラムのフィラーにODS−AQ−HG S−50μmを用い、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより検証し分画を合併して再度減圧濃縮させて、分画A−1〜分画A−7を得る。
(4)ステップ(3)で得た分画A−2のサンプル3.2gに200〜300メッシュのシリカゲル6.4gを加えて攪拌し、シリカゲルカラムに入れて、サンプル層とブランク層の高さの比を1:50として、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより検証し分画を合併して分画A−−1〜分画A−−4を得る。
(5)ステップ(4)で得た分画A−−2のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行う。
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを得る。
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを得る。
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得る。
(6)ステップ(4)で得た分画A−−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収する。17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドである。10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得る。
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、化合物8であるカフェー酸エチルを得る。14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得る。
【0007】
好ましくは、当該漢方薬組成物は、以下の重量部の生薬から製造される。
レンギョウ200、キンギンカ300、バンランコン200、ダイオウ40、コウカッコウ60、メンマカンジュウ300、コウケイテン100、ハッカノウ9、マオウ60、クキョウニン100、ギョセイソウ200、カンゾウ100、セッコウ200。
【0008】
好ましくは、当該漢方薬組成物は、以下の重量部の生薬から製造される。
レンギョウ300、キンギンカ200、バンランコン300、ダイオウ60、コウカッコウ100、メンマカンジュウ200、コウケイテン60、ハッカノウ5、マオウ100、クキョウニン60、ギョセイソウ300、カンゾウ60、セッコウ300。
【0009】
好ましくは、当該漢方薬組成物は、以下の重量部の生薬から製造される。
レンギョウ278、キンギンカ294、バンランコン285、ダイオウ55、コウカッコウ95、メンマカンジュウ290、コウケイテン87、ハッカノウ8.5、マオウ88、クキョウニン80、ギョセイソウ284、カンゾウ95、セッコウ277。
【0010】
本発明に係る漢方薬組成物の総エキスは、以下のステップで調製される。
(1)重量比で生薬を秤量し、洗浄し、適宜破砕する。
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備える。
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備える。
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.10〜1.15であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備える。
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.15〜1.20であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備える。
【発明の効果】
【0011】
本発明の分離方法は、10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)、アロエ−エモジン−8−O−β−D−グルコピラノシド、クェルシトリン、マタイレシノール−4′−O−グルコシド(matairesinol−4′−O−glucoside)、リクイリチンアピオシド、エピボゲロシド(epi−vogeloside)、ボゲロシド(vogeloside)、カフェー酸エチルの8種の化合物を分離できる。
【発明を実施するための形態】
【0012】
(実施例1)
レンギョウ20kg、キンギンカ30kg、バンランコン20kg、ダイオウ4kg、コウカッコウ6kg、メンマカンジュウ30kg、コウケイテン10kg、ハッカノウ0.9kg、マオウ6kg、クキョウニン10kg、ギョセイソウ20kg、カンゾウ10kg、セッコウ20kgを秤量し、以下のプロセスで抽出する。
(1)重量比で生薬を秤量し、洗浄し、適宜破砕する。
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備える。
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備える。
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.15であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備える。
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.20であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備える。
【0013】
分離方法のステップは以下のとおりである。
1.装置と材料
Bruker Alpha赤外線分光計(スイスBruker社)、Bruker AVIIIHD 600核磁気共鳴分光計(スイスBruker社)、Synapt G2−S Mass質量分析計(米Waters社)、Combi Flash Rf中低圧分取液体クロマトグラフ(米Teledvne ISCO社)、NP7000分取液体クロマトグラフ(江蘇漢邦科技有限公司)、Milli−Q純水装置(米Millipore社)、AL204分析用電子天秤(米Mettler Toledo社)、YMC ODS−AQ−HG 50μm逆相シリカゲル(日本YMC)、カラムクロマトグラフィー用シリカゲル(100〜200メッシュ、200〜300メッシュ、青島海洋化工厂)、薄層クロマトグラフィー用シリカゲルシートGF254(青島海洋化工厂)、YMC−Pack R&D ODS−A(250×20mm、S−10μm、日本YMC)、本発明の漢方薬組成物の総エキス(石家庄以嶺薬業股フン有限公司、ロットナンバー:B1509001)、クロマトグラフィー用アセトニトリル、メタノール(上海阿達瑪斯試剤公司)、分析試薬(北京化工厂)。

【0014】
2.抽出と分離
(1)当該漢方薬組成物の総エキス5kgをAB−8マクロポーラス樹脂で吸着し、水150L、10%エタノール87.5L、30%エタノール225L、50%エタノール250Lで溶出し、濃縮させて各部分のエキスを得る。
(2)ステップ(1)で得た50%エタノールで溶出した部分のエキス200gに、200gの逆相シリカゲルODS−AQ−HG S−50μmを加えて攪拌し、ODS化サンプルを自然乾燥させた後、サンプルをローディングし、逆相ODS−AQ−HG S−50μmオープンカラムを用いて分離し、サンプル層とブランク層の高さの比を1:4として、減圧の方式により体積比が20:80のメタノール−水6Lで溶出し、同40:60の7Lで溶出し、同60:40の7Lで溶出し、同80:20の5Lで溶出し、100%メタノール3Lで溶出して、順に分画A〜分画Eを得る。
(3)ステップ(2)で得た分画Aのサンプル50.0gに、50gの逆相シリカゲルODS−AQ−HG S−50μmを加えて攪拌し、ODS化サンプルを自然乾燥させた後、ODS化サンプルをローディングカラムに加え、中圧分取液体クロマトグラフィーにより分離し、分離カラムのフィラーにODS−AQ−HG S−50μmを用い、中圧分取液体勾配分離を行い、メタノールと水の体積比を25:75〜60:40とし、流速を25mL/minとして、等体積500mLで分画を三角フラスコに取得し、減圧濃縮させ、薄層クロマトグラフィーにより検証し分画を合併して再度減圧濃縮させて、分画A−1〜分画A−7を得る。
(4)ステップ(3)で得た分画A−2のサンプル3.2gに200〜300メッシュのシリカゲル6.4gを加えて攪拌し、シリカゲルカラムに入れて、サンプル層とブランク層の高さの比を1:50として、体積比が8:1のジクロロメタン−メタノールで均一濃度分離し、等体積50mLで分画を取得し、溶出体積を800mLとし、薄層クロマトグラフィーにより検証し分画を合併して分画A−−1〜分画A−−4を得る。
(5)ステップ(4)で得た分画A−−2のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が50:50のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が6〜8minのピーク、9〜10minのピーク、12〜13minのピークに対してそれぞれ採取し、溶媒を減圧回収して、以下のとおりにそれぞれ分離を行う。
6〜8minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が8〜9minのピークに対して採取し、溶媒を減圧回収して、化合物2のアロエ−エモジン−8−O−β−D−グルコピラノシドを得る。
9〜10minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が45:55のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が21〜23minのピークに対して採取し、溶媒を減圧回収して、化合物3のクェルシトリンを得る。
12〜13minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に25:75のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が9〜10minのピークに対して採取し、溶媒を減圧回収して、化合物4のマタイレシノール−4′−O−β−D−グルコシドを得る。
(6)ステップ(4)で得た分画A−−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が30:70のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が10〜11minのピーク、17〜19minのピーク、21〜24minのピークに対してそれぞれ採取し、溶媒を減圧回収する。17〜19minは化合物6のエピボゲロシドであり、21〜24minは化合物7のボゲロシドである。10〜11minのピークに対して、高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が15:85のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が14〜16minのピークに対して採取し、溶媒を減圧回収して、化合物5のリクイリチンアピオシドを得る。
(7)ステップ(3)で得た分画A−3のサンプルをメタノールで溶解し、溶解液を0.45μm微多孔質濾過フィルムで濾過し、高速液体クロマトグラフィーを採用し、移動相に体積比が60:40のメタノール−水を用い、流速を12mL/minとし、検出波長を210nmとして、一次分離を行い、保持時間が14〜15minのピーク、19〜21minのピークに対してそれぞれ採取し、溶媒を減圧回収し、体積比が2:1のジクロロメタン−メタノール溶液において19〜21minのピークに対する採取液から白色の沈殿物が析出して、化合物8であるカフェー酸エチルを得る。14〜15minのピークに対して高速液体クロマトグラフィーによりさらに精製し、移動相に体積比が30:70のアセトニトリル−水を用い、流速を12mL/minとし、検出波長を210nmとし、クロマトグラフィーカラムにYMC−Pack R&D ODS−A、250×20mm、S−10μmを使用し、この条件において保持時間が18〜20minのピークに対して採取し、溶媒を減圧回収して、化合物1の10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)を得る。
【0015】
3.構造同定
3.1.新規化合物の構造同定
化合物1:淡黄色の粉末、UV λmax(MeOH):228、312nm。赤外分光測定でヒドロキシ基(3330cm−1)、α,β−不飽和カルボニル基(1680、1630cm−1)、ベンゼン環(1603、1514cm−1)を有することが示される。HR−ESI−MS m/z:521.1699[M−H](計算値:521.1659)で、NMRデータと組み合わせて当該化合物の分子式をC253012に決定する。不飽和度は11である。
【0016】
H−NMR(DMSO−d,600MHz)スペクトル(表1)より、当該化合物は1対のトランス二重結合δ7.56(1H,d,J=16.2Hz)と6.39(1H,d,J=16.2Hz)、AB系芳香族水素δ7.55(2H,d,J=8.4Hz)と6.79(2H,d,J=8.4Hz)を含むことが示される。H−NMRスペクトルの化学シフトは4.52(1H,d,J=7.8Hz)であり、糖の末端水素として推定される。
【0017】
13C−NMR(DMSO−d,150MHz)スペクトル(表1)より、当該化合物は2つの共役カルボニル炭素(δ:168.4、167.2)と、2つの明確な断片とを含むことが示される。δ:116.2(2C)、130.8(2C)、160.2はパラヒドロキシフェニル基断片、δ:99.3、77.6、77.1、73.6、70.4,61.6はグルコシル基断片として推定される。
【0018】
HMBCにより、二重結合δ7.56、6.39がフェニル基炭素δ125.5に関係があり、二重結合δ6.39と−CH−δ4.12はいずれもカルボニル基δ167.2に関係があることが判明し、上記の断片が他のC、H化学シフトと関係がないため、当該断片は独立なパラヒドロキシシンナモイル基断片で、残りの部分から糖基断片を除去したものは母核であると推定される。計算の結果、母核の不飽和度は4である(1つのカルボニル基と二重結合を含む)ため、当該母核が二環構造であると推定される。HSQC、HMBCにより帰属を決定し関連付けを行うと、当該化合物はイリドイド系化合物であると推定される。文献を検索すると、当該化合物の母核はアドキソシド酸(adoxosidic acid)であることが決定される。
【0019】
残りの断片はパラヒドロキシケイ皮酸であり、しかも母核のアドキソシド酸(adoxosidic acid)の10位にエステルを形成していることが分かる。SciFinder、Reaxysのデータベースを検索して、当該化合物が新規化合物で(本試験では当該化合物の配置が確認されず、後続の研究において確認する)、10−O−(p−ヒドロキシシンナモイル)−アドキソシド酸(10−O−(p−hydroxycinnamoyl)−adoxosidic acid)であることが決定される。
【0020】
[表1]化合物1のNMRデータ
化学シフトの入れ替えが必要である可能性あり。
【0021】
[化1]
[化2]
【0022】
3.2既存化合物の構造同定
化合物2:黄色の粉末、ESI−MS m/z:431[M−H]。NMRデータと組み合わせて当該化合物の分子式をC212010に決定する。
H−NMR(DMSO−d,600MHz)δ:12.88(1H,s,OH),7.89(1H,dd,J=1.2,8.4Hz,H−5),7.86(1H,t,J=7.8Hz,H−6),7.72(1H,dd,J=1.2,8.4Hz,H−7),7.66(1H,brs,H−4),7.28(1H,brs,H−2),5.17(1H,d,J=7.8Hz,anomeric−H),4.62(2H,s,CHOH),3.72〜3.23(Glc−H)。13C−NMR(DMSO−d,150MHz)δ:188.8(C−9),182.6(C−10),162.2(C−1),158.7(C−8),152.7(C−3),136.4(C−6),135.3(C−10a),132.7(C−4a),122.9(C−7),121.2(C−2),121.0(C−5),116.4(C−8a,C−9a),100.9(C−1′),77.7(C−5′),77.0(C−3′),73.7(C−2′),70.0(C−4′),62.5(CHOH),61.0(C−6′)。
上記のH−NMRスペクトルの特徴及び13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をアロエ−エモジン−8−O−β−D−グルコピラノシドに同定する。
【0023】
化合物3:黄色の粉末、ESI−MSm/z:447[M−H]。NMRデータと組み合わせて当該化合物の分子式をC212011に決定する。
H−NMR(DMSO−d,600MHz)δ:12.66(1H,s,5−OH),7.31(1H,d,J=2.4Hz,H−2′),7.26(1H,d,J=2.4,8.4Hz,H−6′),6.87(1H,d,J=8.4Hz,H−5′),6.39(1H,d,J=2.4Hz,H−8),6.21(1H,d,J=2.4Hz,H−6),5.26(1H,d,J=1.8Hz,anomeric−H),0.82(3H,d,J=6.0Hz,CH)。13C−NMR(DMSO−d,150MHz)δ:178.2(C−4),164.6(C−7),161.7(C−5),157.7(C−2),156.9(C−9),148.9(C−4′),145.6(C−3′),134.7(C−3),121.5(C−6′),121.2(C−1′),116.1(C−5′),115.9(C−2′),104.5(C−10),102.3(C−1′′),99.1(C−6),94.1(C−8),71.6(C−4′′),71.0(C−3′′),70.8(C−2′′),70.5(C−5′′),17.9(C−6′′)。
上記のH−NMRスペクトルの特徴及び13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をクェルシトリンに同定する。
【0024】
化合物4:黄色の粉末、ESI−MSm/z:519[M−H]。NMRデータと組み合わせて当該化合物の分子式をC263211に決定する。
H−NMR(DMSO−d,600MHz)δ:6.99(1H,d,J=8.4Hz,H−5),6.78(1H,d,J=1.8Hz,H−2′),6.67(2H,m,H−5,H−6′),6.63(1H,s,H−2),6.50(1H,dd,J=1.8,8.4Hz,H−6),4.84(1H,d,J=7.8Hz,H−1′′),4.09(1H,t,J=7.8Hz,H−9a),3.86(1H,t,J=8.4Hz,H−9b),3.72(6H,d,J=2.4Hz,2×OCH)。13C−NMR(DMSO−d,150MHz)δ:178.9(C−9′),149.1(C−3′),147.9(C−3),145.7(C−4′),145.4(C−4),132.2(C−1′),130.0(C−1),121.8(C−6′),121.2(C−6),115.9(C−5′),115.6(C−5),114.3(C−2′),113.1(C−2),100.6(C−1′′),77.4(C−5′′),77.3(C−3′′),73.7(C−2′′),71.1(C−9),70.1(C−4′′),61.1(C−6′′),56.1(OCH),56.0(OCH),46.0(C−8′),41.3(C−8),37.3(C−7),33.9(C−7′)。
上記の13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をマタイレシノール−4′−O−グルコシド(matairesinol−4′−O−glucoside)に同定する。
【0025】
化合物5:白色の粉末、ESI−MS m/z:549[M−H]。NMRデータと組み合わせて当該化合物の分子式をC263013に決定する。
H−NMR(CDOD,600MHz)δ:7.70(1H,d,J=9.0Hz,H−5),7.40(2H,d,J=8.4Hz,H−2′,6′),7.09(2H,d,J=9.0Hz,H−3′,5′),6.48(1H,dd,J=2.4,9.0Hz,H−6),6.34(1H,d,J=2.4Hz,H−8),5.46(1H,d,J=1.2Hz,H−1′′′),5.39(1H,dd,J=2.4,13.2Hz,H−2),4.98(1H,d,J=7.2Hz,H−1′′),4.04(1H,d,J=9.6Hz,H−5′′′a),3.89(1H,d,J=1.2Hz,H−2′′′),3.88(1H,dd,J=1.2,12.0Hz,H−6′′a),3.79(1H,d,J=9.6Hz,H−5′′′b),2.99(1H,m,H−3a),2.74(1H,dd,J=2.4,16.8Hz,H−3b)。13C−NMR(CDOD,150MHz)δ:193.2(C−4),166.7(C−7),165.3(C−8a),159.0(C−4′),134.3(C−1′),129.9(C−5),128.8(C−2′,6′),117.6(C−3′,5′),114.9(C−4a),111.8(C−6),110.7(C−1′′′),103.8(C−8),100.7(C−1′′),80.7(C−2),80.6(C−3′′′),78.8(C−5′′),78.6(C−2′′′),78.0(C−2′′),77.9(C−3′′),75.4(C−4′′′),71.4(C−4′′),66.0(C−5′′′),62.4(C−6′′),44.9(C−3)。
上記のH−NMRスペクトルの特徴及び13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をリクイリチンアピオシドに同定する。
【0026】
化合物6:白色の粉末、ESI−MS m/z:387[M−H]。NMRデータと組み合わせて当該化合物の分子式をC172410に決定する。
H−NMR(CDOD,600MHz)δ:7.60(1H,d,J=2.4Hz,H−3),5.55(1H,d,J=1.8Hz,H−1),5.48(1H,m,H−8),5.31(1H,s,H−7),5.29(1H,m,H−10a),5.25(1H,m,H−10b),4.67(1H,d,J=7.8Hz,H−1′),3.50(1H,s,7−OCH),3.18(1H,m,H−5),2.63(1H,m,H−9),1.85(1H,dd,J=6.0,13.2Hz,H−6a),1.69(1H,td,J=3.0,13.8Hz,H−6b)。13C−NMR(CDOD,150MHz)δ:167.4(C−11),154.4(C−4),133.3(C−8),121.0(C−10),105.3(C−4),103.3(C−7),100.3(C−1′),98.5(C−1),78.3(C−5′),78.0(C−3′),74.6(C−2′),71.4(C−4′),62.6(C−6′),57.0(7−OCH),43.5(C−9),30.2(C−6),22.8(C−5)。
上記のH−NMRスペクトルの特徴及び13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をエピボゲロシド(epi−vogeloside)に同定する。
【0027】
化合物7:白色の粉末、ESI−MS m/z:387[M−H]。NMRデータと組み合わせて当該化合物の分子式をC172410に決定する。
H−NMR(CDOD,600MHz)δ:7.58(1H,d,J=2.4Hz,H−3),5.55(1H,d,J=1.2Hz,H−1),5.47(1H,m,H−8),5.31(1H,s,H−7),5.29(1H,m,H−10a),5.26(1H,m,H−10b),4.66(1H,d,J=7.8Hz,H−1′),3.54(1H,s,7−OCH),3.16(1H,m,H−5),2.67(1H,m,H−9),1.97(1H,m,H−6a),1.44(1H,m,H−6b)。13C−NMR(CDOD,150MHz)δ:167.6(C−11),154.1(C−4),133.0(C−8),121.1(C−10),105.4(C−4),105.1(C−7),99.7(C−1′),97.9(C−1),78.4(C−5′),77.8(C−3′),74.7(C−2′),71.5(C−4′),62.6(C−6′),57.1(7−OCH),43.7(C−9),31.7(C−6),25.3(C−5)。
上記のH−NMRスペクトルの特徴が文献の報告とほぼ一致しており、炭素信号の帰属を決定して当該化合物をボゲロシド(vogeloside)に同定する。
【0028】
化合物8:白色の粉末、ESI−MS m/z:209[M+H]。NMRデータと組み合わせて当該化合物の分子式をC1112に決定する。
H−NMR(DMSO−d,600MHz)δ:7.46(1H,d,J=15.9Hz,H−7),7.04(1H,brs,H−2),6.99(1H,d,J=8.1Hz,H−6),6.75(1H,d,J=8.1Hz,H−5),6.24(1H,d,J=15.9Hz,H−8),4.15(2H,q,J=7.1Hz,H−10),1.24(3H,t,J=7.1Hz,H−11)。13C−NMR(DMSO−d,150MHz)δ:166.5(C−9),148.6(C−4),145.0(C−7),145.6(C−3),121.3(C−6),125.3(C−1),115.7(C−5),114.7(C−2),113.9(C−8),59.6(C−10),14.3(C−11)。
上記のH−NMRスペクトルの特徴及び13C−NMRデータが文献の報告とほぼ一致しているため、当該化合物をカフェー酸エチルに同定する。
【0029】
(実施例2)
レンギョウ30kg、キンギンカ20kg、バンランコン30kg、ダイオウ6kg、コウカッコウ10kg、メンマカンジュウ20kg、コウケイテン6kg、ハッカノウ0.5kg、マオウ10kg、クキョウニン6kg、ギョセイソウ30kg、カンゾウ6kg、セッコウ30kgを秤量し、以下のプロセスで抽出する。
(1)重量比で生薬を秤量し、洗浄し、適宜破砕する。
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備える。
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備える。
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.10であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備える。
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.15であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備える。
【0030】
1.装置と材料は実施例1と同じである。
2.抽出と分離:
本発明の漢方薬組成物の総エキス5kgをd−101マクロポーラス樹脂で吸着し、水、10%エタノール、30%エタノール、50%エタノールで溶出し、濃縮させて各部分のエキスを得る。残りのステップは実施例1と同じである。
3.結果の同定:
実施例1と同じである。分離した8種の化合物は実施例1で得たものと完全に同じである。
【0031】
(実施例3)
生薬の配合は、レンギョウ27.8kg、キンギンカ29.4kg、バンランコン28.5kg、ダイオウ5.5kg、コウカッコウ9.5kg、メンマカンジュウ29kg、コウケイテン8.7kg、ハッカノウ0.85kg、マオウ8.8kg、クキョウニン8kg、ギョセイソウ28.4kg、カンゾウ9.5kg、セッコウ27.7kgである。以下のプロセスで抽出する。
(1)重量比で生薬を秤量し、洗浄し、適宜破砕する。
(2)コウカッコウを破砕し、10倍の量の水を加えて揮発油を抽出し、8時間抽出して揮発油を採取し、使用に備え、抽出液を濾過して、残渣を捨て、濾液を使用に備える。
(3)レンギョウ、マオウ、ギョセイソウ、ダイオウを12倍の量の70%エタノールで3回抽出し、毎回2.5時間とし、抽出液を合併して濾過し、エタノールを回収して、濾液を使用に備える。
(4)キンギンカ、セッコウ、バンランコン、メンマカンジュウ、カンゾウ、コウケイテンに12倍の量の水を加えて、沸騰するまで煎出し、クキョウニンを加えて、2回煎出し、毎回1時間とし、抽出液を合併して濾過し、濾液をステップ(2)のコウカッコウから揮発油抽出後の濾液と合併し、60℃で測定された相対密度が1.13であるように濃縮させて軟エキスを取得し、エタノールを加え、アルコール濃度が70%であるように調節し、冷蔵し、濾過して、エタノールのにおいがなくなるまでエタノールを回収し、軟エキスを得て使用に備える。
(5)ステップ(4)で得た軟エキスとステップ(3)で得たアルコール抽出液を合併し、60℃で測定された相対密度が1.18であるように濃縮させて軟エキスを取得し、乾燥させて、総エキスを得て使用に備える。
【0032】
1.装置と材料は実施例1と同じである。
2.抽出と分離:
本発明の漢方薬組成物の総エキス5kgをHPD−100マクロポーラス樹脂で吸着し、水、10%エタノール、30%エタノール、50%エタノールで溶出し、濃縮させて各部分のエキスを得る。残りのステップは実施例1と同じである。
3.結果の同定:
実施例1と同じである。分離した8種の化合物は実施例1で得たものと完全に同じである。
【0033】
上述した内容は、本発明の好ましい実施例に過ぎず、本発明を限定するためのものではない。本発明の趣旨の範囲内でなされた補正、同等な差し替え又は改善等は、いずれも本発明の保護範囲に含まれる。