特許第6980691号(P6980691)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ フルイディック・アナリティクス・リミテッドの特許一覧

特許6980691フローバランスの改善またはそれに関連した改善
<>
  • 特許6980691-フローバランスの改善またはそれに関連した改善 図000002
  • 特許6980691-フローバランスの改善またはそれに関連した改善 図000003
  • 特許6980691-フローバランスの改善またはそれに関連した改善 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6980691
(24)【登録日】2021年11月19日
(45)【発行日】2021年12月15日
(54)【発明の名称】フローバランスの改善またはそれに関連した改善
(51)【国際特許分類】
   B01J 19/00 20060101AFI20211202BHJP
   G01N 37/00 20060101ALI20211202BHJP
【FI】
   B01J19/00 321
   G01N37/00 101
【請求項の数】8
【全頁数】7
(21)【出願番号】特願2018-552690(P2018-552690)
(86)(22)【出願日】2017年4月4日
(65)【公表番号】特表2019-515783(P2019-515783A)
(43)【公表日】2019年6月13日
(86)【国際出願番号】GB2017050941
(87)【国際公開番号】WO2017174975
(87)【国際公開日】20171012
【審査請求日】2020年3月11日
(31)【優先権主張番号】1605845.5
(32)【優先日】2016年4月6日
(33)【優先権主張国】GB
(73)【特許権者】
【識別番号】518296506
【氏名又は名称】フルイディック・アナリティクス・リミテッド
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【弁理士】
【氏名又は名称】中西 基晴
(74)【代理人】
【識別番号】100186613
【弁理士】
【氏名又は名称】渡邊 誠
(72)【発明者】
【氏名】ダグラス,アンソニー
(72)【発明者】
【氏名】ミューラー,トーマス
(72)【発明者】
【氏名】ノウルズ,ツォーマス・ペルッティ・ヨナタン
(72)【発明者】
【氏名】ケンプ,コリン・ジョージ
(72)【発明者】
【氏名】ゴッドフリー,ダニエル・ピーターソン
【審査官】 壷内 信吾
(56)【参考文献】
【文献】 米国特許出願公開第2002/0045265(US,A1)
【文献】 中国実用新案第201543421(CN,U)
【文献】 米国特許出願公開第2012/0077260(US,A1)
【文献】 特開2006−275023(JP,A)
【文献】 特開2008−080306(JP,A)
【文献】 特開2005−199164(JP,A)
【文献】 特開2007−136253(JP,A)
【文献】 特表2003−524183(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 10/00−12/02,14/00−19/32
G01N 35/00−37/00
(57)【特許請求の範囲】
【請求項1】
マイクロ流体チップ上の流体経路の配列において流体流れを制御するためのデバイスであって、
2つ以上の入口及び2つ以上の出口を有する流体経路の前記配列であって、2つ以上の流体経路が前記チップ上で互いに結合し、及び/又は、流体経路の少なくとも1つが前記チップ上で複数の流体経路に分割される、流体経路の前記配列と、
前記チップの上流に設けられた2つ以上の抵抗器であって、各上流抵抗器が、流体経路の上流端に抵抗をもたらすように構成される、2つ以上の抵抗器と、
前記チップの下流に設けられた2つ以上の抵抗器であって、各下流抵抗器が、流体経路の下流端に抵抗をもたらすように構成される、2つ以上の抵抗器と、を備え、
前記抵抗の値は、各流体経路中を流れる流体の割合を制御するために選択され、
前記抵抗の値が、前記流体経路の内部抵抗の少なくとも3倍である、
デバイス。
【請求項2】
前記チップを前記抵抗器と接続するコネクタをさらに備える、請求項1に記載のデバイス。
【請求項3】
上流抵抗器の数が、下流抵抗器の数を超える、請求項1または2のいずれかに記載のデバイス。
【請求項4】
下流抵抗器の数が、上流抵抗器の数を超える、請求項1または2のいずれかに記載のデバイス。
【請求項5】
上流抵抗器の数が、下流抵抗器の数に等しい、請求項1または2のいずれかに記載のデバイス。
【請求項6】
前記2つ以上の上流抵抗器には、各流体経路中を流れる流体流れを制御するために正圧が提供される、請求項1または2のいずれかに記載のデバイス。
【請求項7】
前記2つ以上の下流抵抗器には、各経路中を流れる流体流れを制御するために周囲圧力よりも低い圧力が提供される、請求項1または2のいずれかに記載のデバイス。
【請求項8】
前記抵抗の値が、使用において0.1〜10000μl/hrの範囲の流体流量を実現するために選択される、請求項1または2のいずれかに記載のデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多重経路におけるフローバランスの改善またはそれに関連した改善に関し、詳しくは、マイクロ流体デバイスにおけるフローバランスに関する。マイクロ流体デバイスは、タンパク質またはDNA溶液などの微量の生体試料および化学試料を扱うのに有用なツールとなる。
【背景技術】
【0002】
マイクロ流体デバイスにおいて多数の複雑な生化学反応および/またはプロセスを実行することができる。場合により、異なる段階における生体反応および/またはプロセスを扱うためにマイクロ流体デバイスにおいて1つよりも多くの流体流れを有することは有用であり得る。したがって、単一のマイクロ流体経路からマイクロ流体チップ上の多重経路に流体流れを分割することは、しばしば、非常に望ましい。さらに、2つ以上のマイクロ流体経路から1つの経路に異なる流体流れを結合することも同様に望ましい。しかし、単一または多重経路から他の経路に流体流れを分割しまたは結合することは、マイクロ流体デバイスにおいて制御することが困難である。
【0003】
マイクロ流体デバイスにおける流量を制御することおよびバランスをとることは、通常、内部マイクロ流体抵抗器のネットワークを使用して実現される。これらの内部抵抗器は、1つのマイクロ流体経路から多重経路に流体流れを分割するためのある程度の制御をもたらす。しかし、そのような内部抵抗器を備えるマイクロ流体チップは、しばしば、内部マイクロ流体抵抗器を高精度に製作し、または較正しなければならず、チップ間およびバッチ間の変動を最小限に抑える必要があることにより、製作することが困難であり、高価である。内部マイクロ流体抵抗器間のわずかな変動は、共通のマイクロ流体経路からそれぞれの経路に、またはいくつかの経路から1つの共通の経路に、流れる流体の割合に影響を及ぼすことがある。
【0004】
圧力制御された流れは、特に高い流動安定性が必要とされるときに、一般にマイクロ流体デバイスに使用されるが、流量は未知のままである。したがって、マイクロ流体デバイス内の流量を制御し、バランスをとるために、流量を正確に特定しなければならない。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、このような背景に対してなされたものである。
【課題を解決するための手段】
【0006】
本発明によれば、マイクロ流体チップ上の流体経路の配列において流体流れを制御するためのデバイスが提供され、デバイスは、チップの上流に設けられた2つ以上の抵抗器であって、各上流抵抗器は、流体経路の上流端に抵抗をもたらすように構成される、2つ以上の抵抗器と、チップの下流に設けられた2つ以上の抵抗器であって、各下流抵抗器は、流体経路の下流端に抵抗をもたらすように構成される、2つ以上の抵抗器と、を備え、抵抗の値は、各流体経路中を流れる流体の割合を制御するために選択される。
【0007】
2つ以上の上流および下流抵抗器を設けることは、流体経路の上流および下流端に局部抵抗を適用することに特に有用であり、それにより、流体経路間の圧力差が変更され、結果として上記経路中を流れる流体の流量の変更となる。さらに、抵抗器がチップ上ではなく、デバイス上に設けられるので、チップが連続してデバイス内に配置されるとき、同じ抵抗器の組を多くのチップに使用することができる。
【0008】
デバイス内へ抵抗器を設けることは、チップ内への集積ではないために、チップに基づく構成に対して相当の利点をもたらす。「チップ外部」の抵抗器を設けることにより、より低い製造公差を有するチップをデバイス内に配備することが可能になる。したがって、寿命のある限り、デバイスに、それぞれわずかに異なる構成を有する複数の異なるチップを設けることができるので、チップのばらつきは、デバイスの全体の機能に影響する可能性が少ない。しかし、チップ外部の抵抗器は、一定のままであり、したがって、全体としてのデバイスの較正は、チップの変更による影響をより受けにくい。さらに、チップ外部の抵抗器は、チップ上で容易に実現できるよりもずっと高い値を有することができる。結果として、任意のチップ内部の抵抗の影響は、外部またはチップ外部の抵抗器を設けることに比較して無視できるほどとなる。
【0009】
本発明のデバイスは、2つ以上の入口と2つ以上の出口とを含む流体経路の複合ネットワーク用に最適化される。ネットワーク内の流体経路は、必要に応じて結合され、分割される。本発明は、流体経路の任意の構成における流れを制御し、バランスをとることができるが、それは、入口または出口よりも少ない流体経路を有するネットワークにおいて少なくとも1つの点がある場合に、最も効果がある。
【0010】
いくつかの実施形態において、デバイスは、チップを位置決めし、それを抵抗器に接続するコネクタブロック(マニホールド)をさらに備える。
【0011】
上流および下流抵抗器によってもたらされる抵抗の値は、流体経路の内部抵抗に比較して大きい可能性がある。これは経路自体の抵抗の値がその経路に沿った流れと無関係になる効果を有する。これは結果として流体経路に必要とされる製造公差の緩和をもたらす。本稿で、大きいとは、内部抵抗の少なくとも数倍大きいまたは10倍を意味する。例えば、外部抵抗器は、流体経路の内部抵抗の3、10、20、30、50、100またはさらには1000倍でもよい。
【0012】
いくつかの実施形態において、上流抵抗器の数は、下流抵抗器の数を超える。代替案として、下流抵抗器の数は、上流抵抗器の数を超える。さらなる実施形態において、上流抵抗器の数は、下流抵抗器の数に等しくてもよい。
【0013】
流体経路内の上流および下流抵抗器の数は、正確かつ予測可能な流体流れをもたらすことができる。例えば、流体経路内の正確かつ予測可能な流体流れは、化学または生物学的合成などの反応を実施し、制御することに特に価値があり得る。さらに、上流抵抗器と下流抵抗器との組合せは、流体経路内の1つまたは複数の流量を制御する手段を提供することができる。
【0014】
いくつかの実施形態において、流量の変動を0.1〜10000μl/hrの範囲で提供することができ、最適動作流量は100μl/hrの範囲にある。これらの流量は、入口の組における正圧、出口の組における負圧または正圧と負圧との組合せの適用を通じて実現することができる。適用された圧力差は、0から2000kPaの間であることができ、またはそれは50、100、200、1000kPaを超えることができる。適用された圧力差は、2000kPa、500kPa、200kPaまたは100kPa未満でもよい。
【図面の簡単な説明】
【0015】
図1】2つの入力と2つの出力とを有するチップに適用された本発明によるデバイスを示す図である。
図2】3つの入力と2つの出力とを有するチップに適用された本発明によるデバイスを示す図である。
図3】一般的なチップに適用された本発明によるデバイスの一般化された例を示す図である。
【発明を実施するための形態】
【0016】
次に、添付の図面を参照して、本発明が、さらに詳細に説明されるが、以下の説明は、あくまで例である。
【0017】
本発明は、マイクロ流体デバイス内の1つまたは複数の流量を制御し、バランスをとるための、上流および下流抵抗器のネットワークに関する。
【0018】
図1を参照すると、チップ20上に設けられた流体経路23、25の配列において流体流れを制御するためのデバイス10が提供される。流体はデバイス10中を矢印Fで示された方向に流れる。図1に示すデバイスの例において、2つの上流抵抗器12がある。各上流抵抗器12は、対応する流体経路23の上流端に抵抗を設けるように構成される。デバイス10のこの例は、2つの下流抵抗器14も含み、2つの下流抵抗器14は、対応する流体経路25の下流端に抵抗を設けるように構成される。抵抗の値は、各流体経路中を流れる流体の割合を制御するために選択される。
【0019】
図1に示すチップ20は、結合点26において2つの上流流体経路23を結合するように構成される。結合点26により、2つの上流流体経路23からの流体の混合が可能になる。次いで、流体は、流体を2つの下流流体経路25に提供するために分割点27において分割される。
【0020】
上流および下流外部抵抗器12、14によってもたらされる抵抗の値は、流体経路23、25の内部抵抗に比較して大きく、したがって、流体経路に沿った流体流れに対する内部抵抗の効果は、大幅に低減/抑制される。結果として、本発明において開示する「チップ外部」の上流および下流抵抗器は、低い公差を有するマイクロ流体チップに使用することができる。
【0021】
本明細書では、他に特に指定がない限り、「公差」という用語は、例えば、流体経路のような、ある部分の抵抗の誤差を表す。例えば、抵抗の公差は、1、5、10、20、40または50%でもよい。チップの抵抗における低い公差の例は、5%以上でもよい。対照的に、チップの抵抗における良好な公差の例は、5%以下でもよい。
【0022】
抵抗の値または抵抗器は、0.001kPa/(μl/hr)から100kPa/(μl/hr)の範囲を有することができる。
【0023】
デバイス10は、コネクタブロック16をさらに備え、コネクタブロック16は、上流抵抗器12および下流抵抗器14との効果的な接続のためにチップ20を位置決めするように構成される。コネクタブロック16は、チップ20を受けるように成形されたデバイス10に設けられた表面のへこみを備える。
【0024】
抵抗器は、円形断面を有することができ、円形断面は、10から1000μmの間の直径を有することができ、またはそれは10、100、250、500もしくは750μmを超えることができる。抵抗器の直径は、1000、750、500、250、100または50μm未満でもよい。抵抗器の例は、毛細管抵抗器でもよい。代替案として、抵抗器は、フライス加工またはフライス加工された工具からの成形として矩形断面を有することができる。
【0025】
いくつかの実施形態において、抵抗器は、1から1000mmの間の長さを有することができ、またはそれは250、500もしくは750mmを超えることができる。抵抗器は、長さが1000、750、500、250または100mm未満でもよい。
【0026】
上流抵抗器と下流抵抗器との組合せは、チップ20内の様々な流体経路内の、流量を制御し、バランスをとるように構成される。いくつかの実施形態において、通常は0kPaから2000kPaの間の、デバイスの入口と出口との間の圧力差は、流体経路に沿って0.1から10000μl/hrの範囲(例えば、100μl/hr)の、流体流量を提供するために流体経路に沿って適用され得る。上流抵抗器の組合せは、流体経路の上流端における相対流量を効果的に制御するのに使用することができる。次いで、流体が流体経路に沿って流れるとき、下流抵抗器の組合せは、流体経路の下流端における流量のバランスをとるために使用される。上流抵抗と下流抵抗との組合せは、全体の流量を設定するために使用される。マイクロ流体チップ内の正確かつ予測可能な流体流れは、例えば、化学または生物学的合成などの反応を実施することおよび制御することに特に価値があり得、または流体中の成分を分離することおよび分析することに特に価値があり得る。
【0027】
本発明では、上流流体経路23と下流流体経路25との配列を提供することができる。マイクロ流体チップにおける流体経路の分割は、流体流れ中のタンパク質もしくは核酸などの生体成分の分離または分析を可能にするために提供することができる。逆に、2つ以上の流体経路は、生体成分もしくは化学成分を混合するために、またはその後の流体流れの分離および分析のための補助流体を提供するために、互いに結合することができる。
【0028】
2つの上流抵抗器12は、制御された流量を流体経路に従って提供することができる。次いで、流体流れは、一時的に結合され、次いで、2つの異なる下流流体経路へ分離される。下流抵抗器14の相対値は、下流流体経路25のそれぞれにおいて流れる流体の割合を示す。これはマイクロ流体チップ内の流量に再現性および安定性を提供することができ、このことは流体流れ内の成分の分析に対して重要な要件であり得る。
【0029】
図2には、流体がデバイス10中を矢印Fで示された方向に流れるとき、上流流体経路23と下流流体経路25とがマイクロ流体チップ20上でいかに結合されるかを制御するようにデバイス10をいかに構成できるかの別の例が示される。図2において、チップ20には、単一の流体経路を設けるために2つの結合点26を介して互いに結合される3つの上流流体経路23が設けられ、次いで、単一の流体経路は、2つの下流流体経路25を設けるために分割点27において分割される。流体経路のこの構成は、2つの試薬を組合わせ、次いで、3番目の入口からの標識化の流れを提供するのに使用することができる。次いで、結合された流れは、2つの別々の出力の流れを提供するために分割することができる。分割は、下流抵抗器14の値によって効果的に制御される。
【0030】
図3は、一般的なチップ20に作用するように構成されたデバイス10の一般化を提供する。個別にR、R、....Rとして示され、集合的に上流抵抗器12として表された上流抵抗器の配列が提供され、そして、個別にR、R.....Rとして示され、集合的に下流抵抗器14として表された下流抵抗器の配列も提供される。使用において、流体は、デバイス中を矢印Fで示された方向に流れる。任意の所与の状況における使用において抵抗器12、14の数は、チップ20に設けられた流体経路の数で示される。デバイス10は、デバイス10に想定される適用例内で有用である可能性がある最大数の抵抗器が設けられる。例えば、上流および下流の配列は、2つ、3つ、5つ、10、20またはさらに100の抵抗器を含むことができる。
【0031】
添付の図面に示していない、いくつかの実施形態において、デバイス10は、抵抗と流路ネットワークとを連結する接続部の組(マニホールド)を備えることができる。
【0032】
原則として、マイクロ流体チップ内の上流流体経路および下流流体経路の数は、閉ループがないという前提で、実質的に変わり得ることが理解されよう。流体経路は、例えば、流体流れを結合し、混合し、分離する、流体処理に特に有用である。上流および下流抵抗器のネットワークにより、低い抵抗器の公差を有する、マイクロ流体チップにおける正確かつ制御された流量が可能になる。
【0033】
本発明をいくつかの実施形態を参照して例により説明してきたが、本発明は開示した実施形態に限定されないこと、および本発明の範囲から逸脱することなく添付の特許請求の範囲において定義されているように代替実施形態を構築できることが当業者によってさらに理解されよう。
図1
図2
図3