【実施例】
【0041】
以下の例により本発明をさらに説明するが、これは本発明の対象を限定するものではない。
【0042】
例:
分析方法:
NMR測定:
機器:Bruker
周波数:500.1MHz(
1H−NMR)
スキャン回数:32
温度:303K
溶剤:CDCl
3
標準物質:0.5%TMS(テトラメチルシラン)。
【0043】
以下に、この
1H−NMR解析に関する目的生成物および合成時に形成される副生成物に関する名称について、トリス[3−(トリアルコキシシリル)プロピル]イソシアヌレートの構造式の例を用いて説明する。トリス[3−(メチルジアルコキシシリル)プロピル]イソシアヌレートおよびトリス[3−(ジメチルアルコキシシリル)プロピル]イソシアヌレートに関する選択率の測定も同様に行い、これらを例6および7の表に示す。
【0044】
【化1】
【0045】
【化2】
【0046】
試験を評価するために、1,3,5−トリアリル−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオンのヒドロシリル化の際に生じる生成物を用いた。目的生成物へと転化するアリル二重結合が多いほど、そして副成分の形成量が少ないほど、生成物品質は良好であり、そして触媒系の性能/選択率も良好である。選択率が高いことは極めて重要である。なぜならば、蒸留による目的生成物からの副成分の除去は、極めて高いコストをかけないと行うことができないか、あるいはそうした除去は不可能であるためである。
【0047】
1H−NMRスペクトル解析に際して、上述の構造式に記した水素原子を考慮した。ヒドロシリル化の際にSi−CH
2−基が生じ、これが目的生成物の特徴となる。このSi−CH
2−基をS1で表し、アリル基(C=CH
2−基)をA1で表し、プロピル基(C
3H
7−基)をP1で表し、そしてイソプロピル基をI1で表した。
1H−NMRスペクトル解析および官能基の算出を、各試験の後に表に示した。
1H−NMRにより解析したシグナルは、基S1およびP1についてはトリプレット(t)を形成し、基A1についてはダブルダブレット(dd)を形成し、基I1についてはダブレット(d)を形成する。
【0048】
使用した化学薬品:
「Karstedt濃縮物」(白金(0)1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体、白金含分20.37重量%)、HERAEUS
純アセトン、LABC Labortechnik
ヘキサクロロ白金(IV)酸6水和物、白金含分40重量%、HERAEUS
白金−活性炭、水素化触媒、白金含分10重量%、MERCK
ベンジルアルコール、puriss、SIGMA ALDRICH
ジエチレングリコールモノメチルエーテル >98重量%、MERCK
工業用キシレン、VWR Chemicals
Dynasylan(登録商標)TMOS(トリメトキシシラン)、EVONIK Industries
Dynasylan(登録商標)TEOS−H(トリエトキシシラン)、EVONIK Industries
Dynasylan(登録商標)DEMS(メチルジエトキシシラン)、EVONIK Industries
Dynasylan(登録商標)DMES(ジメチルエトキシシラン)、EVONIK Industries
TAICROS(登録商標)(1,3,5−トリアリル−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン)、EVONIK Industries
安息香酸、≧99.5重量%、ROTH
3,5−ジ−t−ブチル安息香酸、>98.0重量%、東京化成工業株式会社
3,5−ジ−t−ブチル−4−ヒドロキシ安息香酸、>98.0重量%、東京化成工業株式会社
酢酸、≧99重量%、SIGMA−ALDRICH
メタノール、≧99.5重量%、MERCK
エタノール、≧99.8重量%、ROTH
t−ブタノール、≧99.0重量%(合成用)、ROTH
クロロホルム−d1(CDCl
3)+0.5重量% TMS、DEUTERO
ベンゼン−d6、DEUTERO
テトラメチルシラン、DEUTERO。
【0049】
キシレン中の2重量%の白金含分を有する「Karstedt触媒」番号1の調製:
0.2リットルのガラス瓶中で、「Karstedt濃縮物」(白金(0)1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体、白金含分20.37%)9.8gを、キシレン90.2gと混合した。
【0050】
トルエン中の2重量%の白金含分を有する「Karstedt触媒」番号2の調製:
0.2リットルのガラス瓶中で、「Karstedt濃縮物」(白金(0)1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体、白金含分20.37重量%)9.8gを、トルエン90.2gと混合した。
【0051】
0.4重量%の白金含分を有する「Karstedt触媒」番号3の調製:
0.1リットルのガラス瓶中で、「Karstedt濃縮物」(白金(0)1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体、白金含分20.37重量%)196.4mgを、トルエン9.8gと混合した。
【0052】
2.34重量%のPt含分を有するアセトン中のヘキサクロロ白金(IV)酸6水和物溶液からの触媒4の調製:
12リットルのプラスチック容器中で、H
2PtCl
6・6H
2O 530gをアセトン9.8リットルに溶解させた。このようにして調製した触媒溶液を、8週間にわたってエージング処理した後に使用した。
【0053】
以下の比較例に関する注釈:
米国特許第5,986,124号明細書(US 5,986,124)に記載のアンプル内での合成は、工業的規模での実施が不可能である。これらの試験を本発明による例とより良好に比較できるようにするため、これらの試験を撹拌槽あるいはフラスコ内で行った。さらに、米国特許第5,986,124号明細書(US 5,986,124)における例では別の不飽和化合物が使用されているため、本発明と直接比較することは不可能であるものと考えられる。したがって、以下の比較例においてTAICROS(登録商標)を使用した。
【0054】
比較例1:(米国特許第5,986,124号明細書(US 5,986,124)の例1による)
Dynasylan(登録商標)TMOS 0.2003モル(24.5g)、触媒番号1 0.1ml、さらなる溶剤あるいは希釈剤としてのさらなるトルエン40.0g、TAICROS(登録商標)0.0665モル(16.6g)および酢酸0.4mlを、強力冷却装置を備えた0.25リットルの撹拌装置に装入し、53〜55℃に加熱した油浴中で2.5時間撹拌した。その際、不完全に転化した無色の塔底生成物79.9gが得られた。易揮発性成分を除去しなかった。
【0055】
比較例1に関する
1H−NMRスペクトル解析:
【表1】
【0056】
結果:アリル基の45.8%が、ヒドロシリル化によりトリメトキシシリルアルキル基(S1参照)へと転化した。アリル基(A1)の53.7%が転化しておらず、プロピル基(P1)0.3%あるいはイソプロピル基(I1)0.2%が生じ、これらが生成物に対する不純物となった。反応は不完全である。
【0057】
比較例2:(米国特許第5,986,124号明細書(US 5,986,124)の例1による)
Dynasylan(登録商標)TEOS−H 0.2003モル(32.9g)、触媒番号3 0.1ml、さらなる溶剤あるいは希釈剤としてのさらなるトルエン40.0g、TAICROS(登録商標)0.0665モル(16.6g)および酢酸0.4mlを、還流冷却器を備えた0.25リットルの撹拌装置に装入し、50〜57℃に加熱した油浴中で2.5時間撹拌した。その際、不完全に転化した無色の塔底生成物88.2gが得られた。易揮発性成分を除去しなかった。
【0058】
比較例2に関する
1H−NMRスペクトル解析:
【表2】
【0059】
結果:アリル基の86.2%が、ヒドロシリル化によりトリメトキシシリルアルキル基(S1参照)へと転化した。アリル基(A1)の12.6%が転化しておらず、プロピル基(P1)0.6%あるいはイソプロピル基(I1)0.6%が生じ、これらが生成物に対する不純物となった。反応は不完全である。
【0060】
比較例3:(酢酸のみ使用。アルコールを添加せず)
DYNASYLAN(登録商標)TMOS 1.2モルおよび触媒番号1 0.2g(Pt 0.0205ミリモルに相当)を、還流冷却器および計量供給装置を備えた0.5リットルの撹拌装置に装入した。76〜91℃の温度で、TAICROS(登録商標)0.33モルと酢酸6.77ミリモルとからなる混合物を、1時間以内に計量供給した。その後、この混合物を約87〜92℃でさらに約1時間反応させた。引き続き、低沸点物55.0gを、90〜120℃で0.1ミリバール未満の圧力で除去した。その際、不完全に転化した無色の塔底生成物170.7gが得られた。
【0061】
比較例3に関する
1H−NMRスペクトル解析:
【表3】
【0062】
結果:アリル基の73.8%が、ヒドロシリル化によりトリメトキシシリルアルキル基(S1参照)へと転化した。アリル基(A1)の25.7%が転化しておらず、プロピル基(P1)0.3%あるいはイソプロピル基(I1)0.2%が生じ、これらが生成物に対する不純物となった。反応は不完全である。
【0063】
比較例4:
Dynasylan(登録商標)TMOS 1.2モル、「Karstedt触媒」0.2g(Pt 0.0205ミリモルに相当)、メタノール34.38ミリモルおよび安息香酸6.55ミリモルを、還流冷却器および計量供給装置を備えた0.5リットルの撹拌装置に装入した。73〜82℃の温度で、TAICROS(登録商標)0.33モルを1時間以内に計量供給した。その後、この混合物を81℃でさらに1時間反応させた。続いて、低沸点物89.5gを、35〜127℃で0.1ミリバール未満の圧力で除去した。その際、不完全に転化した無色の塔底生成物134.2gが得られた。
【0064】
比較例4の
1H−NMRスペクトル解析:
【表4】
【0065】
結果:アリル基の42.5%が、TMOSを用いたヒドロシリル化によりトリメトキシシリルアルキル基(S1参照)へと転化した。アリル基(A1)の57.0%が転化しなかった。プロピル基(P1)0.4%あるいはイソプロピル基(I1)0.1%が生じ、これらが生成物に対する不純物となった。アリル基の転化は不完全であり、副生成物はわずかにしか生じなかった。
【0066】
比較例5:
Dynasylan(登録商標)TMOS 1.2モル、「Karstedt触媒」0.2g(Pt 0.0205ミリモルに相当)およびメタノール34.38ミリモルを、還流冷却器および計量供給装置を備えた0.5リットルの撹拌装置に装入した。70〜87℃の温度で、TAICROS(登録商標)0.33モルと安息香酸6.55ミリモルとからなる混合物を、1時間以内に計量供給した。その後、この混合物を81℃でさらに1時間反応させた。続いて、低沸点物41.5gを61〜121℃で0.1ミリバール未満の圧力で除去した。その際、不完全に転化した無色の塔底生成物183.0gが得られた。
【0067】
【表5】
【0068】
結果:アリル基の81.5%が、TMOSを用いたヒドロシリル化によってトリメトキシシリルアルキル基(S1参照)へと転化した。アリル基(A1)の17.7%が転化しなかった。プロピル基(P1)0.6%あるいはイソプロピル基(I1)0.2%が生じ、これらが生成物に対する不純物となった。アリル基の転化は不完全であり、副生成物はわずかにしか生じなかった。
【0069】
比較例6:
TAICROS(登録商標)0.33モル(83.1g)、触媒番号1 0.2g(Pt 0.0205ミリモルに相当)および3,5−ジ−t−ブチル−4−ヒドロキシ安息香酸6.79ミリモル(1.7g)を、還流冷却器および計量供給装置を備えた0.5リットルの撹拌装置に装入した。91〜111℃の温度で、Dynasylan(登録商標)TMOS 1.2モル(146.6g)を計量供給することが望ましい。ヒドロシリル化は高度に発熱性であり、Dynasylan(登録商標)TMOS 18gを9分以内に計量供給した後、温度はすでに91℃から97℃に上昇した。27分以内にDynasylan(登録商標)TMOSをさらに72g計量供給して温度が108℃に上昇した後に、Dynasylan(登録商標)TMOSをさらに添加しても発熱を認めることはできなかった。この反応混合物は、数分以内に108℃から89℃に温度が下がった。したがって、合計で90gのDynasylan(登録商標)TMOSを計量供給した後にこの試験を停止した。つまり反応が停止し、それに応じてこの方法様式での転化は不完全なままであった。計量供給しなかったDynasylan(登録商標)TMOSは、68gであった。
【0070】
注釈:
Pt触媒とカルボン酸とから構成されるPt触媒系の存在下での1,3,5−トリアリル−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン(TAICROS(登録商標))のヒドロシリル化によるトリス[3−(アルコキシシリル)プロピル]イソシアヌレートの製造に関するこれらの比較試験によって、以下のような場合に、二重結合の転化率が90モル%をかなり下回って比較的低いことが判明した:
− HシランとPt触媒とカルボン酸とTAICROS(登録商標)との混合物を使用し、これを加熱し、そのようにして反応させる場合、または
− HシランとPt触媒とを装入して加熱し、これにTAICROS(登録商標)とカルボン酸との混合物を供給する場合、または
− HシランとPt触媒とアルコールとを装入して加熱し、これにTAICROS(登録商標)とカルボン酸との混合物を供給する場合、または
− HシランとPt触媒とカルボン酸とアルコールとを装入して加熱し、これにTAICROS(登録商標)を供給する場合、または
− TAICROS(登録商標)とPt触媒とカルボン酸とを装入して加熱し、これにHシランを供給する場合。
【0071】
例1:
Dynasylan(登録商標)TMOS 1.2モル、「Karstedt触媒」番号1 0.2g(Pt 0.0205ミリモルに相当)および安息香酸6.55ミリモルを、還流冷却器および計量供給装置を備えた0.5リットルの撹拌装置に装入した。71〜82℃の温度で、TAICROS(登録商標)0.33モルとメタノール50.0ミリモルとからなる混合物を、1時間以内に計量供給した。その後、この混合物を81℃でさらに1時間反応させ、次いで塔底生成物試料から
1H−NMRスペクトルを測定した。
【0072】
例1の塔底生成物試料に関する
1H−NMRスペクトル解析
【表6】
【0073】
結果:アリル基の98.1%が、TMOSを用いたヒドロシリル化によりトリメトキシシリルアルキル基へと転化した。アリル基(A1)の0.1%が転化しなかった。プロピル基(P1)1.4%あるいはイソプロピル基(I1)0.4%が生じ、これらが生成物に対する不純物となった。アリル基の転化は、ほぼ完全というわけではなく、副生成物はわずかにしか生じなかった。完全には転化しなかったアリル基は、極微量しか存在しない。
【0074】
本発明の好ましい実施の態様は以下のとおりである。
[態様1]
トリス[3−(トリアルコキシシリル)プロピル]イソシアヌレート、トリス[3−(アルキルジアルコキシシリル)プロピル]イソシアヌレートおよびトリス[3−(ジアルキルアルコキシシリル)プロピル]イソシアヌレートの系列のトリス[3−(アルコキシシリル)プロピル]イソシアヌレートをヒドロシリル化によって製造する方法であって、
− ステップAにおいて、ハイドロジェントリアルコキシシラン、ハイドロジェンアルキルジアルコキシシラン、ハイドロジェンジアルキルアルコキシシランの系列の少なくとも1種のハイドロジェンアルコキシシラン[略してHシランと呼ぶ]と、少なくとも1種のカルボン酸と、Pt触媒とを含む混合物を装入し、前記混合物を50〜140℃の温度に加熱し、
− ステップBにおいて、混合下に、1,3,5−トリアリル−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオンと少なくとも1種のアルコールとの混合物を、前記ステップAの混合物に添加し、
− ステップCにおいて、混合下に前記ステップBの混合物を反応させ、かつ
− ステップDにおいて、そのようにして得られた生成物混合物を後処理することによる方法。
[態様2]
Hシラン対アルコールを、1:0.005〜0.3のモル比で、有利には1:0.01〜0.2のモル比で、好ましくは1:0.02〜0.18のモル比で、特に好ましくは1:0.03〜0.15のモル比で、極めて特に好ましくは1:0.04〜0.1のモル比で、殊に1:0.05〜0.06のモル比で使用することを特徴とする、[態様1]記載の方法。
[態様3]
Hシラン対Ptを、1:1×10
−4〜1×10
−9のモル比で、好ましくは1:1×10
−5〜3×10
−8のモル比で、特に1:1×10
−5〜9.0×10
−6のモル比で使用することを特徴とする、[態様1]または[態様2]記載の方法。
[態様4]
Hシラン対カルボン酸を、1:1×10
−3〜30×10
−3のモル比で、好ましくは1:2×10
−3〜8×10
−3のモル比で使用することを特徴とする、[態様1]から[態様3]までのいずれか記載の方法。
[態様5]
Hシラン対オレフィン成分を、1:0.1〜1のモル比で、好ましくは1:0.2〜0.4のモル比で使用することを特徴とする、[態様1]から[態様4]までのいずれか記載の方法。
[態様6]
前記カルボン酸を、安息香酸、プロピオン酸、2,2−ジメチルプロピオン酸、3,5−ジ−t−ブチル安息香酸、3,5−ジ−t−ブチル−4−ヒドロキシ安息香酸、酢酸の系列から選択することを特徴とする、[態様1]から[態様5]までのいずれか記載の方法。
[態様7]
前記アルコールをC
1〜C
10−アルコールの系列から選択し、好ましくはt−ブタノール、エタノール、メタノール、ベンジルアルコールおよびジグリコールモノメチルエーテルの系列から選択することを特徴とする、[態様1]から[態様6]までのいずれか記載の方法。
[態様8]
Hシランとして、ハイドロジェントリメトキシシラン(TMOS)、ハイドロジェントリエトキシシラン(TEOS)、メチルジエトキシシラン(DEMS)、メチルジメトキシシラン(DMMS)、ジメチルエトキシシラン(DMES)またはジメチルメトキシシラン(MDMS)を使用することを特徴とする、[態様1]から[態様7]までのいずれか記載の方法。
[態様9]
以下の系列のPt触媒:
「Karstedt触媒」、好ましくは白金(0)−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体、特に0.5〜5重量%のPt(0)含分を有するキシレンまたはトルエン中の「Karstedt触媒」としての触媒、ヘキサクロロ白金(IV)酸、好ましくは「Speier触媒」、特にアセトンに溶解したヘキサクロロ白金(IV)酸か、または固体触媒担体に施与したPt、好ましくは活性炭担持Ptを使用することを特徴とする、[態様1]から[態様8]までのいずれか記載の方法。