【0017】
本実施形態に係るコークスの製造方法は、
複数種の単味炭を配合して得られる装入炭を乾留することによりコークスを製造するコークスの製造方法であって、
ギーセラー最高流動度が350ddpm未満の単味炭に対して、以下の工程A〜工程Cを少なくとも行うコークスの製造方法。
下記手順(a)〜(c)により、各単味炭の指標dHIを得る工程A、
手順(a):単味炭を加熱した際の加熱減量を用いて下記式(1)により算出される値を指標I
H/Cとする。
I
H/C=aX
0+b・・・式(1)
(ただし、X
0=加熱減量(mg/g-coal.daf)、また、a及びbは定数)
手順(b):前記手順(a)の際に発生したガス中のCH
4,CO,CO
2の発生量を用いて下記式(2)により算出される値を指標I
O/Cとする。
I
O/C=cX
1+d・・・式(2)
(ただし、X
1=1−[CH
4/(CH
4+CO+CO
2)]、また、c及びdは定数)
手順(c):指標dHI=(指標I
H/C−指標I
O/C)を算出する。
各単味炭を、粉砕粒度3.0mm以下のものが含まれる割合が80%となるように粉砕したときの、単味炭組織全体に対する、面積が34500μm
2以上のイナートの含有量(g/100g−Coal)と、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕したときの、単味炭組織全体に対する、面積が34500μm
2以上のイナートの含有量(g/100g−Coal)との差であるΔ大イナートサイズ(g/100g−Coal)を求める工程B、及び、
各単味炭の粉砕効果を示す値Yを、下記式(3)により算出する工程C。
Y=e×X
2+f×X
3+g×X
4+h・・・・・・・式(3)
(ただし、X
2は、指標dHIであり、X
3は、TI(イナート組織全量の石炭全体に対する体積割合)であり、X
4は、Δ大イナートサイズであり、e、f、g及びhは定数である。)
【実施例】
【0037】
以下、本発明に関し、実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
【0038】
(実施例1)
<コークス強度DIの実測値と推定値との相関関係の検証>
まず、表1に示す8種類の銘柄の単味炭(A炭〜H炭)を準備した。
表1には、これらの単味炭の性状(VM、Ro
、MF、TI、I
H/C、I
O/C、dHI、Δ大イナートサイズ、全膨張率、−0.5mm全膨張率)について、示している。dHIは、I
H/CからI
O/Cを引いた値、すなわち、dHI=[I
H/C−I
O/C]である。
なお、指標I
H/Cと指標I
O/Cとを求めるのに必要な加熱減量、及び、CH
4,CO,CO
2の発生量は、リガク社製の装置名:示差熱天秤―質量分析同時測定装置 ThermoMass (TG-MS)を用い、800℃になるまで加熱して得た値を用いた。
表1中、VM、Ro
、MF、TI、全膨張率、−0.5mm全膨張率は、下記を意味する。
VM:空気との接触を断って、既定の条件のもとで試料を加熱したときの、質量減少率から水分を差引いた値(JIS M 8812に従って測定できる。)
Ro:ビトリニット(主として植物の木質部に由来する微細組織)の反射率測定において、1個の研磨試料の50点以上の最大反射率の平均値。原料石炭の石炭化度を示すパラメーター。)
MF:ギーセラー最高流動度(ギーセラ−プラストメーターを使用する試験(JISM8801にその詳細が規定されている石炭の加熱軟化溶融特性試験)において回転翼が最高回転数を示す値の対数値。原料石炭の粘結性を代表する指標。)
TI:イナート組織全量の石炭全体に対する体積割合(JIS M 8816に従って測定できる。)
全膨張率:篩分けしていない状態の単味炭の全膨張率
−0.5mm全膨張率:篩分けしていない状態の単味炭を目開き0.5mmの篩で篩分けした後の、粒度0.5mm以下のフラクションの全膨張率
上記全膨張率、及び、−0.5mm全膨張率は、いずれも、JIS M8801に記載の膨張性測定方法(ジラトメーター法)により測定される収縮率及び膨張率の和(Total Dilatation)である。
【0039】
【表1】
【0040】
ここで、Δ大イナートサイズの求め方について説明する。
まず、各単味炭を、粉砕粒度3.0mm以下のものが含まれる割合が80%となるように粉砕した場合と、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合とについて、粒径ごとに区切り、各粒径範囲に含まれる単味炭の重量割合を求めた。結果を表2に示す。
各粒径範囲に含まれる単味炭の重量割合は、以下のようにして求めた。
まず、下記目開きの篩を用いて、ロータップ型ふるい振とう機(飯田製作所製)にて各粒径に篩分けした。
目開き:50mm、25mm、15mm、9.5mm、5.6mm、3.0mm、1.5mm、0.5mm、0.25mm、0.15mm、0.075mm
次に、下記式にて重量割合を求めた。なお、重量割合は、各篩上の重量の百分率である。
(重量割合,%)=[(各篩上の重量,g)/(全重量,g)]×100
例えば、銘柄Aについて見てみると、粉砕粒度3.0mm以下のものが含まれる割合が80%となるまで粉砕した場合、粒径が9.5−5.6mmの範囲内となる石炭は、5.5%であり、粒径が3.0−1.5mmの範囲内となる石炭は、19.6%であり、粒径が1.5−0.5mmの範囲内となる石炭は、31.1%であり、粒径が0.5−0.25mmの範囲内となる石炭は、12.5%である。一方、銘柄Aを、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合粒径が3.0−1.5mmの範囲内となる石炭は、19.1%であり、粒径が1.5−0.5mmの範囲内となる石炭は、26.2%であり、粒径が0.5−0.25mmの範囲内となる炭は、9.2%である。
【0041】
【表2】
【0042】
また、各単味炭を、粉砕粒度3.0mm以下のものが含まれる割合が80%となるように粉砕した場合と、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合とについて、粒径ごとに区切り、イナート(石炭の軟化溶融性を示さない組織の面積)の面積率を求めた。具体的には、特開2016-065821号広報に開示されている方法によりイナートの識別を行い、イナートの全面積を算出した。また同様の方法により、石炭部分(イナート含む)の識別を行い、石炭部分の全面積を算出し、(イナート面積率)=(全イナート面積)/(全石炭部分面積)により算出した。結果を表3に示す。
例えば、銘柄Aについて見てみると、粉砕粒度3.0mm以下のものが含まれる割合が80%となるまで粉砕した場合、粒径が9.5−5.6mmの範囲内となる石炭に含まれるイナートの面積率は、0.317であり、粒径が3.0−0.25mmの範囲内となる石炭に含まれるイナートの面積率は、0.155である。一方、銘柄Aを、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合、粒径が3.0−1.5mmの範囲内となる石炭に含まれるイナートの面積率は、0.234であり、粒径が1.5−0.5mmの範囲内となる石炭に含まれるイナートの面積率は、0.150であり、粒径が0.5−0.25mmの範囲内となる石炭に含まれるイナートの面積率は、0.155である。
【0043】
【表3】
【0044】
また、各単味炭を、粉砕粒度3.0mm以下のものが含まれる割合が80%となるように粉砕した場合と、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合とについて、粒径ごとに区切り、イナート(石炭の軟化溶融性を示さない組織の面積)のうち、面積が34500μm
2以上のイナートの面積率を求めた。具体的には、特開2016-065821号広報に開示されている方法によりイナートの識別を行い、イナートの全面積を算出した。また、識別したイナートのうち、面積が34500μm
2以上のイナートを選別し、(34500μm
2以上のイナートの面積率)=(34500μm
2以上のイナートの総和面積)/(全イナート面積)により算出した。結果を表4に示す。
例えば、銘柄Aについて見てみると、粉砕粒度3.0mm以下のものが含まれる割合が80%となるように粉砕した場合、粒径が9.5−5.6mmの範囲内となる石炭に含まれるイナートのうち、面積が34500μm
2以上のイナートの面積率は、0.353であり、粒径が3.0−0.25mmの範囲内となる石炭に含まれるイナートの面積率は、0.313である。一方、銘柄Aを、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合、粒径が3.0−1.5mmの範囲内となる石炭に含まれるイナートのうち、面積が34500μm
2以上のイナートの面積率は、0.424であり、粒径が1.5−0.5mmの範囲内となる石炭に含まれるイナートの面積率は、0.000であり、粒径が0.5−0.25mmの範囲内となる石炭に含まれるイナートの面積率は、0.000である。
【0045】
【表4】
【0046】
次に、各単味炭を、粉砕粒度3.0mm以下のものが含まれる割合が80%となるように粉砕した場合と、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合とについて、粒径ごとに区切り、各粒径範囲に含まれる大イナート(面積が34500μm
2以上のイナート)の含有割合(g/100g−Coal)を求めた。
例えば、銘柄Aについて見てみると、粉砕粒度3.0mm以下のものが含まれる割合が80%となるまで粉砕した場合、粒径が9.5−5.6mmの範囲内となる石炭に含まれる大イナートの割合は、(重量割合)×(イナート面積割合)×(大イナート面積割合)/(全体の重量割合)=(5.5×0.317×0.353)/(5.5+19.6+31.1+12.5)=0.0090となった。
その後、各単味炭ごとに大イナートの含有割合の合計を求めた。
例えば、銘柄Aについて見てみると、粉砕粒度3.0mm以下のものが含まれる割合が80%となるように粉砕した場合、大イナートの含有割合の合計は、0.0090+0.0445=0.0535となった。また、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合、大イナートの含有割合の合計は、0.0347となった。
【0047】
その後、Δ大イナートサイズ(g/100g−Coal)を求めた。具体的には、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合の大イナートの含有割合の合計から、粉砕粒度3.0mm以下のものが含まれる割合が80%となるまで粉砕した場合の大イナートの含有割合を引き、これを、Δ大イナートサイズ(g/100g−Coal)とした。結果を表5に示す。
例えば、銘柄Aについて見てみると、粉砕粒度3.0mm以下のものが含まれる割合が100%となるまで粉砕した場合の大イナートの含有割合の合計である0.0347から、粉砕粒度3.0mm以下のものが含まれる割合が80%となるように粉砕した場合の大イナートの含有割合の合計である0.0535を引き、Δ大イナートサイズとして、−0.0188を得た。
【0048】
【表5】
【0049】
<実測粉砕効果と推定粉砕効果との相関性>
(製造例1〜製造例8)
ベースとなる配合炭に、表6の「配合率」に示す配合率でA炭〜H炭のいずれかが配合された評価用配合炭を作製した。ベースとなる配合炭と、評価対象の石炭(A炭〜H炭)との合計が100%となるように配合した。例えば、製造例1では、ベースとなる配合炭80%に対して、A炭を20%配合して評価用配合炭とした。
配合する際には、粉砕粒度が3.0mm以下のものが含まれる割合を、表6の「3.0mm以下割合」に示す割合となるように、ハンマーミル、ジョークラッシャーあるいはコーヒーミルで粉砕した上で、配合した。
具体的には、各製造例において、それぞれ評価石炭(A炭〜H炭)の粉砕粒度を3.0mm以下が約80%となるものと、100%となるものとの2水準に粉砕した。
例えば、製造例1において製造例1−Aでは、評価石炭A(A炭)の粉砕粒度を、3.0mm以下が79.5%(A炭全体を100%としたときの3.0mm以下のものの割合が79.5%)となるようにする一方、製造例1−Bでは、100%とした。
【0050】
評価用配合炭を作成後、水分を7.5%±0.2%に調整した。
【0051】
次に、水分調整した試料をL:235mm×W:300mm×H:235mmの缶容器に充填密度735dry−kg/m
3で充填した。
【0052】
次に、乾留温度1,000℃で約19時間乾留してコークスを得た。
【0053】
[ドラム強度試験](実測粉砕効果の算出)
得られたコークスをシャッター試験2回実施後、ドラム試験機で150回転させ、DI
15015を測定した。結果を表6に示す。また、実測粉砕効果も表6に示した。実測粉砕効果は、粒度3.0mm以下の石炭1%当たりのDI向上量である。例えば、製造例1では、粒度3.0mm以下の炭が20.5%増加すると(100%−79.5%=20.5%)、DIが0.2向上しているから(84.7−84.5=0.2)、実測粉砕効果は、約0.010となる(0.2/20.5≒0.010)。ここで、実測粉砕効果の値が大きいほど、粉砕による強度向上の効果が大きいことを意味する。
【0054】
(推定粉砕効果の算出)
<ギーセラー最高流動度が350ddpm未満の単味炭について>
A炭〜E炭は、ギーセラー最高流動度が350ddpm未満である。そこで、A炭〜E炭については、推定粉砕効果を示す値Yを、下記式(3)により算出した。結果を表6に示す。
Y=e×X
2+f×X
3+g×X
4+h・・・・・・・式(3)
(ただし、X
2は、指標dHIであり、X
3は、TI(イナート組織全量の石炭全体に対する体積割合)であり、X
4は、Δ大イナートサイズであり、e、f、g及びhは定数である。具体的なe、f、g及びhは、下記の通りであり、炉の型式や操業方法によって決まる定数であり、多数の測定データを統計的に解析することによって求めることができる。)
e:−0.16798
f:0.00137
g:−1.50650
h:−0.09589
【0055】
<ギーセラー最高流動度が350ddpm以上の単味炭について>
F炭〜H炭は、ギーセラー最高流動度が350ddpm以上である。そこで、F炭〜H炭については、推定粉砕効果を示す値Yを、下記式(4)により算出した。結果を表6に示す。
Y=i×X
5+j×X
6+k・・・・・・・式(4)
(ただし、X
5は、ギーセラー最高流動度(ddpm)であり、X
6は、所定粒度以下のフラクションの全膨張率であり、i、j及びkは定数である。具体的なi、j及びkは、下記の通りであり、重回帰分析により求めた。)
i:4.48×10
−6
j:0.000834
k:−0.0320
【0056】
【表6】
【0057】
図1は、上記ドラム強度試験により実際に求めた「実測粉砕効果」と、工程A〜工程Fの手順により算出したA炭〜H炭の値Y「推定粉砕効果」との関係を示すグラフである。
図1からわかるように、実測粉砕効果の値と、本発明に係る推定粉砕効果の値とはよい相関を示している。従って、推定粉砕効果の値に基づいて各単味炭を粉砕すれば、装入炭全体の粉砕粒度が細かくなりすぎない態様で、コークス強度を効率的に高強度化することができることがわかる。
【0058】
なお、仮に、ギーセラー最高流動度が350ddpm以上のF炭〜H炭に対して、式(4)を用いずに、A炭〜E炭と同様の式(3)を用いた場合、表6の「推定粉砕効果、仮に式(3)を用いた場合」に記載した値となった。この結果からわかるように、ギーセラー最高流動度が350ddpm以上のF炭〜H炭に対して、式(3)を用いると、実際粉砕効果とかけ離れた値となってしまうことがわかった。