(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述した従来の免震装置は、積層ゴム支承と滑り支承を併用するものであり、滑り支承は、上述したような非常に多くの構成部品を有しており、積層ゴム支承と比較して、構成が複雑であるとともに高価である。このことは、既存の低摩擦滑り支承や転がり支承にも一般的にあてはまる。また、低摩擦滑り支承や転がり支承は、その摩擦力(摩擦係数×支持荷重)を水平荷重が超えるまでは作動せず、免震効果やTMD機構に適用した場合における同調効果を発揮しないため、入力の小さい中小地震に対して有効に用いることができない。
【0007】
本発明は、以上のような課題を解決するためになされたものであり、構成が単純で安価であるとともに、鉛直荷重に対する安定した支持機能を保持しながら、水平剛性の低剛性化によって設置対象の長周期化を実現することができる積層ゴム支承を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記の目的を達成するために、請求項1に係る発明は、設置対象の上部構造と下部構造の間に設けられる積層ゴム支承であって、積層体ユニットと、積層体ユニットを上部構造及び下部構造にそれぞれ取り付けるための上フランジ板及び下フランジ板と、を備え、積層体ユニットは、複数のゴム層及び複数の剛性層が上下方向に交互に積層されるとともに、上方及び下方にそれぞれ開放する上下の開口を有する筒状の積層体と、積層体の上下の開口をそれぞれ密閉し、積層体の内部に液密の流体室を画成するとともに、上フランジ板及び下フランジ板にそれぞれ連結された上密閉板及び下密閉板と、積層ゴム支承の鉛直剛性を保持するとともに水平剛性を低剛性化するために、流体室に満たされ、封入された低粘度流体としての水と、を備え
、流体室内に配置され、上密閉板と下密閉板との間の水平方向の相対変位量である水平変形量が所定量に達したときに作動し、水平変形量のさらなる増大を抑制するための変形抑制機構をさらに備え、変形抑制機構は、下密閉板の積層体に隣接する位置に設けられ、上方に突出する環状の当接部と、上端部が上密閉板に連結され、流体室内を下方に延びるとともに、水平変形量が所定量に達したときに、下密閉板の当接部に当接するストッパと、を有することを特徴とする。
【0009】
本発明の積層ゴム支承は、設置対象の上部構造と下部構造の間に設けられるものであり、
積層体ユニットと、積層体ユニットを上部構造及び下部構造にそれぞれ取り付けるための上フランジ板及び下フランジ板と、を備える。積層体ユニットは、複数のゴム層及び複数の剛性層を上下方向に交互に積層した筒状の積層体を備える。また、
積層体ユニットは、積層体の上下の開口をそれぞれ密閉し、積層体の内部に液密の流体室を画成する上密閉板及び下密閉板を備え、これらの上密閉板及び下密閉板は、
上フランジ板及び下フランジ板にそれぞれ連結されている。さらに、流体室には、
低粘度流体
としての水が満たされ、封入されている。
【0010】
以上の構成の積層ゴム支承によれば、上密閉板及び下密閉板によって画成された積層体の内部の流体室に、低粘度流体
としての水が満たされ、封入されているので、鉛直荷重(軸力)が作用したときに、
この封入水は、積層体及び上下の密閉板で拘束されることによって、これらと一体に挙動する。これにより、積層ゴム支承全体として、高い鉛直剛性が保持され、鉛直荷重に対して高い支持機能を発揮することができる。
【0011】
また、積層体が筒状であるため、積層体と流体室を合わせた積層ゴム支承全体の断面積(水平断面積)に占める流体室の断面積の割合が比較的高いことと、流体室に封入された
封入水の粘度が低いことから、積層ゴム支承の水平剛性の低剛性化が実現される。その結果、地震時などに積層ゴム支承に水平荷重が作用したときに、積層ゴム支承が水平方向に柔らかく大きく変形することで、建物などの設置対象の長周期化が実現され、より高い免震機能などを得ることができる。
【0012】
また、上記のように水平剛性の低剛性化が実現される結果、積層ゴム支承の水平方向の長さに対する鉛直方向の相対的な長さを小さくすることが可能であり、それにより、水平変形量が大きい場合でも、鉛直荷重に対して座屈を生じることなく、設置対象を安全に支持することができる。
流体室内には、変形抑制機構が配置されている。上密閉板と下密閉板との間の水平方向の相対変位量である水平変形量が所定量に達するまでは、この変形抑制機構が作動しないことで、積層ゴム支承の低水平剛性が保持され、設置対象の長周期化などの効果を得ることができる。一方、水平変形量が所定量に達すると、変形抑制機構が作動することによって、水平変形量のさらなる増大が抑制される。これにより、積層ゴム支承の過大な水平変形を防止し、過大な水平変形による悪影響、例えば鉛直荷重に対する座屈を回避することができる。
さらに、変形抑制機構は、下密閉板に設けられた環状の当接部と、上端部が上密閉板に連結され、流体室内を下方に延びるストッパを有しており、水平変形量が所定量に達したときにストッパが当接部に当接する。これにより、ストッパによるストップ機能によって、水平変形量のさらなる増大が抑制され、積層ゴム支承の過大な水平変形を防止することができる。
【0019】
請求項
2に係る発明は、請求項
1に記載の積層ゴム支承において、ストッパは、下密閉板の当接部との当接によって塑性変形可能な所定の金属材料で構成されていることを特徴とする。
【0020】
この構成によれば、ストッパは、所定の金属材料で構成されており、下密閉板の当接部に当接することによって塑性変形する。このストッパの塑性化によりエネルギが吸収されることによって、水平変形量をさらに抑制することができる。また、ストッパが流体室内の
封入水に常時、浸されているので、塑性化によるエネルギの吸収に伴って温度上昇するストッパを、
封入水で冷却することができる。これにより、振動エネルギが繰り返し作用した場合の、エネルギ吸収に伴うストッパの温度上昇による減衰性能の低下を、
封入水を利用しながら良好に抑制することができる。
【0021】
請求項
3に係る発明は、請求項
1に記載の積層ゴム支承において、変形抑制機構は、下密閉板の当接部に載置され、所定の締付け状態で取り付けられた環状の摩擦板をさらに有し、摩擦板は、水平変形量が所定量よりも小さい第2所定量に達したときに、当接するストッパで押圧されることによって、当接部に対して所定範囲内で摺動するように構成されていることを特徴とする。
【0022】
この構成によれば、変形抑制機構は、環状の摩擦板をさらに有し、この摩擦板は、下密閉板の当接部に載置され、所定の締付け状態で取り付けられている。そして、水平変形量が所定量よりも小さい第2所定量に達したときに、ストッパが摩擦板に当接し、摩擦板を押圧することによって、摩擦板が当接部に対して所定範囲内で摺動する。これにより、摩擦板と当接部の間に摩擦力(摩擦抵抗)が発生し、この摩擦力によりエネルギが吸収されることによって、水平変形量をさらに抑制することができる。また、この摩擦力によるエネルギの吸収に伴って温度上昇するストッパを
封入水で冷却でき、したがって、振動エネルギが繰り返し作用した場合のストッパの温度上昇による摩擦力の低下を、
封入水を利用しながら良好に抑制することができる。
【0023】
請求項
4に係る発明は、請求項
1に記載の積層ゴム支承において、ストッパは、上下方向に伸縮可能な弾性体と、下端面に配置された滑り材を有し、下密閉板の当接部は、径方向外方に向かって斜め上がりに傾斜し、水平変形量が所定量に達したときにストッパの滑り材が当接する傾斜面を有することを特徴とする。
【0024】
この構成によれば、水平変形量が所定量に達したときに、ストッパの下端面に配置された滑り材が下密閉板の当接部の傾斜面に当接するとともに、水平変形量が増加するにつれて、滑り材は、圧縮された弾性体の反力を受けながら、傾斜面を斜め上がりに摺動する。これにより、滑り材と傾斜面の間に摩擦力が発生し、この摩擦力によりエネルギが吸収されることによって、水平変形量を抑制することができる。また、この摩擦力によるエネルギの吸収に伴って温度上昇するストッパを
封入水で冷却でき、したがって、振動エネルギが繰り返し作用した場合のストッパの温度上昇による摩擦力の低下を、
封入水を利用しながら良好に抑制することができる。
【0025】
請求項
5に係る発明は、
設置対象の上部構造と下部構造の間に設けられる積層ゴム支承であって、積層体ユニットと、積層体ユニットを上部構造及び下部構造にそれぞれ取り付けるための上フランジ板及び下フランジ板と、を備え、積層体ユニットは、複数のゴム層及び複数の剛性層が上下方向に交互に積層されるとともに、上方及び下方にそれぞれ開放する上下の開口を有する筒状の積層体と、積層体の上下の開口をそれぞれ密閉し、積層体の内部に液密の流体室を画成するとともに、上フランジ板及び下フランジ板にそれぞれ連結された上密閉板及び下密閉板と、積層ゴム支承の鉛直剛性を保持するとともに水平剛性を低剛性化するために、流体室に満たされ、封入された低粘度流体としての水と、を備え、流体室内に配置され、上密閉板と下密閉板との間の水平方向の相対変位量である水平変形量が所定量に達したときに作動し、水平変形量のさらなる増大を抑制するための変形抑制機構をさらに備え、変形抑制機構は、流体室内に配置された流体ダンパを有し、流体ダンパは、上密閉板及び下密閉板の一方に連結されたシリンダと、上密閉板及び下密閉板の他方に連結され、シリンダ内に摺動自在に設けられ、シリンダ内を第1流体室と第2流体室に区画するとともに、水平変形量が所定量未満のときに中立位置を含む所定の内側区間内に位置し、水平変形量が所定量以上のときに内側区間外に位置するピストンと、第1及び第2流体室に充填された作動流体と、ピストンが内側区間内に位置しているときに、ピストンをバイパスするように第1及び第2流体室を互いに連通させる連通路と、を有することを特徴とする。
【0026】
この構成では、変形抑制機構は、流体室内に配置された流体ダンパを有し、流体ダンパは、上述したようなシリンダ、ピストン、作動流体及び連通路を有する。この流体ダンパによれば、積層ゴム支承が水平方向に変形すると、シリンダ及びピストンが連結された上密閉板及び下密閉板の連結部間の距離が変化することによって、ピストンがシリンダに対して中立位置から摺動し、ピストンの両側に区画された第1及び第2流体室の一方に充填された作動流体を圧縮する。
【0027】
この水平変形量が所定量未満のときには、ピストンが所定の内側区間内に位置することで、第1及び第2流体室が連通路によって互いに連通し、作動流体が連通路を介して第1及び第2流体室の一方から他方に流れ、圧力が逃がされる。その結果、この状態では、作動流体の流れによる小さな粘性抵抗が発生するだけであるので、積層ゴム支承の低水平剛性が保持される。
【0028】
一方、水平変形量が所定量以上になると、ピストンが内側区間外に位置することで、連通路を介した作動流体の流れが阻止され、作動流体が第1及び第2流体室の一方に閉じ込められる。これにより、その一方の流体室内の圧力が急激に上昇し、ピストンの移動が阻止されることによって、水平変形量のさらなる増大が抑制され、積層ゴム支承の過大な水平変形を防止することができる。
【発明を実施するための形態】
【0030】
以下、図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
図1に示す、本発明の第1実施形態による積層ゴム支承1は、例えば、高層の建物の上部構造と地盤などの下部構造(いずれも図示せず)との間に、免震装置として設置されるものである。
【0031】
図1に示すように、積層ゴム支承1は、円柱状の積層体ユニット2と、積層体ユニット2の上下に固定された、建物への取付け用の矩形状の上下のフランジ鋼板3、3で構成され、積層体ユニット2の表面は、保護用の被覆ゴム4で被覆されている。なお、図示の便宜上、
図1では、細部の構成要素の符号が省略され、後述する断面図では、被覆ゴム4と細部の構成要素のハッチングが省略されている。
【0032】
図2に示すように、積層体ユニット2は、円筒状の積層体5と、積層体5の上下をそれぞれ密閉する上密閉板6及び下密閉板7と、積層体5内の流体室8に封入された低粘度流体Fなどを備えている。
【0033】
積層体5は、通常の積層ゴム支承と同様、複数の天然ゴム層9と複数の中間鋼板10を上下方向に交互に積層したものである。また、積層体5は、上方及び下方にそれぞれ開放する上下の開口5a、5bを有し、全体として上下方向に短い短筒状に形成されている。積層体5の上下面にはそれぞれ、比較的厚い環状の連結鋼板11が固定されている。
【0034】
上下の密閉板6、7はそれぞれ、鋼板で構成され、連結鋼板11と同じ厚さと、連結鋼板11の内径とほぼ等しい外径を有する。上密閉板6は、上側の連結鋼板11にシール材12を介してはめ込まれ、上密閉板6と積層体5及び連結鋼板11との境界部には、密閉リング13が取り付けられており、それにより、積層体5の上側の開口5aが上密閉板6によって密閉されている。
【0035】
同様に、下密閉板7は、下側の連結鋼板11にシール材12を介してはめ込まれ、下密閉板7と積層体5及び連結鋼板11との境界部には、密閉リング13が取り付けられており、それにより、積層体5の下側の開口5bが下密閉板7によって密閉されている。以上の構成により、上密閉板6及び下密閉板7によって、積層体5の内部に液密の流体室8が画成されている。
【0036】
低粘度流体Fは、流体室8に満たされた状態で封入されている。低粘度流体Fは、可能な限り粘度が低く、かつ積層体5の天然ゴム層9を構成するゴムと同等のポアソン比(例えば0.49)を有することが好ましく、例えば水で構成されている。
【0037】
また、上下のフランジ鋼板3、3は、積層体ユニット2の連結鋼板11の部分に複数のボルト14で固定されている。以上の構成の積層ゴム支承1は、各フランジ鋼板3のボルト孔3aに通されたボルト(図示せず)によって、建物の上部構造及び下部構造に固定され、両者間に設置される。
【0038】
以上の構成の積層ゴム支承1によれば、上密閉板6及び下密閉板7によって画成された積層体5内の流体室8に、低粘度流体Fが満たされ、封入されているので、鉛直荷重(軸力)が作用したときに、低粘度流体Fは、積層体5及び上下の密閉板6、7で拘束されることによって、これらと一体に挙動する。また、低粘度流体Fが積層体5のゴム層と同等のポアソン比を有するので、積層ゴム支承1に鉛直荷重が作用したときの、積層体5と低粘度流体Fとの変形特性の差が小さくなる。これにより、この変形特性の差に起因する内部応力の発生などが抑制され、積層体5と低粘度流体Fとの一体性が高められる。以上により、積層ゴム支承1全体として、高い鉛直剛性が保持され、鉛直荷重に対して高い支持機能を発揮することができる。
【0039】
また、積層体5が筒状であるため、積層体5と流体室8を合わせた積層体ユニット2全体の断面積(水平断面積)に占める流体室8の断面積の割合が比較的高いことと、流体室8に封入された低粘度流体Fの粘度が非常に低いことから、積層ゴム支承1の水平剛性の低剛性化が実現される。その結果、例えば
図3に示すように、地震時などに積層ゴム支承1に水平荷重が作用したときに、水平抵抗力FHが小さい状態で、大きな水平変形量(上密閉板6と下密閉板7との間の水平方向の相対変位)DHが得られ、積層ゴム支承1が水平方向に柔らかく大きく変形する。これにより、建物の長周期化が実現され、より高い免震機能を発揮することができる。
【0040】
また、上記のように水平剛性の低剛性化が実現される結果、積層体ユニット2を短筒状に形成し、積層ゴム支承1の水平方向の長さに対する鉛直方向の相対的な長さを小さくすることが可能になり、それにより、水平変形量DHが大きい場合でも、鉛直荷重に対して座屈を生じることなく、建物を安全に支持することができる。
【0041】
次に、
図4〜
図6を参照しながら、本発明の第2実施形態による積層ゴム支承21について説明する。
図2との比較から明らかなように、この積層ゴム支承21は、第1実施形態の積層ゴム支承1に対し、その過大な変形を抑制するための変形抑制機構として、ストッパ兼エネルギ吸収機構22を付加したものである。以下、第1実施形態と共通の積層ゴム支承21の構成要素に対して、
図4に同じ符号を付するとともに、ストッパ兼エネルギ吸収機構22の構成を中心として説明を行うものとする。
【0042】
このストッパ兼エネルギ吸収機構22は、ストッパ23を備えており、その両端部には連結鋼板24及び当接鋼板25がそれぞれ一体に設けられている。ストッパ23は、塑性変形が可能な所定の金属材料、例えば、積層ゴム支承の金属プラグとして通常、用いられる鉛や錫で構成されており、太い棒状に形成されている。
【0043】
連結鋼板24及び当接鋼板25はそれぞれ、ストッパ23よりも大径の比較的厚い円板で構成されている。連結鋼板24は、上密閉板6の下面の中心に形成された凹部6aにシール材26を介してはめ込まれ、ボルト27によって上密閉板6に固定されており、それにより、ストッパ23は、上端部が連結鋼板24を介して上密閉板6に連結され、流体室8内を下方に延びている。
【0044】
一方、下密閉板7の上面には、そのほぼ全体にわたって円形の凹部7aが同心状に形成されており、この凹部7aに当接鋼板25が部分的に入り込んでいる。また、凹部7aが形成されていない下密閉板7の残りの部分が、上方に突出する環状の当接部7bになっており、
図4に示す中立位置において、当接鋼板25の外周面と当接部7bの内周面との間に、所定量Gの大きさの間隙が形成されている。
【0045】
次に、
図5及び
図6を参照しながら、上記構成の積層ゴム支承21の動作を説明する。まず、積層ゴム支承21に水平荷重が例えば
図5の右方向に作用すると、積層体ユニット2は、
図5(a)に示す中立位置(水平変形量DH=0)から同方向に変形する。水平変形量DHが間隙の大きさである所定量Gに達するまでは、ストッパ23が流体室8内の低粘度流体F中を移動するだけであり、それによる粘性抵抗は非常に小さい。したがって、前述した第1実施形態の積層ゴム支承1とほぼ同様の低い水平剛性が得られ(
図6の点a〜点b)、建物の長周期化が実現されることで、高い免震機能を発揮することができる。
【0046】
水平変形量DHが所定量Gに達すると、当接鋼板25が当接部7bに当接する(
図5(b))ことにより、当接鋼板25の移動が阻止され、そのストップ機能によって水平変形量DHが抑制される(
図6の点b〜点c)。水平変形量DHがさらに増加すると、鉛や錫から成るストッパ23が塑性変形し(
図5(c)、
図6の点c〜d)、このストッパ23の塑性化によりエネルギが吸収されることによって、水平変形量DHがさらに抑制される。以上のように、ストッパ23のストップ機能と塑性化によるエネルギ吸収機能により、水平変形量DHが2段階で抑制されることによって、積層ゴム支承21の過大な水平変形を防止することができる。
【0047】
その後、水平荷重が減少すると、それに応じて水平抵抗力FHが減少するとともに、水平変形量DHが減少する。水平変形量DHの減少に伴って当接鋼板25が当接部7bから離れた後には、水平変形量DHは、増加時と同じ経路を逆にたどって減少し、中立位置に復帰する(
図5(d)、
図6の点e)。この状態では、塑性化したストッパ23に残留変形が生じるのに対し、ストッパ23と間隙を隔てた積層体5には、ストッパ23の影響が及ばないことで残留変形が生じないという利点が得られる。
【0048】
また、本実施形態の積層ゴム支承21では、ストッパ23が流体室8内の低粘度流体Fに常時、浸されていることで、塑性化によるエネルギの吸収に伴って温度上昇するストッパ23が低粘度流体Fで冷却される。これにより、振動エネルギが繰り返し作用した場合の、エネルギ吸収に伴うストッパ23の温度上昇による減衰性能の低下を、低粘度流体Fを利用しながら良好に抑制することができる。
【0049】
なお、積層ゴム支承21では、水平変形時、ストッパ23が低粘度流体F中を移動することによって、速度依存の粘性減衰効果が発生するが、上述したように、この粘性減衰効果は非常に小さいと考えられるため、
図6では省略されている。このことは、後述する他の実施形態などの復元力特性を示した同種の図においても同様である。
【0050】
次に、
図7〜
図10を参照しながら、第2実施形態の第1変形例による積層ゴム支承31について説明する。この積層ゴム支承31は、第2実施形態の積層ゴム支承21と比較し、ストッパ兼エネルギ吸収機構32の構成が異なるものである。以下、第2実施形態と共通の積層ゴム支承31の構成要素に対して、
図7に同じ符号を付するとともに、ストッパ兼エネルギ吸収機構32の構成を中心として説明を行うものとする。
【0051】
このストッパ兼エネルギ吸収機構32は、ストッパ33を備えており、その一端部には連結鋼板34が一体に設けられている。第2実施形態のストッパ23が鉛や錫などの金属材料で構成されるのに対し、ストッパ33は、高い剛性を有する材料、例えば鉄で構成されている。
【0052】
連結鋼板34は、ストッパ33よりも大径の比較的厚い円板で構成されている。連結鋼板34は、上密閉板6の下面の中心に形成された凹部6aにシール材26を介してはめ込まれ、ボルト27によって上密閉板6に固定されており、それにより、ストッパ33は、上端部が連結鋼板34を介して上密閉板6に連結され、流体室8内を下方に延びている。
【0053】
一方、下密閉板7の上面には、第2実施形態の凹部7aよりも若干小径の円形の凹部7cが同心状に形成されており、凹部7cが形成されていない下密閉板7の残りの部分が、上方に突出する環状の当接部7dになっている。
【0054】
また、下密閉板7の当接部7dの上面には、摩擦リング38が取り付けられている。
図8に示すように、摩擦リング38は、同心状の大きな円孔38aを有しており、その径は、下密閉板7の凹部7cの径よりも小さい。また、摩擦リング38には、周方向に等間隔に複数の(この例では8つの)円形のボルト孔38bが形成されている。
【0055】
摩擦リング38は、各ボルト孔38bに上方から通したボルト39を、ワッシャ(図示せず)を介して当接部7dにねじ込み、所定の締付け力で締め付けた状態で、下密閉板7に取り付けられている。この状態では、摩擦リング38の円孔38aと下密閉板7の凹部7cは互いに同心状であり、各ボルト39は、ボルト孔38bの中心に位置し、ボルト孔38bに対して所定量の遊びをもって係合している。
【0056】
また、ストッパ33は、摩擦リング38の円孔38aを通り、下密閉板7の凹部7cの途中まで延びており、
図7に示す中立位置において、ストッパ33の外周面と当接部7bの内周面との間に、第1所定量G1の間隙が形成され、ストッパ33の外周面と摩擦リング38の円孔38aの縁との間に、第1所定量G1よりも小さい第2所定量G2の間隙が形成されている。
【0057】
次に、
図9及び
図10を参照しながら、上記構成の積層ゴム支承31の動作を説明する。積層ゴム支承31に水平荷重が作用すると、積層体ユニット2は、図示しない中立位置から水平方向に変形する。水平変形量DHが第2所定量G2に達するまでは、ストッパ33が流体室8内の低粘度流体Fを移動するだけで、それによる粘性抵抗は非常に小さいので、第1実施形態の積層ゴム支承1とほぼ同様の低い水平剛性が得られる(
図10の点a〜点b)。
【0058】
水平変形量DHが第2所定量G2に達すると、ストッパ33が摩擦リング38の円孔38aの縁に当接し、摩擦リング38を押圧する(
図9(a))。これに伴い、当接部7dの上面と摩擦リング38の下面の間に摩擦力が発生する(
図10の点b)とともに、水平荷重が最大摩擦力を超えたときに、摩擦リング38が摺動し始める(
図10の点c)。この間、当接部7dと摩擦リング38との間の摩擦力によりエネルギが吸収されることによって、水平変形量DHが抑制される(
図10の点b〜点c)。
【0059】
水平変形量DHがさらに増加し、第1所定量G1に達すると、摩擦リング38の円孔38bの縁がボルト39に当接することで、摩擦リング38の摺動が終了すると同時に、ストッパ33が当接部7dに当接する(
図9(b)、
図10の点d)。これにより、ストッパ33の移動が阻止され、そのストップ機能によって水平変形量DHが抑制される(
図9(c)、
図10の点d〜点e)。
【0060】
以上のように、ストッパ33と摩擦リング38の摩擦力によるエネルギ吸収機能とストップ機能により、水平変形量DHが2段階で抑制されることによって、積層ゴム支承31の過大な水平変形を防止することができる。また、摩擦力によるエネルギの吸収に伴って温度上昇する摩擦リング38が低粘度流体Fで冷却されるので、振動エネルギが繰り返し作用した場合の、エネルギ吸収に伴う摩擦リング38の温度上昇による摩擦力の低下を、低粘度流体Fを利用しながら良好に抑制することができる。
【0061】
図11は、摩擦リングの他の例を示す。同図に示すように、この摩擦リング38Aでは、ボルト39が通される8つのボルト孔38c(38c1、38c2、38c3)が、互いに同じ方向に延びる長孔で構成されている。具体的には、径方向に対向する一対のボルト孔38c1、38c1は径方向に延び、これと直交する方向に対向する一対のボルト孔38c2、38c2は、径方向と直交する方向に延び、他の4つのボルト孔38c3は、径方向に対して斜めに延びている。以下、ボルト孔38cの延び方向を「第1方向」、これと直交する方向を「第2方向」という。
【0062】
摩擦リング38Aは、各ボルト孔38cに通されたボルト39を介し、
図8の摩擦リング38と同様にして、下密閉板7の当接部7dに取り付けられている。この状態では、各ボルト39は、ボルト孔38cの中心に位置し、ボルト孔38cの長さ方向の両側に所定量の遊びをもち、幅方向には遊びのない状態で、ボルト孔38cに係合している。
【0063】
この構成によれば、水平荷重が上記第1方向(
図11の矢印A方向)に作用し、摩擦リング38Aが同方向にストッパ33で押圧された場合、摩擦リング38Aは、第1方向に延びる各ボルト孔38cを介して、ボルト39の遊びの分だけ、当接部7dに対して摺動する。したがって、
図10に示す摩擦リング38の場合の復元力特性を同様に得ることができる。
【0064】
これに対し、水平荷重が上記第2方向(
図11の矢印B方向)に作用し、摩擦リング38Aが同方向にストッパ33で押圧された場合、各ボルト孔38cに対するボルト39の遊びがないため、摩擦リング38Aは当接部7dに対して摺動できない。このため、
図12に示すように、水平変形量DHが第2所定量G2に達し、ストッパ33が摩擦リング38Aに当接した時点(
図12の点b)から、ストッパ33のストップ機能が発揮される。これにより、水平荷重が第1方向に作用する場合と比較して、水平変形量DHがより小さくなり(
図12の点b〜点c)、積層ゴム支承31の水平変形がさらに抑制される。
【0065】
以上のように、水平荷重が第1方向に作用する場合と第2方向に作用する場合で、積層ゴム支承31の復元力特性を異ならせることができる。したがって、例えば建物の平面的な形状や隣接する建物との位置関係などから、免震装置に許容される変位量が方向によって異なる場合、ボルト孔38cの第2方向が許容変位量の小さい方向に一致するように摩擦リング38Aの設置角度を調整することによって、免震装置の変位量をそれぞれの方向の許容変位量に応じて適切に制御することができる。
【0066】
次に、
図13を参照しながら、第2実施形態の第2変形例による積層ゴム支承41について説明する。この積層ゴム支承41は、上述した第1変形例の積層ゴム支承31と比較し、ストッパ兼エネルギ吸収機構42の構成が異なるものである。以下、第1変形例と共通の積層ゴム支承41の構成要素に対し、
図13に同じ符号を付するとともに、ストッパ兼エネルギ吸収機構42の構成を中心として説明を行うものとする。
【0067】
このストッパ兼エネルギ吸収機構42は、ストッパ43を備えており、その一端部には連結鋼板44が一体に設けられ、他端部には、弾性体45及び滑り材46が順に一体に設けられている。ストッパ43は、第1変形例のストッパ33と同様、高い剛性を有する材料、例えば鉄で構成されている。
【0068】
連結鋼板44は、ストッパ43よりも大径の比較的厚い円板で構成されている。連結鋼板44は、上密閉板6の下面の中心に形成された凹部6aにシール材26を介してはめ込まれ、ボルト27によって上密閉板6に固定されており、それにより、ストッパ43は、上端部が連結鋼板44を介して上密閉板6に連結され、流体室8内を下方に延びている。
【0069】
弾性体45は、例えば天然ゴムで構成され、ストッパ43と同じ径を有する円板状に形成されており、ストッパ43の下面に接着などによって一体に取り付けられている。
【0070】
滑り材46は、例えばフッ素樹脂で構成されており、弾性体45の下面に接着などによって一体に取り付けられている。また、滑り材46の下面は、中央の円形の平坦面46aと、この平坦面46aの周縁と弾性体45の下面の周縁に連なるテーパ面46bで構成されている。
【0071】
一方、下密閉板7の上面には、その中央に円形の凹部7eが同心状に形成されており、ストッパ43の滑り材46は、
図13に示す中立位置において、凹部7eの底面に近接した状態で、凹部7eに収容されている。また、凹部7eが形成されていない下密閉板7の残りの部分が、上方に突出する環状の当接部7fになっており、凹部7eとの当接部7fの境界部には、凹部7eから当接部7fの上面に向かって傾斜する傾斜面7gが形成されている。
【0072】
以上の構成の積層ゴム支承41によれば、水平荷重が作用するのに応じて、積層体ユニット2が
図13の中立位置から水平方向に変形する。この水平変形量が所定量に達するまでは、ストッパ43などが流体室8内の低粘度流体Fを移動するだけで、それによる粘性抵抗は非常に小さいので、第1実施形態の積層ゴム支承1とほぼ同様の低い水平剛性が得られる。
【0073】
水平変形量が所定量に達すると、滑り材46のテーパ面46bが当接部7dの傾斜面7gに当接するようになり、その後、水平変形量が増加するにつれて、弾性体45が圧縮されるとともに、滑り材46は、圧縮された弾性体45の反力を受けながら、傾斜面7gを斜め上がりに摺動する(登坂する)。この傾斜面7gの登坂の際に、ストップ機能が作用するとともに、滑り材46のテーパ面46bと傾斜面7gの間に摩擦力が発生する。この摩擦力は、登坂が進むにつれて増大するとともに、テーパ面46bが傾斜面7gを越えて当接部7eの上面に達した後には、ほぼ一定の高い状態に保持される。
【0074】
以上のように、ストッパ43が傾斜面7fを登坂する際のストップ機能と、傾斜面7gを含む当接部7eとの間の摩擦力によるエネルギ吸収機能によって、水平変形量が抑制され、積層ゴム支承41の過大な水平変形を防止することができる。
【0075】
また、摩擦力によるエネルギの吸収に伴って温度上昇するストッパ43が低粘度流体Fで冷却されるので、振動エネルギが繰り返し作用した場合のストッパ43の温度上昇による摩擦力の低下を、低粘度流体Fを利用しながら良好に抑制することができる。
【0076】
次に、
図14を参照しながら、本発明の第3実施形態による積層ゴム支承51について説明する。この積層ゴム支承51は、変形抑制機構として、これまでのストッパ兼エネルギ吸収機構に代えて、流体ダンパ52を設けたものである。以下、第1実施形態と共通の構成要素に対し、
図14に同じ符号を付するとともに、流体ダンパ52の構成を中心として説明を行うものとする。
【0077】
流体ダンパ52は、作動流体HFを用いるものであり、シリンダ53、ピストン54及び連通路55を備えている。シリンダ53は、ボールジョイント56及び取付具57を介して、下密閉板7の中心に連結されている。ピストン54は、ピストンロッド58、ボールジョイント59及び取付具60を介して、上密閉板6の中心に連結されている。
【0078】
ピストン54は、シリンダ53内に摺動自在に設けられており、シリンダ53内を、ピストンロッド58側の第1流体室61と反対側の第2流体室62に区画している。連通路55は、シリンダ53の軸線方向の中心から両側に等しい所定距離を隔てた2つの位置において、シリンダ53内に接続されている。以下、この2つの接続部の間のシリンダ53の区間を「内側区間Z」という。
【0079】
この構成により、連通路55は、ピストン53が
図14に示す中立位置を含む内側区間Zに位置しているときに、ピストン53をバイパスし、第1及び第2流体室61、62を互いに連通させる。作動流体HFは、例えばシリコンオイルで構成され、第1及び第2流体室61、62と連通路55に充填されている。
【0080】
ピストン54には、一対のリリーフ弁63、63が設けられている。これらのリリーフ弁63、63は、ピストン54を貫通する2つの連通孔(図示せず)にそれぞれ設けられており、第1及び第2流体室61、62の一方の圧力が所定圧力に達したときに、それに対応する一方のリリーフ弁63が開弁し、第1及び第2流体室61、62を互いに連通させるように構成されている。
【0081】
以上の構成の積層ゴム支承51によれば、水平荷重が作用し、積層体ユニット2が水平方向に変形するのに伴い、上下の密閉板6、7に取り付けた取付具60、57の間の距離が長くなることで、ピストン54は、第1流体室61の容積を減少させる方向に移動する。この場合、積層体ユニット2の水平変形量が所定量に達するまでは、ピストン54が内側区間Zに位置しており、それにより、作動流体HFが連通路55を介して第1流体室61から第2流体室62に流れ、第1流体室61内の圧力が逃がされる。このため、作動流体HFの流れによる小さな粘性抵抗が発生するだけであるので、第1実施形態の積層ゴム支承1とほぼ同様の低い水平剛性が得られる。
【0082】
水平変形量DHが所定量に達すると、ピストン54が内側区間Zから外れることで、連通路55を介した作動流体HFの流れが阻止され、作動流体HFが第1流体室61内に閉じ込められることによって、第1流体室61内の圧力が急激に上昇する。これにより、ピストン54の移動が阻止されることによって、水平変形量が抑制され、積層ゴム支承51の過大な水平変形を防止することができる。
【0083】
なお、第1流体室61内の圧力が所定の圧力に達したときには、対応するリリーフ弁63が開弁し、第1流体室61内の圧力が、連通孔を介して第2流体室62に逃がされることによって、過大な圧力上昇が防止される。
【0084】
なお、本発明は、説明した実施形態及び変形例に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、流体室8に充填される低粘度流体Fとして、水を用いているが、低粘度である限り、より好ましくは天然ゴム層9と同等のポアソン比を有するものであれば、水以外の流体を用いることが可能である。例えば、冷却性や防錆性、難蒸発性などの観点から作動油を用いてもよく、その中でも粘度の低いものが好ましい。
【0085】
また、実施形態では、変形抑制機構として、ストッパ兼エネルギ吸収機構22、32、42や流体ダンパ52を用いているが、水平変形量が所定量を超えた後にその増大を抑制するものである限り、他の構成の変形抑制機構を用いることが可能である。
【0086】
また、実施形態は、積層ゴム支承を高層の建物の免震装置として用いた例であるが、これに限らず、本発明の積層ゴム支承は、他の構造物の免震装置として、あるいはTMD機構の支承体として用いることが可能である。後者の場合には、積層ゴム支承によってTMD機構をより長周期化し、TMD機構を含む付加振動系の固有振動数を建物などの固有振動数と同調させることによって、TMD機構の制振機能を良好に発揮させることができる。
【0087】
さらに、実施形態では、積層体5を密閉する上下の密閉板6、7と建物への取付け用の上下のフランジ鋼板3、3が、それぞれ互いに別個に構成されているが、これらを兼用する上下各1枚の鋼板などで構成してもよい。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。