(58)【調査した分野】(Int.Cl.,DB名)
前記第1の駆動回路は、前記第1のI相差動信号の位相に対して前記第1のQ相差動信号の位相が遅れるように、前記第1のI相電流の位相に対して前記第1のQ相電流の位相を遅らせ、
前記第2の駆動回路は、前記第2のI相差動信号の位相に対して前記第2のQ相差動信号の位相が進むように、前記第2のI相電流の位相に対して前記第2のQ相電流の位相を進める、請求項1に記載の4相発振回路。
前記第1のI相コイルと前記第2のI相コイルとは、線対称に配置され、前記第1のQ相コイルと前記第2のQ相コイルとは、線対称に配置された、請求項1又は2に記載の4相発振回路。
前記第1のI相コイルと前記第2のI相コイルとは、互いの軸方向が平行になるように配置され、前記第1のQ相コイルと前記第2のQ相コイルとは、互いの軸方向が平行になるように配置された、請求項1から3のいずれか一項に記載の4相発振回路。
【発明を実施するための形態】
【0010】
以下、本実施形態における4相発振回路及びCDR回路について図面を参照して説明する。
【0011】
図1は、本実施形態におけるCDR回路を使用する光通信システムの構成の一例を示す図である。光通信システム1000は、入力信号を光信号に変換して出力する送信回路500と、送信回路500からの光信号を伝送する光ファイバ300と、光信号を受けて受信信号を再生する受信回路400とを有する。送信回路500は、電子装置等から送信された入力信号を再生して光信号を生成する。また、送信回路500は、光ファイバ300を介して受信した光信号を一旦電気信号に変換した後、再度光信号に変換して出力する中継装置でもよい。受信回路400は、再生した受信信号を電気信号として電子装置等に出力する。また、受信回路400は、受信信号を再度光信号に変換して出力する中継装置でもよい。
【0012】
送信回路500は、複数の送信部501を有する。送信部501は、それぞれ、プリアンプ502と、CDR部503と、ドライバ504と、発光素子508とを有する。CDR部503は、4相発振器505によって生成される4相のクロックを用いて、プリアンプ502によって増幅された入力信号であるデータ信号からクロックを再生すると共に送信データ信号を再生する。CDR部503は、4相クロックの生成に使用するI相コイル506及びQ相コイル507を有する4相発振器505を備える。ドライバ504は、送信データ信号に応じて発光素子508を駆動する駆動信号を出力し、光信号を発光素子508により生成して光ファイバ300のファイバ線301に出力する。発光素子508の具体例として、レーザダイオードが挙げられる。
【0013】
光ファイバ300は、複数のファイバ線301を有する。ファイバ線301のそれぞれは、送信部501と受信部401との間を繋ぐ。
【0014】
受信回路400は、複数の受信部401を有する。受信部401は、それぞれ、受光素子404と、トランスインピーダンス増幅器(TIA)402と、CDR部403とを有する。受光素子404は、光ファイバ300のファイバ線301から受信した光信号を電気的な受信データ信号に変換する。受光素子404の具体例として、フォトダイオードが挙げられる。TIA402は、受信データ信号を増幅する。CDR部403は、4相発振器405によって生成される4相のクロックを用いて、受信データ信号からクロックを再生すると共に受信データ信号を再生する。CDR部403は、4相クロックの生成に使用するI相コイル406及びQ相コイル407を有する4相発振器405を備える。
【0015】
本実施形態におけるCDR回路は、複数のCDR部503を備えるCDR回路にも、複数のCDR部403を備えるCDR回路にも適用可能である。また、本実施形態における4相発振回路は、隣り合う複数の4相発振器505を備える4相発振回路にも、隣り合う複数の4相発振器405を備える4相発振回路にも適用可能である。
【0016】
なお、本実施形態における4相発振回路及びCDR回路は、光通信システムへの利用に限られない。本実施形態における4相発振回路及びCDR回路は、電子装置の内部又は外部でクロックに同期して変調したデータ信号を送受信する回路において、データ信号からクロックを再生する場合には、どのような回路にも適用可能である。例えば、集積回路チップ内又はチップ間(装置内、装置間)で信号を送受信する高速インターコネクトの分野等のビットレートの一層の高速化が望まれている分野で使用可能である。
【0017】
ところで、複数の4相クロック信号を使用する多チャンネルの高速インターコネクトの分野では、隣り合うコイル間の干渉(クロストークXT)がCDRの特性に影響することがある。また、25GHz程度の高周波領域では、4相発振器内のI相コイル及びQ相コイルのサイズは、4相発振器の回路サイズに対して比較的大きな割合を占める。そのため、隣り合う送信部501間のピッチ又は隣り合う受信部401間のピッチを狭めることができず、送信回路500又は受信回路400の更なる小型化が難しい場合がある。
【0018】
図2は、隣り合うコイル間の干渉を示す図である。コイルL1,L2は、それぞれ、軸方向がZ軸に平行になるようにXY平面に平行に配置されており、具体的には、基板700の表面上に形成されている。例えば、コイルL1は、隣り合う4相発振器のうち、一方の4相発振器に設けられたQ相コイルを表し、コイルL2は、他方の4相発振器に設けられたQ相コイルを表す。あるいは、例えば、コイルL1は、隣り合う4相発振器のうち、一方の4相発振器に設けられたI相コイルを表し、コイルL2は、他方の4相発振器に設けられたI相コイルを表す。基板700は、コイルL1が形成される基板と、コイルL2が形成される基板とに分かれていてもよい。
【0019】
円形状のコイルL1,L2のそれぞれには、電流が流れる。一方のコイルL2に流れる電流によって発生する磁界が、他方のコイルL1を貫くと、他方のコイルL1に誘導電流Iが流れる磁界結合が発生する。この磁界結合が、コイルL1とコイルL2との間に発生するクロストークの原因の一つである。
【0020】
図3は、コイル中心間距離とクロストーク量との関係をシミュレーションした結果の一例を示す図である。コイル中心間距離は、コイルL1の中心とコイルL2の中心との距離を表す。例えば、25GHzの4相クロックを生成する4相発振器では、コイル中心間距離が250μmであると、コイル間のクロストーク量は、−64dB程度である。しかしながら、コイル中心間距離を更に縮めると、クロストーク量が増大するため、CDRの特性に影響が出やすくなる。
【0021】
そこで、本実施形態における4相発振回路は、隣り合う4相発振器において、I相とQ相のうち、一方の相のコイルに流れる電流が同位相のとき、他方の相のコイルに流れる電流の位相を互いに反転させることで、同相のコイル間の干渉を低減する。隣り合う同相のコイル間の干渉が低減されることで、コイル中心間距離を更に縮めることができる。よって、隣り合う複数の4相発振器を備える4相発振回路の回路規模を縮小することが容易になる。
【0022】
次に、本実施形態における4相発振回路について更に詳細に説明する。
【0023】
図4は、本実施形態における4相発振回路の構成の一例を模式的に示す図である。
図4に示される4相発振回路210は、隣り合う2つの4相発振器211,212を備える。例えば、第1の4相発振器211は、通信チャンネル1のファイバ線301でデータを送受する場合に使用され、第2の4相発振器212は、通信チャンネル2のファイバ線301でデータを送受する場合に使用される。4相発振器211,212は、XY平面に平行な基板の表面に形成されている。
【0024】
第1の4相発振器211は、I相発振器10と、Q相発振器20とを備える。I相発振器10は、位相が互いに180度異なる第1のI相差動信号を出力する第1の発振器の一例である。Q相発振器20は、位相が第1のI相差動信号と90度又は−90度異なる第1のQ相差動信号を出力する第2の発振器の一例である。
【0025】
I相発振器10は、少なくとも一巻き以上に巻かれた第1のI相コイルL
I1を備え、第1のI相コイルL
I1の両側に位置する一対のノードa1,c1から第1のI相差動信号を出力する。例えば、第1のI相差動信号のうちの一方の信号である0度クロックがノードa1から出力され、第1のI相差動信号のうちの他方の信号である180度クロックがノードc1から出力される。一方、Q相発振器20は、少なくとも一巻き以上に巻かれた第1のQ相コイルL
Q1を備え、第1のQ相コイルL
Q1の両側に位置する一対のノードb1,d1から第1のQ相差動信号を出力する。例えば、第1のQ相差動信号のうちの一方の信号である90度クロックがノードb1から出力され、第1のQ相差動信号のうちの他方の信号である270度クロックがノードd1から出力される。
【0026】
ノードb1から出力される90度クロックは、ノードa1から出力される0度クロックに対して位相が90度遅れている。ノードc1から出力される180度クロックは、ノードb1から出力される90度クロックに対して位相が90度遅れている。ノードd1から出力される270度クロックは、ノードc1から出力される180度クロックに対して位相が90度遅れている。
【0027】
一方、4相発振器212は、I相発振器30と、Q相発振器40とを備える。I相発振器30は、位相が互いに180度異なる第2のI相差動信号を出力する第3の発振器の一例である。Q相発振器40は、位相が第2のI相差動信号と90度又は−90度異なる第2のQ相差動信号を出力する第4の発振器の一例である。
【0028】
I相発振器30は、少なくとも一巻き以上に巻かれた第2のI相コイルL
I2を備え、第2のI相コイルL
I2の両側に位置する一対のノードa2,c2から第2のI相差動信号を出力する。例えば、第2のI相差動信号のうちの一方の信号である0度クロックがノードa2から出力され、第2のI相差動信号のうちの他方の信号である180度クロックがノードc2から出力される。一方、Q相発振器40は、少なくとも一巻き以上に巻かれた第2のQ相コイルL
Q2を備え、第2のQ相コイルL
Q2の両側に位置する一対のノードd2,b2から第2のQ相差動信号を出力する。例えば、第2のQ相差動信号のうちの一方の信号である270度クロックがノードd2から出力され、第2のQ相差動信号のうちの他方の信号である90度クロックがノードb2から出力される。
【0029】
ノードb2から出力される90度クロックは、ノードa2から出力される0度クロックに対して位相が90度進んでいる。ノードc2から出力される180度クロックは、ノードb2から出力される90度クロックに対して位相が90度進んでいる。ノードd2から出力される270度クロックは、ノードc2から出力される180度クロックに対して位相が90度進んでいる。
【0030】
4相発振器211は、第1の駆動回路91を備える。第1の駆動回路91は、第1のI相コイルL
I1側から出力される第1のI相差動信号の位相と第1のQ相コイルL
Q1側から出力される第1のQ相差動信号の位相とを相違させる。第1の駆動回路91は、第1のI相差動信号の位相と第1のQ相差動信号の位相とが相違するように、第1のI相コイルL
I1に流れる第1のI相電流I
I1と第1のQ相コイルL
Q1に流れる第1のQ相電流I
Q1とを発生させる。第1の駆動回路91は、第1のI相電流I
I1を制御するI相回路部91Iと、第1のQ相電流I
Q1を制御するQ相回路部91Qとを有する。
【0031】
一方、4相発振器212は、第2の駆動回路92を備える。第2の駆動回路92は、第2のI相コイルL
I2側から出力される第2のI相差動信号の位相と第2のQ相コイルL
Q2側から出力される第2のQ相差動信号の位相とが相違させる。第2の駆動回路92は、第2のI相差動信号の位相と第2のQ相差動信号の位相とが相違するように、第2のI相コイルL
I2に流れる第2のI相電流I
I2と第2のQ相コイルL
Q2に流れる第2のQ相電流I
Q2とを発生させる。第2の駆動回路92は、第2のI相電流I
I2を制御するI相回路部92Iと、第2のQ相電流I
Q2を制御するQ相回路部92Qとを有する。
【0032】
本実施形態では、
図4に示されるように、第2の駆動回路92は、第1のI相電流I
I1と第2のI相電流I
I2とが時刻t0で同位相であるとき、第1のQ相電流I
Q1に対して位相が反転した第2のQ相電流I
Q2を時刻t1で発生させる。時刻t1は、時刻t0後の時刻を表す。
【0033】
ここで、第1のQ相電流I
Q1が第1のQ相コイルL
Q1に流れることにより発生する磁界を“磁界M
Q1”とし、磁界M
Q1により第2のQ相コイルL
Q2に流れる誘導電流を“誘導電流I
Q2M”とする。また、第2のQ相電流I
Q2が第2のQ相コイルL
Q2に流れることにより発生する磁界を“磁界M
Q2”とし、磁界M
Q2により第1のQ相コイルL
Q1に流れる誘導電流を“誘導電流I
Q1M”とする。
【0034】
第1のQ相電流I
Q1に対して位相が反転した第2のQ相電流I
Q2が発生することにより、磁界M
Q1の第2のQ相コイルL
Q2内での向きと、第2のQ相電流I
Q2により発生する磁界M
Q2の第1のQ相コイルL
Q1内での向きとは、互いに反対となる。これにより、磁界M
Q1の第2のQ相コイルL
Q2内での強さと、磁界M
Q2の第1のQ相コイルL
Q1内での強さとが弱め合うので、誘導電流I
Q2Mが第2のQ相電流I
Q2に与える影響と誘導電流I
Q1Mが第1のQ相電流I
Q1に与える影響とが低減される。したがって、第1のQ相コイルL
Q1と第2のQ相コイルL
Q2との間のクロストークが低減するので、第1のQ相コイルL
Q1と第2のQ相コイルL
Q2との中心間距離を更に縮めることができる。その結果、4相発振回路210の回路規模を縮小することが容易になる。
【0035】
また、
図4には示されていないが、本実施形態では、第2の駆動回路92は、第1のQ相電流I
Q1と第2のQ相電流I
Q2とが時刻t0で同位相であるとき、第1のI相電流I
I1に対して位相が反転した第2のI相電流I
I2を時刻t1で発生させる。時刻t1は、時刻t0後の時刻を表す。
【0036】
ここで、第1のI相電流I
I1が第1のI相コイルL
I1に流れることにより発生する磁界を“磁界M
I1”とし、磁界M
I1により第2のI相コイルL
I2に流れる誘導電流を“誘導電流I
I2M”とする。また、第2のI相電流I
I2が第2のI相コイルL
I2に流れることにより発生する磁界を“磁界M
I2”とし、磁界M
I2により第1のI相コイルL
I1に流れる誘導電流を“誘導電流I
I1M”とする。
【0037】
第1のI相電流I
I1に対して位相が反転した第2のI相電流I
I2が発生することにより、磁界M
I1の第2のI相コイルL
I2内での向きと、第2のI相電流I
I2により発生する磁界M
I2の第1のI相コイルL
I1内での向きとは、互いに反対となる。これにより、磁界M
I1の第2のI相コイルL
I2内での強さと、磁界M
I2の第1のI相コイルL
I1内での強さとが弱め合うので、誘導電流I
I2Mが第2のI相電流I
I2に与える影響と誘導電流I
I1Mが第1のI相電流I
I1に与える影響とが低減される。したがって、第1のI相コイルL
I1と第2のI相コイルL
I2との間のクロストークが低減するので、第1のI相コイルL
I1と第2のI相コイルL
I2との中心間距離を更に縮めることができる。その結果、4相発振回路210の回路規模を縮小することが容易になる。
【0038】
第1のQ相コイルL
Q1と第2のQ相コイルL
Q2との間のクロストークを低減させるため、第1のQ相コイルL
Q1と第2のQ相コイルL
Q2とは、線対称に配置されることが好ましい。本実施形態では、Y軸に平行な対称軸に関して、第1のQ相コイルL
Q1と第2のQ相コイルL
Q2とは、線対称に配置されている。第1のQ相コイルL
Q1の一方のコイル端に位置するノードb1と、第2のQ相コイルL
Q2の一方のコイル端に位置するノードb2とは、Y軸に平行な対称軸に関して線対称に位置する。第1のQ相コイルL
Q1のもう一方のコイル端に位置するノードd1と、第2のQ相コイルL
Q2のもう一方のコイル端に位置するノードd2とは、Y軸に平行な対称軸に関して線対称に位置する。
【0039】
Q相側と同様に、第1のI相コイルL
I1と第2のI相コイルL
I2との間のクロストークを低減させるため、第1のI相コイルL
I1と第2のI相コイルL
I2とは、線対称に配置されることが好ましい。詳細については、上述の説明を援用する。
【0040】
また、第1のQ相コイルL
Q1と第2のQ相コイルL
Q2との間のクロストークを低減させるため、第1のQ相コイルL
Q1と第2のQ相コイルL
Q2とは、互いの軸方向が平行になるように配置されることが好ましい。本実施形態では、第1のQ相コイルL
Q1と第2のQ相コイルL
Q2とは、互いのコイル中心を通る軸方向(コイル中心線)がZ軸に平行になるように配置されている。
【0041】
Q相側と同様に、第1のI相コイルL
I1と第2のI相コイルL
I2との間のクロストークを低減させるため、第1のI相コイルL
I1と第2のI相コイルL
I2とは、互いの軸方向が平行になるように配置されることが好ましい。詳細については、上述の説明を援用する。
【0042】
図5は、コイルL
I1,L
Q1,L
I2,L
Q2のそれぞれに流れるコイル電流の一例を示す波形図である。第1の駆動回路91は、第1のI相電流I
I1の位相に対して第1のQ相電流I
Q1の位相を90度遅らせた状態のまま、4相発振器211が属するCDR部に入力されるデータ信号に応じて、第1のI相電流I
I1と第1のQ相電流I
Q1の各位相を変化させる。第2の駆動回路92は、第2のI相電流I
I2の位相に対して第2のQ相電流I
Q2の位相を90度進めた状態のまま、4相発振器212が属するCDR部に入力されるデータ信号に応じて、第2のI相電流I
I2と第2のQ相電流I
Q2の各位相を変化させる。
【0043】
図5では、第1の駆動回路91は、第1のI相差動信号の位相に対して第1のQ相差動信号の位相が遅れるように、第1のI相電流I
I1の位相に対して第1のQ相電流I
Q1の位相を90度遅らせる。一方、第2の駆動回路92は、第2のI相差動信号の位相に対して第2のQ相差動信号の位相が進むように、第2のI相電流I
I2の位相に対して第2のQ相電流I
Q2の位相を90度進める。このように、隣り合うコイル間で一方の電流の位相を進めもう一方の電流の位相を遅らせることで、第1のI相電流I
I1と第2のI相電流I
I2とが同位相になるとき、第1のQ相電流I
Q1の位相に対して第2のQ相電流I
Q2の位相を反転させることができる。同様に、隣り合うコイル間で一方の電流の位相を進めもう一方の電流の位相を遅らせることで、第1のQ相電流I
Q1と第2のQ相電流I
Q2とが同位相になるとき、第1のI相電流I
I1の位相に対して第2のI相電流I
I2の位相を反転させることができる。
【0044】
<第1の実施形態>
図6は、第1の実施形態における4相発振回路の第1の具体例を示す図である。4相発振回路210Aは、
図4の4相発振回路210の一具体例であり、隣り合う2つの4相発振器211A,212Aを備える。
【0045】
4相発振器211Aは、位相が互いに180度異なる第1のI相差動信号を出力するI相発振器10Aと、位相が第1のI相差動信号と90度又は−90度異なる第1のQ相差動信号を出力するQ相発振器20Aとを備える。
【0046】
I相発振器10Aは、LCタンク51と、クロスカップル回路54と、テール電流源55と、第1の入力差動対トランジスタ56a,56bと、キャパシタ54c,54dとを有する。
【0047】
LCタンク51は、コイルと容量とが並列に接続された第1の共振器の一例である。クロスカップル回路54は、第1のクロスカップル回路の一例である。クロスカップル回路54は、LCタンク51に接続された一対のトランジスタ54a,54bをクロスカップルした構成を有する。一対のトランジスタ54a,54bは、第1の一対のトランジスタの一例である。テール電流源55は、第1のテール電流源の一例であり、一対のトランジスタ54a,54bに接続されている。第1の入力差動対トランジスタ56a,56bは、第1のQ相差動信号が入力される。
【0048】
Q相発振器20Aは、LCタンク61と、クロスカップル回路64と、テール電流源65と、第2の入力差動対トランジスタ66a,66bと、キャパシタ64c,64dとを有する。
【0049】
LCタンク61は、コイルと容量とが並列に接続された第2の共振器の一例である。クロスカップル回路64は、第2のクロスカップル回路の一例である。クロスカップル回路64は、LCタンク61に接続された一対のトランジスタ64a,64bをクロスカップルした構成を有する。一対のトランジスタ64a,64bは、第2の一対のトランジスタの一例である。テール電流源65は、第2のテール電流源の一例であり、一対のトランジスタ64a,64bに接続されている。第2の入力差動対トランジスタ66a,66bは、第1のI相差動信号が入力される。
【0050】
第1の入力差動対トランジスタ56a,56bは、第1の一対のトランジスタ54a,54bに直列に接続されている。第2の入力差動対トランジスタ66a,66bは、第2の一対のトランジスタ64a,64bに直列に接続されている。
【0051】
I相発振器10Aは、第1のI相差動信号を出力する一対の出力端子a11,c11を備え、Q相発振器20Aは、第1のQ相差動信号を出力する一対の出力端子b11,d11を備える。LCタンク51は、第1の出力端子a11と第2の出力端子c11との間に接続されている。LCタンク61は、第3の出力端子b11と第4の出力端子d11との間に接続されている。出力端子a11,c11,b11,d11は、それぞれ、
図4に示されるノードa1,c1,b1,d1の一例である。
【0052】
第1の出力端子a11にトランジスタ56aを介して接続された第1のトランジスタ54aと第2の出力端子c11にトランジスタ56bを介して接続された第2のトランジスタ54bとは、発振用トランジスタである。第1のトランジスタ54aは、ベースがキャパシタ54cを介して第2の出力端子c11に接続され、コレクタがトランジスタ56aを介して第1の出力端子a11に接続され、エミッタがテール電流源55に接続されている。第2のトランジスタ54bは、ベースがキャパシタ54dを介して第1の出力端子a11に接続され、コレクタがトランジスタ56bを介して第2の出力端子c11に接続され、エミッタがテール電流源55に接続されている。
【0053】
テール電流源55は、クロスカップル回路54の一対のトランジスタ54a,54bに第1のテール電流値を流す。第1のテール電流値は、発振用テール電流の電流値を表す。テール電流源55は、一対のトランジスタ54a,54bのエミッタの共通接続点とグランドとの間に接続される。
【0054】
第1のトランジスタ54aに直列に接続され且つ第4の出力端子d11に接続された第3のトランジスタ56aと、第2のトランジスタ54bに直列に接続され且つ第3の出力端子b11に接続された第4のトランジスタ56bとにより、入力差動対が形成される。この入力差動対は、インジェクション用トランジスタを表す。第3のトランジスタ56aは、ベースが配線67を介して第4の出力端子d11に接続され、コレクタが第1の出力端子a11に接続され、エミッタがトランジスタ54aのコレクタに接続されている。第4のトランジスタ56bは、ベースが配線62を介して第3の出力端子b11に接続され、コレクタが第2の出力端子c11に接続され、エミッタがトランジスタ54bのコレクタに接続されている。
【0055】
第3の出力端子b11にトランジスタ66aを介して接続された第5のトランジスタ64aと第4の出力端子d11にトランジスタ66bを介して接続された第6のトランジスタ64bとは、発振用トランジスタである。第5のトランジスタ64aは、ベースがキャパシタ64cを介して第4の出力端子d11に接続され、コレクタがトランジスタ66aを介して第3の出力端子b11に接続され、エミッタがテール電流源65に接続されている。第6のトランジスタ64bは、ベースがキャパシタ64dを介して第3の出力端子b11に接続され、コレクタがトランジスタ66bを介して第4の出力端子d11に接続され、エミッタがテール電流源65に接続されている。
【0056】
テール電流源65は、クロスカップル回路64の一対のトランジスタ64a,64bに第2のテール電流値を流す。第2のテール電流値は、発振用テール電流の電流値を表す。テール電流源65は、一対のトランジスタ64a,64bのエミッタの共通接続点とグランドとの間に接続される。
【0057】
第5のトランジスタ64aに直列に接続され且つ第1の出力端子a11に接続された第7のトランジスタ66aと、第6のトランジスタ64bに直列に接続され且つ第2の出力端子c11に接続された第8のトランジスタ66bとにより、入力差動対が形成される。この入力差動対は、インジェクション用トランジスタを表す。第7のトランジスタ66aは、ベースが配線52を介して第1の出力端子a11に接続され、コレクタが第3の出力端子b11に接続され、エミッタがトランジスタ64aのコレクタに接続されている。第8のトランジスタ66bは、ベースが配線57を介して第2の出力端子c11に接続され、コレクタが第4の出力端子d11に接続され、エミッタがトランジスタ64bのコレクタに接続されている。
【0058】
トランジスタ54a,54b,56a,56b,64a,64b,66a,66bは、それぞれ、例えば、npn型バイポーラトランジスタである。これらのトランジスタは、それぞれ、Nチャネル型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)でもよい。この場合、ベースはゲート、コレクタはドレイン、エミッタはソースに対応する。
【0059】
4相発振器212Aは、位相が互いに180度異なる第2のI相差動信号を出力するI相発振器30Aと、位相が第2のI相差動信号と90度又は−90度異なる第2のQ相差動信号を出力するQ相発振器40Aとを備える。I相発振器30Aは、LCタンク71と、クロスカップル回路74と、テール電流源75と、第1の入力差動対トランジスタ76a,76bと、キャパシタ74c,74dとを有する。クロスカップル回路74は、LCタンク71に接続された一対のトランジスタ74a,74bをクロスカップルした構成を有する。Q相発振器40Aは、LCタンク81と、クロスカップル回路84と、テール電流源85と、第2の入力差動対トランジスタ86a,86bと、キャパシタ84c,84dとを有する。クロスカップル回路84は、LCタンク81に接続された一対のトランジスタ84a,84bをクロスカップルした構成を有する。
【0060】
4相発振器211Aと4相発振器212Aとは、各インジェクション用トランジスタのベースの接続先が異なる。トランジスタ76aは、ベースが配線87を介して出力端子d12に接続され、トランジスタ76bは、ベースが配線82を介して出力端子b12に接続される。トランジスタ86aは、ベースが配線77を介して出力端子c12に接続され、トランジスタ86bは、ベースが配線72を介して出力端子a12に接続される。出力端子a11,c12,b12,d12は、それぞれ、
図4に示されるノードa2,c2,b2,d2の一例である。それ以外の構成については、4相発振器211Aと同様であるため、上述の説明を援用する。
【0061】
図7は、LCタンクの構成の一例を示す図である。
図7に示すLCタンクは、
図6に示されるLCタンク51,61,71,81の一例である。LCタンクは、コイルと容量とが並列に接続された構成を有する。コイルは、コイル部601とコイル部602とを有し、コイル部601とコイル部602との間で電源電圧Vddの電源線に接続されている。一方の出力端子は、コイル部601を介して電源電圧Vddの電源線に接続され、他方の出力端子は、コイル602部を介して電源電圧Vddの電源線に接続されている。容量603は、例えば、制御電圧Vcntに応じてその容量値が変化する可変容量である。容量603の具体例として、バラクタ、可変容量ダイオードなどが挙げられる。
【0062】
図6の構成の4相発振回路210Aは、2種類の発振モード(回転モード)をとりうる。4相発振器211Aは、第1の発振モードで発振し、4相発振器212Aは、第2の発振モードで発振する。
【0063】
図6の4相発振器211Aについて、出力端子a11を起点にクロック電圧信号が入出力する動きを順に説明する。出力端子a11から出力された0度クロックは、Q相のトランジスタ66aにインジェクションされ、位相が0度クロックに対して90度遅れた90度クロックが出力端子b11から出力される。出力端子b11から出力された90度クロックは、I相のトランジスタ56bにインジェクションされ、位相が90度クロックに対して90度遅れた180度クロックが出力端子c11から出力される。出力端子c11から出力された180度クロックは、Q相のトランジスタ66bへインジェクションされ、位相が180度クロックに対して90度遅れた270度クロックが出力端子d11から出力される。出力端子d11から出力された270度クロックは、I相のトランジスタ56aにインジェクションされ、位相が270度クロックに対して90度遅れた0度クロックが出力端子a11から出力される。
【0064】
図6の4相発振器212Aについて、出力端子a12を起点にクロック電圧信号が入出力する動きを順に説明する。出力端子a12から出力された0度クロックは、Q相のトランジスタ86bにインジェクションされ、位相が0度クロックに対して90度進んだ90度クロックが出力端子b12から出力される。出力端子b12から出力された90度クロックは、I相のトランジスタ76bにインジェクションされ、位相が90度クロックに対して90度進んだ180度クロックが出力端子c12から出力される。出力端子c12から出力された180度クロックは、Q相のトランジスタ86aへインジェクションされ、位相が180度クロックに対して90度進んだ270度クロックが出力端子d12から出力される。出力端子d12から出力された270度クロックは、I相のトランジスタ56aにインジェクションされ、位相が270度クロックに対して90度進んだ0度クロックが出力端子a12から出力される。
【0065】
図6の構成によれば、第1のI相電流I
I1と第2のI相電流I
I2とが同位相になるとき、第1のQ相電流I
Q1の位相に対して第2のQ相電流I
Q2の位相を反転させることができる。また、第1のQ相電流I
Q1と第2のQ相電流I
Q2とが同位相になるとき、第1のI相電流I
I1の位相に対して第2のI相電流I
I2の位相を反転させることができる。また、
図6の構成のよれば、第1のI相差動信号の位相に対して第1のQ相差動信号の位相が遅れるように、第1のI相電流I
I1の位相に対して第1のQ相電流I
Q1の位相を90度遅らせることができる。また、第2のI相差動信号の位相に対して第2のQ相差動信号の位相が進むように、第2のI相電流I
I2の位相に対して第2のQ相電流I
Q2の位相を90度進めることができる。
【0066】
図8は、第1の実施形態における4相発振回路の第2の具体例を示す図である。
図9は、
図8の各LCタンク内のコイルのそれぞれに流れるコイル電流の一例を示す波形図である。
【0067】
図8では、隣り合う3つの4相発振器211A,212A,213Aを備える。4相発振器211A,213Aは、互いに同じ構成を有する。したがって、
図6と同様、
図8の構成によれば、第1のI相電流I
I1と第2のI相電流I
I2とが同位相になるとき、第1のQ相電流I
Q1の位相に対して第2のQ相電流I
Q2の位相を反転させることができる。また、第2のI相電流I
I2と第3のI相電流I
I3とが同位相になるとき、第2のQ相電流I
Q2の位相に対して第3のQ相電流I
Q3の位相を反転させることができる。また、第1のQ相電流I
Q1と第2のQ相電流I
Q2とが同位相になるとき、第1のI相電流I
I1の位相に対して第2のI相電流I
I2の位相を反転させることができる。また、第2のQ相電流I
Q2と第3のQ相電流I
Q3とが同位相になるとき、第2のI相電流I
I2の位相に対して第3のI相電流I
I3の位相を反転させることができる。
【0068】
図10は、第1の実施形態における4相発振回路の第3の具体例を示す図である。
図11は、
図10の各LCタンク内のコイルのそれぞれに流れるコイル電流の一例を示す波形図である。
【0069】
図10では、隣り合う4つの4相発振器211A,212A,213A,214Aを備える。4相発振器211A,213Aは、互いに同じ構成を有し、4相発振器212A,214Aは、互いに同じ構成を有する。
図10の構成によれば、第3のI相電流I
I3と第4のI相電流I
I4とが同位相になるとき、第3のQ相電流I
Q3の位相に対して第4のQ相電流I
Q4の位相を反転させることができる。また、第3のQ相電流I
Q3と第4のQ相電流I
Q4とが同位相になるとき、第3のI相電流I
I3の位相に対して第4のI相電流I
I4の位相を反転させることができる。
【0070】
このように、第1の実施形態によれば、隣り合う4相発振器において、I相とQ相のうち、一方の相のコイルに流れる電流が同位相のとき、他方の相のコイルに流れる電流の位相を互いに反転させることで、同相のコイル間の干渉を低減することができる。
【0071】
<第2の実施形態>
図12は、第2の実施形態における4相発振回路の第1の具体例を示す図である。4相発振回路210Bは、
図4の4相発振回路210の一具体例であり、隣り合う2つの4相発振器211B,212Bを備える。
【0072】
4相発振器211Bは、位相が互いに180度異なる第1のI相差動信号を出力するI相発振器10Bと、位相が第1のI相差動信号と90度又は−90度異なる第1のQ相差動信号を出力するQ相発振器20Bとを備える。I相発振器10Bは、LCタンク11と、クロスカップル回路14と、テール電流源15と、第1の入力差動対トランジスタ16a,16bと、キャパシタ14c,14dとを有する。クロスカップル回路14は、LCタンク11に接続された一対のトランジスタ14a,14bをクロスカップルした構成を有する。Q相発振器20Bは、LCタンク21と、クロスカップル回路24と、テール電流源25と、第2の入力差動対トランジスタ26a,26bと、キャパシタ24c,24dとを有する。クロスカップル回路24は、LCタンク21に接続された一対のトランジスタ24a,24bをクロスカップルした構成を有する。
【0073】
図12の4相発振器211Bは、
図6の4相発振器211Aに対して、各インジェクション用トランジスタの接続場所が異なるとともに、ローパスフィルタ(LPF)13,18,23,28が追加されている。トランジスタ16aは、ベースが、配線27に挿入されたLPF28を介して出力端子d21に接続され、トランジスタ16bは、ベースが、配線22に挿入されたLPF23を介して出力端子b21に接続される。トランジスタ26aは、ベースが、配線12に挿入されたLPF13を介して出力端子a21に接続され、トランジスタ26bは、ベースが、配線17に挿入されたLPF18を介して出力端子c21に接続される。LPFによって、位相を遅らせることができる。トランジスタ16a,16b,26a,26bは、それぞれ、トランジスタ14a,14b,24a,24bに並列に接続されている。出力端子a21,c21,b21,d21は、それぞれ、
図4に示されるノードa1,c1,b1,d1の一例である。それ以外の構成については、4相発振器211Aと同様であるため、上述の説明を援用する。
【0074】
図12の4相発振器212Bは、
図6の4相発振器211Aに対して、各インジェクション用トランジスタの接続場所が異なるとともに、ハイパスフィルタ(HPF)33,38,43,48が追加されている。トランジスタ36aは、ベースが配線47に挿入されたHPF48を介して出力端子b22に接続され、トランジスタ16bは、ベースが配線42に挿入されたHPF43を介して出力端子d22に接続される。トランジスタ46aは、ベースが配線32に挿入されたHPF33を介して出力端子a22に接続され、トランジスタ46bは、ベースが配線37に挿入されたHPF38を介して出力端子c22に接続される。HPFによって、位相を進めることができる。トランジスタ36a,3b,46a,46bは、それぞれ、トランジスタ34a,34b,44a,44bに並列に接続されている。出力端子a22,c22,b22,d22は、それぞれ、
図4に示されるノードa2,c2,b2,d2の一例である。それ以外の構成については、4相発振器211Aと同様であるため、上述の説明を援用する。
【0075】
図12の構成によれば、第1のI相電流I
I1と第2のI相電流I
I2とが同位相になるとき、第1のQ相電流I
Q1の位相に対して第2のQ相電流I
Q2の位相を反転させることができる。また、第1のQ相電流I
Q1と第2のQ相電流I
Q2とが同位相になるとき、第1のI相電流I
I1の位相に対して第2のI相電流I
I2の位相を反転させることができる。
【0076】
このように、第2の実施形態によれば、隣り合う4相発振器において、I相とQ相のうち、一方の相のコイルに流れる電流が同位相のとき、他方の相のコイルに流れる電流の位相を互いに反転させることで、同相のコイル間の干渉を低減することができる。
【0077】
<CDR回路>
図13は、本開示に係るCDR回路の構成の一例を示す図である。CDR回路220は、隣り合う複数のCDR部を有する。
図13には、隣り合う2つのCDR部221,222が例示されている。
【0078】
CDR部221は、クロックが重畳された受信データ信号Dinから、クロックとデータDoutを再生する。CDR部221は、PLL(Phase Locked Loop)回路110と、データ生成回路106とを備える。PLL回路110は、4相発振器104と、位相周波数検出器101と、制御電圧生成回路107とを備える。4相発振器104に、本実施形態における4相発振器を適用することができる。制御電圧生成回路107は、チャージポンプ102と、ループフィルタ103とを有する。
【0079】
CDR部222も、CDR部221と同様の構成を有する。ただし、CDR部221とCDR部222は、4相発振器104の構成が互いに異なる。CDR部221の4相発振器104は、例えば、
図4に示される4相発振器211と同じ構成(すなわち、I相発振器10及びQ相発振器20)を備える。CDR部222の4相発振器104は、例えば、
図4に示される4相発振器212と同じ構成(すなわち、I相発振器30及びQ相発振器40)を備える。
【0080】
I相発振器10,30は、それぞれ、I相差動信号(0度クロック及び180度クロック)を一対の出力端子a,cから出力する。Q相発振器20,40は、Q相差動信号(90度クロック及び270度クロック)を一対の出力端子b,dから出力する。
【0081】
位相周波数検出器101は、I相差動信号とQ相差動信号を使用して、受信データ信号Dinの位相とI相差動信号の位相とを比較する。また、位相周波数検出器101は、I相差動信号とQ相差動信号を使用して、受信データ信号Dinの周波数とI相差動信号の周波数とを比較する。
【0082】
位相周波数検出器101は、受信データ信号Dinの位相とI相差動信号の位相との比較結果を示す位相検出信号PDIと、受信データ信号Dinの周波数とI相差動信号の周波数との比較結果を示す周波数検出信号FDOとを生成する。位相周波数検出器101は、生成した位相検出信号PDI及び周波数検出信号FDOをチャージポンプ102に出力する。
【0083】
図14は、位相周波数検出器の構成の一例を示す図である。位相周波数検出器101は、第1の位相検出回路121と、第2の位相検出回路122と、周波数検出回路123とを有する。位相検出回路121、位相検出回路122及び周波数検出回路123は、周知の構成を適用可能である。例えば、2個のサンプルホールド回路(ラッチ回路)及びマルチプレクサによって、差動型の第1の位相検出回路及び第2の位相検出回路が形成される。また、例えば、2個のラッチ回路及び変形マルチプレクサによって、差動型の周波数検出回路が形成される。
【0084】
位相周波数検出器101に入力される受信データ信号Dinには、位相が互いに反転した差動データ信号din,din_が含まれている。位相検出回路121は、受信データ信号DinとI相差動信号との位相差に応じた第1の位相検出信号PDIを出力する。具体的には、位相検出回路111は、差動データ信号din,din_の変化エッジに対してI相差動信号(0度クロック及び180度クロック)の変化エッジが進んでいるのか遅れているかを示す第1の位相検出信号PDIを生成する。位相検出回路122は、受信データ信号DinとQ相差動信号との位相差に応じた第2の位相検出信号PDQを出力する。具体的には、位相検出回路122は、差動データ信号din,din_の変化エッジに対してQ相差動信号(90度クロック及び270度クロック)の変化エッジが進んでいるのか遅れているかを示す第2の位相検出信号PDQを生成する。
【0085】
周波数検出回路123は、位相検出信号PDIの変化エッジの方向および位相検出信号PDIの変化エッジでラッチした位相検出信号PDQの値から、周波数検出信号FDOを生成する。周波数検出信号FDOは、I相差動信号の周波数が受信データ信号Dinの周波数に対して低いか高いかを示す。周波数検出信号FDOは、I相差動信号の周波数が受信データ信号Dinの周波数に対して低い時に+1、高い時に−1、同じ時に0を示す。位相検出信号PDIおよび周波数検出信号FDOは、チャージポンプ102(
図13参照)に供給される。
【0086】
チャージポンプ102は、位相周波数検出器101から供給される位相検出信号PDI及び周波数検出信号FDOを使用して、受信データ信号DinとI相差動信号との位相差及び周波数差を補償するための信号を生成する。チャージポンプ102は、I相差動信号の位相が受信データ信号Dinの位相よりも遅れている、又はI相差動信号の周波数が受信データ信号Dinの周波数よりも低いと判定したとき、ループフィルタ103にアップ信号Upを出力する。一方、チャージポンプ102は、I相差動信号の位相が受信データ信号Dinの位相よりも進んでいる、又はI相差動信号の周波数が受信データ信号Dinの周波数よりも高いと判定したとき、ループフィルタ103にダウン信号Downを出力する。
【0087】
ループフィルタ103は、I相差動信号及びQ相差動信号の周波数及び位相を調整する制御電圧Vcntを4相発振器104内のLCタンクに供給する。制御電圧Vcntによって、I相差動信号及びQ相差動信号の周波数及び位相の微調整が可能となる。
【0088】
ループフィルタ103は、チャージポンプ102から供給されるアップ信号Up及びダウン信号Downに応じて、4相発振器104に供給する制御電圧Vcntを変動させる。ループフィルタ103は、チャージポンプ102からアップ信号Upが供給されると、4相発振器104に供給する制御電圧Vcntを上昇させる。制御電圧Vcntの上昇によって、I相差動信号の位相が進み、I相差動信号の周波数が高くなる。一方、ループフィルタ103は、チャージポンプ102からダウン信号Downが供給されると、4相発振器104に供給する制御電圧Vcntを下降させる。制御電圧Vcntの下降によって、I相差動信号の位相が遅れ、I相差動信号の周波数が低くなる。
【0089】
4相発振器104は、ループフィルタ103から供給される制御電圧Vcntに応じて微調整された周波数及び位相を有するI相差動信号と、I相差動信号に対して位相が反転したQ相差動信号とを生成する。
【0090】
データ生成回路106は、一例ではデータフリップフロップであり、4相発振器104から出力されたI相差動信号に従って受信データ信号Dinをサンプリングすることにより、受信データ信号DinからデータDoutを再生する。
【0091】
<本実施形態の効果>
図15は、コイル中心間距離が250μmの場合のゲイン特性の一例を示す図である。
図16は、コイル中心間距離が100μmの場合のゲイン特性の一例を示す図である。
図15,16は、隣り合う2つの4相発振器を備えた構成において、隣り合う送信部のプリアンプ(
図1参照)に入力される入力信号の位相差を変化させたときのシミュレーション結果の一例を示す。横軸は、入力信号の位相差を表す。縦軸は、制御電圧Vcntに対して4相発振器から出力される4相クロックの周波数の変化率(ゲイン)を表す。比較例は、隣り合う4相発振器が同じ構成を有する場合を示し、実施例は、隣り合う4相発振器の構成が異なる本実施形態の場合を示す。
【0092】
図16では、コイル間の磁界カップリングを−60dBに設定している。実施例は、比較例に比べて、ゲインの最低値が高いので、CDRのクロックノイズを抑えることができる。
図17では、コイル間の磁界カップリングを−40dBに設定している。
図16によれば、コイル間の中心間距離を短くしても、本実施例は、比較例に比べて、ゲインを維持することができる。したがって、本実施形態では、クロストークXTがあっても、コイル間の距離を短縮することができるので、回路規模の縮小が可能となる。
【0093】
以上、4相発振回路及びCDR回路を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
【0094】
以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
隣り合う複数の4相発振器を備え、
前記複数の4相発振器のうちの第1の4相発振器は、第1のI相コイルと、第1のQ相コイルと、前記第1のI相コイルの両側から出力される第1のI相差動信号の位相と前記第1のQ相コイルの両側から出力される第1のQ相差動信号の位相とが相違するように、前記第1のI相コイルに流れる第1のI相電流と前記第1のQ相コイルに流れる第1のQ相電流とを発生させる第1の駆動回路とを有し、
前記複数の4相発振器のうちの第2の4相発振器は、第2のI相コイルと、第2のQ相コイルと、前記第2のI相コイルの両側から出力される第2のI相差動信号の位相と前記第2のQ相コイルの両側から出力される第2のQ相差動信号の位相とが相違するように、前記第2のI相コイルに流れる第2のI相電流と前記第2のQ相コイルに流れる第2のQ相電流とを発生させる第2の駆動回路とを有し、
前記第2の駆動回路は、前記第1のI相電流と前記第2のI相電流とが同位相であるとき、前記第1のQ相電流に対して位相が反転した前記第2のQ相電流を発生させ、前記第1のQ相電流と前記第2のQ相電流とが同位相であるとき、前記第1のI相電流に対して位相が反転した前記第2のI相電流を発生させる、4相発振回路。
(付記2)
前記第1の駆動回路は、前記第1のI相差動信号の位相に対して前記第1のQ相差動信号の位相が遅れるように、前記第1のI相電流の位相に対して前記第1のQ相電流の位相を遅らせ、
前記第2の駆動回路は、前記第2のI相差動信号の位相に対して前記第2のQ相差動信号の位相が進むように、前記第2のI相電流の位相に対して前記第2のQ相電流の位相を進める、付記1に記載の4相発振回路。
(付記3)
前記第1のI相コイルと前記第2のI相コイルとは、線対称に配置され、前記第1のQ相コイルと前記第2のQ相コイルとは、線対称に配置された、付記1又は2に記載の4相発振回路。
(付記4)
前記第1のI相コイルと前記第2のI相コイルとは、互いの軸方向が平行になるように配置され、前記第1のQ相コイルと前記第2のQ相コイルとは、互いの軸方向が平行になるように配置された、付記1から3のいずれか一項に記載の4相発振回路。
(付記5)
隣り合う複数の4相発振器と、
前記複数の4相発振器のそれぞれに対して設けられた複数のCDR部とを備え、
前記複数のCDR部は、クロックが重畳されたデータ信号から、対応する4相発振器から出力される4相の信号に基づいて、クロックとデータを再生し、
前記複数の4相発振器のうちの第1の4相発振器は、第1のI相コイルと、第1のQ相コイルと、前記第1のI相コイルの両側から出力される第1のI相差動信号の位相と前記第1のQ相コイルの両側から出力される第1のQ相差動信号の位相とが相違するように、前記第1のI相コイルに流れる第1のI相電流と前記第1のQ相コイルに流れる第1のQ相電流とを発生させる第1の駆動回路とを有し、
前記複数の4相発振器のうちの第2の4相発振器は、第2のI相コイルと、第2のQ相コイルと、前記第2のI相コイルの両側から出力される第2のI相差動信号の位相と前記第2のQ相コイルの両側から出力される第2のQ相差動信号の位相とが相違するように、前記第2のI相コイルに流れる第2のI相電流と前記第2のQ相コイルに流れる第2のQ相電流とを発生させる第2の駆動回路とを有し、
前記第2の駆動回路は、前記第1のI相電流と前記第2のI相電流とが同位相であるとき、前記第1のQ相電流に対して位相が反転した前記第2のQ相電流を発生させ、前記第1のQ相電流と前記第2のQ相電流とが同位相であるとき、前記第1のI相電流に対して位相が反転した前記第2のI相電流を発生させる、CDR回路。
(付記6)
前記第1の駆動回路は、前記第1のI相差動信号の位相に対して前記第1のQ相差動信号の位相が遅れるように、前記第1のI相電流の位相に対して前記第1のQ相電流の位相を遅らせ、
前記第2の駆動回路は、前記第2のI相差動信号の位相に対して前記第2のQ相差動信号の位相が進むように、前記第2のI相電流の位相に対して前記第2のQ相電流の位相を進める、付記5に記載のCDR回路。
(付記7)
前記第1のI相コイルと前記第2のI相コイルとは、線対称に配置され、前記第1のQ相コイルと前記第2のQ相コイルとは、線対称に配置された、付記5又は6に記載のCDR回路。
(付記8)
前記第1のI相コイルと前記第2のI相コイルとは、互いの軸方向が平行になるように配置され、前記第1のQ相コイルと前記第2のQ相コイルとは、互いの軸方向が平行になるように配置された、付記5から7のいずれか一項に記載のCDR回路。