特許第6981336号(P6981336)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧 ▶ トヨタ自動車株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6981336
(24)【登録日】2021年11月22日
(45)【発行日】2021年12月15日
(54)【発明の名称】熱流測定装置およびその製造方法
(51)【国際特許分類】
   G01K 17/20 20060101AFI20211202BHJP
   G01K 7/02 20210101ALI20211202BHJP
【FI】
   G01K17/20
   G01K7/02 Z
【請求項の数】4
【全頁数】26
(21)【出願番号】特願2018-58984(P2018-58984)
(22)【出願日】2018年3月26日
(65)【公開番号】特開2019-174128(P2019-174128A)
(43)【公開日】2019年10月10日
【審査請求日】2020年9月24日
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110001128
【氏名又は名称】特許業務法人ゆうあい特許事務所
(72)【発明者】
【氏名】平林 雅也
【審査官】 岩本 太一
(56)【参考文献】
【文献】 特開2017−211270(JP,A)
【文献】 特開2012−156011(JP,A)
【文献】 特開2017−075844(JP,A)
【文献】 米国特許第06278051(US,B1)
【文献】 特開2004−022985(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01K 1/00−19/00
(57)【特許請求の範囲】
【請求項1】
熱流束センサ(10)と、熱電対(200)を有する熱電対シート(20)とが一体化された熱流測定装置であって、
板状の絶縁基材(100)に厚さ方向に貫通する複数の第1、第2ビアホール(101、102)が形成されていると共に、前記第1、第2ビアホールに互いに異なる金属で形成された熱電変換素子(130、140)が埋め込まれており、前記絶縁基材の表面(100a)側に熱可塑性樹脂を含んで構成される表面保護部材(110)が配置されていると共に、前記絶縁基材の裏面(100b)側に熱可塑性樹脂を含んで構成される裏面保護部材(120)が配置されている前記熱流束センサと、
熱電能が異なる金属から構成された第1導体(201)と第2導体(202)とが接続された接合部(203)を有する前記熱電対が、前記第1導体と前記第2導体との配列方向に対して交差する方向の一方側から熱可塑性樹脂を含んで構成される第1絶縁シート(210)で覆われると共に、前記交差する方向の他方側から熱可塑性樹脂を含んで構成される第2絶縁シート(220)で覆われた前記熱電対シートと、を備え、
前記熱流束センサおよび前記熱電対シートは、互いの前記熱可塑性樹脂が融着することで一体化されており、
前記熱流束センサと前記熱電対シートとの境界における境界端部(A)は、前記境界を構成する前記熱流束センサの熱可塑性樹脂および前記熱電対シートの熱可塑性樹脂よりも結晶化度が小さくされた保護シート(30)で覆われており、
前記熱流束センサは、前記表面保護部材および前記裏面保護部材が前記絶縁基材より当該絶縁基材の面方向に沿った長さが長くされ、前記裏面保護部材のうちの前記絶縁基材より長くされた部分が前記表面保護部材側に曲げられて前記表面保護部材と融着しており、
前記熱電対シートは、前記裏面保護部材のうちの前記表面保護部材と融着している部分を挟んで前記表面保護部材と反対側に配置され、前記裏面保護部材の折り曲げられた部分と融着しており、
前記保護シートは、前記境界のうちの前記表面保護部材から最も離れた前記境界端部を覆っている熱流測定装置。
【請求項2】
前記熱電対シートは、前記境界側の部分に凹部(206)が形成されており、
前記保護シートは、前記凹部内にも配置されている請求項1に記載の熱流測定装置。
【請求項3】
熱流束センサ(10)と、熱電対(200)を有する熱電対シート(20)とが一体化された熱流測定装置の製造方法であって、
板状の絶縁基材(100)に厚さ方向に貫通する複数の第1、第2ビアホール(101、102)が形成され、前記第1、第2ビアホールに熱電変換素子(130、140)を構成する導電性ペースト(131、141)が充填されたものを用意することと、
熱可塑性樹脂を含んで構成される表面保護部材(110)を用意することと、
熱可塑性樹脂を含んで構成される裏面保護部材(120)を用意することと、
熱電能が異なる金属から構成された第1導体(201)と第2導体(202)とが接続された接合部(203)を有する前記熱電対が、前記第1導体と前記第2導体との配列方向に対して交差する方向の一方側から熱可塑性樹脂を含んで構成される第1絶縁シート(210)で覆われると共に、前記交差する方向の他方側から熱可塑性樹脂を含んで構成される第2絶縁シート(220)で覆われた前記熱電対シートを用意することと、
前記裏面保護部材、前記絶縁基材、前記表面保護部材を順に積層すると共に、前記熱電対シートを配置する部材配置を行うことと、
前記裏面保護部材、前記絶縁基材、前記表面保護部材の積層方向から加圧しながら加熱することにより、前記導電性ペーストから前記熱電変換素子を構成して前記熱流束センサを構成しつつ、前記熱流束センサを構成する熱可塑性樹脂と前記熱電対シートとを構成する熱可塑性樹脂とを融着させて前記熱流束センサと前記熱電対シートとを一体化することと、
前記熱流束センサと前記熱電対シートとの境界を構成する前記熱流束センサの熱可塑性樹脂および前記熱電対シートの熱可塑性樹脂よりも結晶化度が小さくされた保護シート(30)を用意することと、
前記境界における境界端部(A)を前記保護シートで覆うことと、を行い、
前記表面保護部材を用意することでは、前記絶縁基材より当該絶縁基材の面方向に沿った長さが長くされた前記表面保護部材を用意し、
前記裏面保護部材を用意することでは、前記絶縁基材より当該絶縁基材の面方向に沿った長さが長くされた前記裏面保護部材を用意し、
前記部材配置を行うことでは、前記表面保護部材と前記裏面保護部材とが前記絶縁基材から面方向に長くされた位置において、前記裏面保護部材が前記表面保護部材側に折り曲げられ、前記裏面保護部材のうちの折り曲げられた部分を挟んで前記表面保護部材と反対側に前記熱電対シートを配置する熱流測定装置の製造方法。
【請求項4】
前記部材配置を行うことでは、前記保護シート上に前記熱電対シートを配置し、
前記一体化することでは、前記熱流束センサ、前記熱電対シート、および前記保護シートを同時に一体化する請求項に記載の熱流測定装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱流束センサと、熱電対を有する熱電対シートとが一体化された熱流測定装置およびその製造方法に関するものである。
【背景技術】
【0002】
従来より、薄いフィルム状に形成され、厚み方向の一方の面と他方の面との間を流れる熱流束に応じた信号を出力する熱流束センサが知られている。
【0003】
例えば、特許文献1には、1個の多層基板を製造する工程で、電気的に独立した複数の熱流束センサを同時に形成した熱流測定装置が記載されている。この熱流測定装置は、複数の熱流束センサの性能個体差を小さくしたものである。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2016−11950号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載の熱流測定装置は、測定対象物の表面に取り付けることにより、測定対象物の内部から発生する熱流を測定することが可能である。しかしながら、測定対象物の表面の熱流は、測定対象物の内部で発生する熱の影響を受けると共に、外気温の変化による影響も受ける。このため、熱流測定装置は、測定対象物の内部で発生する熱に応じた信号を出力すると共に、外気温の変化に応じた信号も出力する。したがって、測定対象物の表面に熱流測定装置を取り付けた熱流測定では、外気温の変化に応じた信号が温度ドリフトとなり、測定対象物の内部で発生する熱の検出が困難になるという問題がある。
【0006】
その対策として、熱流測定装置に対し、熱流束センサに加え、熱電対を設けることが考えられる。熱電対を用いて外気温の変化による対象物の表面の温度変化を検出すれば、熱流束センサから出力される信号と熱電対から出力される信号とに基づき、熱流束センサの信号から温度ドリフトの影響を低減することが可能である。
【0007】
このため、本発明者らは、熱流束センサと熱電対を有する熱電対シートとを一体化した熱流測定装置を構成して検討を行った。具体的には、この熱流測定装置における熱流束センサは、熱可塑性樹脂を有する樹脂部材の内部に、熱電変換素子としての第1、第2層間接続部材が直列に接続された状態で配置されている。また、この熱流測定装置における熱電対シートは、熱可塑性樹脂を有する樹脂部材の内部に、熱電対が配置されることで構成されている。そして、熱流測定装置は、熱流束センサにおける樹脂部材と、熱電対シートにおける樹脂部材とが融着することによって一体化されている。
【0008】
しかしながら、本発明者らの検討によれば、この熱流測定装置では、熱流束センサの樹脂部材と熱電対シートにおける樹脂部材との境界の端部から剥離が発生することが確認された。
【0009】
本発明は上記点に鑑み、熱流束センサと、熱電対を有する熱電対シートとが一体化された熱流測定装置において、熱流束センサと熱電対シートとが剥離することを抑制できる熱流測定装置およびその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するための請求項1では、熱流束センサ(10)と、熱電対(200)を有する熱電対シート(20)とが一体化された熱流測定装置であって、板状の絶縁基材(100)に厚さ方向に貫通する複数の第1、第2ビアホール(101、102)が形成されていると共に、前記第1、第2ビアホールに互いに異なる金属で形成された熱電変換素子(130、140)が埋め込まれており、前記絶縁基材の表面(100a)側に熱可塑性樹脂を含んで構成される表面保護部材(110)が配置されていると共に、前記絶縁基材の裏面(100b)側に熱可塑性樹脂を含んで構成される裏面保護部材(120)が配置されている前記熱流束センサと、熱電能が異なる金属から構成された第1導体(201)と第2導体(202)とが接続された接合部(203)を有する前記熱電対が、前記第1導体と前記第2導体との配列方向に対して交差する方向の一方側から熱可塑性樹脂を含んで構成される第1絶縁シート(210)で覆われると共に、前記交差する方向の他方側から熱可塑性樹脂を含んで構成される第2絶縁シート(220)で覆われた前記熱電対シートと、を備えている。そして、前記熱流束センサおよび前記熱電対シートは、互いの前記熱可塑性樹脂が融着することで一体化されており、前記熱流束センサと前記熱電対シートとの境界における境界端部(A)は、前記境界を構成する前記熱流束センサの熱可塑性樹脂および前記熱電対シートの熱可塑性樹脂よりも結晶化度が小さくされた保護シート(30)で覆われており、前記熱流束センサは、前記表面保護部材および前記裏面保護部材が前記絶縁基材より当該絶縁基材の面方向に沿った長さが長くされ、前記裏面保護部材のうちの前記絶縁基材より長くされた部分が前記表面保護部材側に曲げられて前記表面保護部材と融着しており、前記熱電対シートは、前記裏面保護部材のうちの前記表面保護部材と融着している部分を挟んで前記表面保護部材と反対側に配置され、前記裏面保護部材の折り曲げられた部分と融着しており、前記保護シートは、前記境界のうちの前記表面保護部材から最も離れた前記境界端部を覆っている
【0011】
これによれば、熱流束センサと熱電対シートの境界端部は、境界を構成する部分の熱可塑性樹脂同士の融着強度よりも、当該境界を構成する部分の熱可塑性樹脂との融着強度が高くなる保護シートで覆われる。このため、熱流束センサと熱電対シートとが剥離することを抑制できる。
【0012】
また、請求項では、熱流束センサ(10)と、熱電対(200)を有する熱電対シート(20)とが一体化された熱流測定装置の製造方法であって、板状の絶縁基材(100)に厚さ方向に貫通する複数の第1、第2ビアホール(101、102)が形成され、前記第1、第2ビアホールに熱電変換素子(130、140)を構成する導電性ペースト(131、141)が充填されたものを用意することと、熱可塑性樹脂を含んで構成される表面保護部材(110)を用意することと、熱可塑性樹脂を含んで構成される裏面保護部材(120)を用意することと、熱電能が異なる金属から構成された第1導体(201)と第2導体(202)とが接続された接合部(203)を有する前記熱電対が、前記第1導体と前記第2導体との配列方向に対して交差する方向の一方側から熱可塑性樹脂を含んで構成される第1絶縁シート(210)で覆われると共に、前記交差する方向の他方側から熱可塑性樹脂を含んで構成される第2絶縁シート(220)で覆われた前記熱電対シートを用意することと、前記裏面保護部材、前記絶縁基材、前記表面保護部材を順に積層すると共に、前記熱電対シートを配置する部材配置を行うことと、前記裏面保護部材、前記絶縁基材、前記表面保護部材の積層方向から加圧しながら加熱することにより、前記導電性ペーストから前記熱電変換素子を構成して前記熱流束センサを構成しつつ、前記熱流束センサを構成する熱可塑性樹脂と前記熱電対シートとを構成する熱可塑性樹脂とを融着させて前記熱流束センサと前記熱電対シートとを一体化することと、前記熱流束センサと前記熱電対シートとの境界を構成する前記熱流束センサの熱可塑性樹脂および前記熱電対シートの熱可塑性樹脂よりも結晶化度が小さくされた保護シート(30)を用意することと、前記境界における境界端部(A)を前記保護シートで覆うことと、を行い、前記表面保護部材を用意することでは、前記絶縁基材より当該絶縁基材の面方向に沿った長さが長くされた前記表面保護部材を用意し、前記裏面保護部材を用意することでは、前記絶縁基材より当該絶縁基材の面方向に沿った長さが長くされた前記裏面保護部材を用意し、前記部材配置を行うことでは、前記表面保護部材と前記裏面保護部材とが前記絶縁基材から面方向に長くされた位置において、前記裏面保護部材が前記表面保護部材側に折り曲げられ、前記裏面保護部材のうちの折り曲げられた部分を挟んで前記表面保護部材と反対側に前記熱電対シートを配置する
【0013】
これによれば、熱流束センサと熱電対シートの境界端部が保護シートで覆われた熱流測定装置が製造される。つまり、境界端部が境界を構成する部分の熱可塑性樹脂同士の融着強度よりも、当該境界を構成する部分の熱可塑性樹脂との融着強度が高くなる保護シートで覆われた熱流測定装置が製造される。このため、熱流束センサと熱電対シートとの剥離が抑制された熱流測定装置が製造される。
【0014】
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
【図面の簡単な説明】
【0015】
図1】第1実施形態における熱流測定装置の平面図である。
図2図1中のII−II線に沿った断面図である。
図3】加熱処理時間と結晶化度とに関する実験結果を示す図である。
図4】加熱処理時間と、イミド環のC−N伸縮振動とに関する実験結果を示す図である。
図5】波数と吸光度とに関する実験結果を示す図である。
図6】加熱処理時間とピール強度とに関する実験結果を示す図である。
図7】紫外線露光量とピール強度とに関する実験結果を示す図である。
図8】保護部材がない場合と保護部材がある場合とにおいて、剥離または破壊の有無に関する実験結果を示す図である。
図9図2に示す熱流測定装置を測定対象物に設置した状態を示す模式図である。
図10図9中のX−X線に沿った断面図である。
図11】熱流測定装置を構成する熱流束センサの出力特性と熱電対シートの出力特性とを模式的に示すグラフである
図12】第1実施形態における熱流測定装置の製造工程を示すフローチャートである。
図13図12中の熱電対シート形成工程を示すフローチャートである。
図14図13中の熱電対積層体形成工程における第1絶縁シートおよび熱電対を積層した状態を示す平面図である。
図15図14中のXV−XV線に沿った断面図である。
図16図13中の熱電対積層体形成工程における第1絶縁シートおよび熱電対を積層して固定した状態を示す平面図である
図17図13中の熱電対積層体形成工程における第1絶縁シート、熱電対および第2絶縁シートを積層した状態を示す平面図である
図18図13中のプレス工程を示す断面図である。
図19図13中の切断工程で切断される切断箇所を示す平面図である。
図20図13中の切断工程で切断された熱電対シートを示す平面図である。
図21A図12中の熱流束センサ用部材用意工程における表面保護部材を用意する工程を示す断面図である。
図21B図12中の熱流束センサ用部材用意工程における絶縁基材を用意する工程を示す断面図である。
図21C図12中の熱流束センサ用部材用意工程における裏面保護部材を用意する工程を示す断面図である。
図22図12中の保護シート用意工程で用意される保護部材を示す平面図である。
図23図12中の積層体形成工程を示す平面図である。
図24図12中のXXIV−XXIV線に沿った断面図である。
図25】第2実施形態における熱流測定装置の他面側の平面図である。
図26】第2実施形態における切断工程で切断される切断箇所を示す平面図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
【0017】
(第1実施形態)
第1実施形態について、図面を参照しつつ説明する。図1および図2に示されるように、本実施形態の熱流測定装置1は、熱流束センサ10と、熱電対200を有する熱電対シート20とが一体化されて構成されている。なお、図1では、後述する表面保護部材110が透明または半透明のものであるとして、複数の表面配線パターン111の位置を実線にて記載している。
【0018】
まず、熱流束センサ10の構成について説明する。
【0019】
熱流束センサ10は、絶縁基材100、表面保護部材110、裏面保護部材120が一体化され、この一体化されたものの内部で第1、第2層間接続部材130、140が交互に直列に接続された構造とされている。なお、本実施形態では、第1、第2層間接続部材130、140が熱電変換素子に相当している。
【0020】
絶縁基材100は、可撓性を有する熱可塑性樹脂を含んで構成された板状のフィルム状とされている。そして、絶縁基材100には、厚み方向に貫通する複数の第1ビアホール101および第2ビアホール102が互い違いに形成されている。本実施形態では、絶縁基材100は、熱可塑性ポリイミド、熱可塑性ポリエーテルイミド、熱可塑性ポリイミドが順に積層されて構成されている。なお、熱可塑性ポリイミドは、他の部材と接合される際の融着層として機能する部分である。
【0021】
第1ビアホール101には第1層間接続部材130が配置され、第2ビアホール102には第2層間接続部材140が埋め込まれている。つまり、絶縁基材100には、第1層間接続部材130と第2層間接続部材140とが互い違いになるように埋め込まれている。
【0022】
第1層間接続部材130と第2層間接続部材140とは、ゼーベック効果を発揮するように、熱電能が互いに異なる金属や半導体等の熱電材料で構成されている。例えば、第1層間接続部材130は、P型を構成するBi(ビスマス)−Sb(アンチモン)−Te(テルル)合金の粉末が、焼結前における複数の金属原子の結晶構造を維持するように固相焼結された金属化合物で構成される。また、例えば、第2層間接続部材140は、N型を構成するBi−Te合金の粉末が、焼結前における複数の金属原子の結晶構造を維持するように固相焼結された金属化合物で構成される。
【0023】
なお、熱流測定装置1の平面図である図1では、第1、第2層間接続部材130、140が後述する表面配線パターン111に隠れるが、理解をし易くするため、第1、第2層間接続部材130、140の位置を破線で示し、そこにハッチングを施してある。
【0024】
表面保護部材110は、熱可塑性樹脂を含んで構成された板状のフィルム状とされ、絶縁基材100の表面100aを覆うように配置されている。本実施形態では、表面保護部材110は、熱可塑性ポリイミド、熱硬化性ポリイミド、熱可塑性ポリイミドが順に積層されて構成されている。なお、熱可塑性ポリイミドは、他の部材と接合される際の融着層として機能する部分である。
【0025】
また、表面保護部材110は、絶縁基材100よりも面方向の一方に長く形成されており、絶縁基材100から面方向の一方に延びている。図2中では、表面保護部材110は、絶縁基材100より紙面右側に延びている。
【0026】
表面保護部材110には、絶縁基材100に向き合う一面110a側に、銅箔等がパターニングされた複数の表面配線パターン111が形成されている。この複数の表面配線パターン111は、第1層間接続部材130の一方の端部と、それに隣り合う第2層間接続部材140の一方の端部とに電気的に接続されている。
【0027】
裏面保護部材120は、熱可塑性樹脂を含んで構成された板状のフィルム状とされ、絶縁基材100の裏面100bを覆うように配置されている。本実施形態では、裏面保護部材120は、熱可塑性ポリイミド、熱硬化性ポリイミド、熱可塑性ポリイミドが順に積層されて構成されている。なお、熱可塑性ポリイミドは、他の部材と接合される際の融着層として機能する部分である。
【0028】
また、裏面保護部材120は、絶縁基材100よりも面方向の一方に長く形成されており、絶縁基材100から面方向の一方に延びている。図2中では、裏面保護部材120は、絶縁基材100より紙面右側に延びている。
【0029】
裏面保護部材120には、絶縁基材100に向き合う一面120a側に、銅箔等がパターニングされた複数の裏面配線パターン121が形成されている。この複数の裏面配線パターン121は、第1層間接続部材130の他方の端部と、それに隣り合う第2層間接続部材140の他方の端部とに電気的に接続されている。
【0030】
なお、表面配線パターン111および裏面配線パターン121は、より詳しくは、互いに隣接する第1層間接続部材130と第2層間接続部材140とが交互に折り返されて接続されるように形成されている。つまり、表面配線パターン111および裏面配線パターン121は、第1層間接続部材130と第2層間接続部材140とが直列に接続されるように形成されている。
【0031】
また、裏面保護部材120は、絶縁基材100から面方向に延びた位置において表面保護部材110側に曲げられ、表面保護部材110と融着している。なお、裏面保護部材120は、表面保護部材110よりもさらに長く延びており、一面120aにおける一部が表面保護部材110から露出している。
【0032】
裏面配線パターン121のうちの第1、第2層間接続部材130、140を直列に接続したものの端部となる部分は、延長配線122、123とされており、裏面保護部材120が絶縁基材100よりも面方向に延びた位置にも延設されている。また、裏面配線パターン121における延長配線122、123は、裏面保護部材120が表面保護部材110よりもさらに長く延びた箇所まで延設されて当該箇所で露出している。そして、裏面配線パターン121における延長配線122、123は、露出した部分が後述する配線部43、44と電気的に接続されるパッド部124、125として機能する。
【0033】
以上が熱流束センサ10の構成である。そして、このような熱流束センサ10は、厚み方向の一方の面と他方の面との間を熱流束が流れると、第1、第2層間接続部材130、140の一方の端部と他方の端部との間に温度差が生じる。この際、熱流束センサ10には、ゼーベック効果によって第1、第2層間接続部材130、140に熱起電力が発生する。このため、熱流束センサ10は、この熱起電力をセンサ信号(例えば、電圧信号)として出力する。
【0034】
次に、熱電対シート20の構成について説明する。
【0035】
熱電対シート20は、熱電対200、第1絶縁シート210および第2絶縁シート220が一体化されて構成されており、平面略矩形状とされている。熱電対200は、ゼーベック効果を発揮するように、互いに熱電能が異なる金属で構成される第1導体201と第2導体202とが溶接等により接合されて構成される。そして、第1導体201と第2導体202とが接合された箇所は、温度を検出するための接合部203となる。なお、本実施形態の第1導体201と第2導体202とは、金属箔で構成されている。
【0036】
第1絶縁シート210および第2絶縁シート220は、熱可塑性樹脂を含んで構成され、板状のフィルム状とされている。本実施形態では、第1絶縁シート210および第2絶縁シート220は、熱可塑性ポリイミド、熱硬化性ポリイミド、熱可塑性ポリイミドが順に積層された積層構造とされている。なお、熱可塑性ポリイミドは、他の部材と接合される際の融着層として機能する部分である。
【0037】
そして、第1絶縁シート210は、第1導体201と第2導体202との配列方向に対して交差する方向の一方の側から熱電対200を覆うように配置されている。第2絶縁シート220は、第1絶縁シート210とは反対側から熱電対200を覆うように配置されている。つまり、熱電対シート20は、熱電対200が第1絶縁シート210および第2絶縁シート220で覆われた構成とされている。
【0038】
また、第1絶縁シート210は、第2絶縁シート220よりも面方向の一方に長く形成されており、第2絶縁シート220から面方向の一方に延びている。そして、熱電対200を構成する第1導体201と第2導体202とは、第1絶縁シート210が第2絶縁シート220よりも長く延びた箇所において、第2絶縁シート220側から露出している。このため、熱電対シート20では、第1導体201および第2導体202のうちの第2絶縁シート220から露出している部分が後述する配線部41、42と電気的に接続されるパッド部204、205として機能する。
【0039】
以上が熱電対シート20の構成である。このような熱電対シート20は、接合部203とパッド部204、205側の部分(例えば、後述する検出部40)との間に温度差が生じると、ゼーベック効果によって接合部203に熱起電力が発生する。このため、熱電対シート20は、この熱起電力をセンサ信号(例えば、電圧信号)として出力する。
【0040】
そして、熱流測定装置1は、上記熱流束センサ10と上記熱電対シート20とが一体化されることで構成されている。具体的には、本実施形態では、熱流束センサ10は、裏面保護部材120のうちの絶縁基材100より面方向に延びた部分が表面保護部材110側に折り曲げられて表面保護部材110と融着している。また、熱電対シート20は、表面保護部材110と裏面保護部材120とが融着した位置において、裏面保護部材120を挟んで表面保護部材110と反対側に配置されている。そして、熱電対シート20は、第1、第2絶縁シート210、220が裏面保護部材120と融着することで熱流束センサ10と一体化されている。詳しくは、本実施形態では、裏面保護部材120を構成する熱可塑性ポリイミドと、第1、第2絶縁シート210、220を構成する熱可塑性ポリイミド同士が融着することで一体化されている。
【0041】
以下では、熱流測定装置1において、表面保護部材110における一面110aと反対側の面を熱流測定装置1の一面1aといい、一面1aと反対側の面を他面1bともいう。
【0042】
ここで、上記のように、熱流束センサ10と熱電対シート20とが一体化された熱流測定装置1では、熱流束センサ10と熱電対シート20との境界の端部から剥離が発生する可能性がある。つまり、熱流束センサ10における裏面保護部材120と、熱電対シート20における第1、第2絶縁シート210、220との境界の端部から剥離が発生する可能性がある。
【0043】
このため、本発明者らは、このように剥離が発生する原因について鋭意検討を行った。そして、本発明者らは、明確な原理については明らかではないが、熱可塑性樹脂の特性に基づいて以下のように推定した。すなわち、熱可塑性樹脂は、結晶化度が大きくなると融着強度が低下すると推定されている。したがって、本発明者らは、熱流束センサ10における裏面保護部材120の熱可塑性樹脂と、熱電対シート20における第1、第2絶縁シート210、220の熱可塑性樹脂との結晶化度が大きくなっていることにより、裏面保護部材120と第1、第2絶縁シート210、220との融着強度が低下していると推定した。なお、結晶化度とは、結晶質と非晶質とが混在している場合の全体に対する結晶質の割合を示すものであり、結晶化度が大きいほど結晶質の割合が多いことを意味する。
【0044】
つまり、具体的には後述するが、熱流測定装置1を製造する際には、複数回の加熱処理が行われる。このため、本発明者らは、加熱処理によって熱可塑性樹脂の結晶化度が進んでいると想定した。そして、本発明者らは、斜入射X線回折法(すなわち、In−Plane回折法)を用いて、熱可塑性樹脂における加熱処理時間と結晶化度との関係について検討し、図3に示す実験結果を得た。なお、図3は、熱可塑性樹脂であるポリイミドを用い、320°で加熱処理した実験結果である。
【0045】
図3に示されるように、結晶化度は、加熱処理を行っていない場合(すなわち、図3中の加熱処理時間が0)、および加熱処理を10分行った場合には、7%であったが、加熱処理を480分行った場合には13%となった。つまり、結晶化度は、加熱処理を長く行うほど大きくなることが確認される。なお、斜入射X線回折法は、一般的に30%程度の結晶化度を測定するのに利用される方法であり、10%未満の結晶化度を測定する場合には誤差が含まれると考えられる。このため、加熱処理を行っていない場合と、加熱処理を10分行った場合とで同様の結晶化度となったのは、誤差が含まれるためである想定される。
【0046】
したがって、本発明者らは、加熱処理時間が0から10分の間において、熱可塑性樹脂の状態を調査するため、以下の実験を行った。すなわち、本発明者らは、直接的に結晶化度を導出することはできないが、加熱処理前後の組成変化等によって結晶性の評価が可能なフーリエ変換赤外分光光度計(すなわち、FT−IR)を用いてイミド環のC−N伸縮振動について検討した。そして、本発明者らは、図4および図5に示す実験結果を得た。なお、イミド環のC−N伸縮振動と結晶化度との関係は、結晶化度が大きくなる(すなわち、結晶化が進む)ほどイミド環のC−N伸縮振動が阻害されるため、イミド環のC−N伸縮振動が小さいほど結晶化度が大きくなっていることを示す。
【0047】
図4および図5に示されるように、イミド環のC−N伸縮振動は、加熱処理時間を長くするほど小さくなることが確認される。このため、加熱処理を実行することで結晶化度が大きくなることが確認される。なお、図4および図5中のサンプル3では、サンプル2よりイミド環のC−N伸縮振動が大きくなるが、測定誤差であると推定される。
【0048】
そして、本発明者らは、熱可塑性樹脂で構成される樹脂部材に加熱処理を施し、その後に銅配線を熱圧着した試料を作成して検討を行い、加熱処理時間とピール強度との関係について図6に示す実験結果を得た。なお、図6は、加熱処理時間を320℃とした場合の結果である。また、ここでの熱可塑性樹脂は、ポリイミドである。
【0049】
図6に示されるように、ピール強度は、加熱処理時間が長くなるほど、低下していることが確認される。つまり、熱可塑性樹脂は、結晶化度が大きくなるほど、融着強度が低下していることが確認される。
【0050】
なお、本発明者らは、熱可塑性樹脂で構成される樹脂部材の表面に紫外線照射を行うことで粗化処理を行うことにより、銅配線と樹脂部材との融着強度が向上するとも考えた。しかしながら、実際に検討してみたところ、図7に示されるように、表面に粗化処理を行ってもピール強度はほとんど変化しなかった。このことからも、熱可塑性樹脂の融着強度は、結晶化度に依存していると推定される。なお、図7は、熱可塑性樹脂で構成される樹脂部材に320℃で480分の加熱処理を施し、その後に紫外線照射を行って銅配線を熱圧着した場合の結果である。
【0051】
したがって、本実施形態の熱流測定装置1は、図2に示されるように、熱流束センサ10と熱電対シート20における境界の端部を覆うように、当該境界を構成する部分の熱可塑性樹脂よりも結晶化度が小さい保護シート30が配置されている。
【0052】
本実施形態では、具体的には後述するが、熱流測定装置1は、図10に示されるように、他面1b側が測定対象物2に向けられて配置される。そして、このように配置された熱流測定装置1は、熱電対シート20側の部分が一面1aおよび他面1bに対する略法線方向に沿って引っ張られることが想定される。つまり、このように配置された熱流測定装置1は、熱流束センサ10と熱電対シート20における境界の端部において、一面1aから最も離れた部分に熱流束センサ10と熱電対シート20とを剥離させる応力が最も大きく印加される。また、本実施形態では、後述するように、熱流測定装置1は、パッド部124、125、204、205側の端部がシールド線45によって押圧された状態となる。つまり、熱流束センサ10と熱電対シート20における境界の端部のうちのパッド部124、125、204、205側の端部は、シールド線45によって押圧されることで剥離し難くなっている。
【0053】
このため、本実施形態では、熱流束センサ10と熱電対シート20における境界の端部のうちの一面1aから最も離れた部分を境界端部Aとすると、境界端部Aを覆うように、境界を構成する部分の熱可塑性樹脂よりも結晶化度が小さい保護シート30が配置されている。言い換えると、境界端部Aを覆うように、境界を構成する部分の熱可塑性樹脂よりも熱履歴が少なくされた保護シート30が配置されている。つまり、境界端部Aを覆うように、境界を構成する部分の熱可塑性樹脂同士の融着強度よりも、当該境界を構成する部分の熱可塑性樹脂との融着強度が高くなる保護シート30が配置されている。これにより、境界端部Aから剥離が発生することを抑制できる。
【0054】
本実施形態では、保護シート30は、熱可塑性樹脂を含んで構成されたフィルム状とされており、例えば、熱可塑性ポリイミドで構成されている。なお、境界を構成する部分の熱可塑性樹脂とは、本実施形態では、裏面保護部材120における熱可塑性ポリイミドと、第1、第2絶縁シート210、220における熱可塑性ポリイミドのことである。
【0055】
また、本実施形態では、保護シート30は、第2絶縁シート220における第1絶縁シート210と反対側の部分が全て被覆される大きさとされている。このため、本実施形態では、熱流測定装置1における他面1bは、熱流束センサ10の裏面保護部材120および保護シート30で構成されている。
【0056】
以上が本実施形態における熱流測定装置1の構成である。そして、本発明者らは、保護シート30が配置されている熱流測定装置1および保護シート30が備えられていない熱流測定装置1について、折り曲げた際に剥離、または破壊が発生しているか否かについての実験を行い、図8に示す実験結果を得た。なお、図8中には、剥離または破壊が発生しなかった場合を「O」として示し、剥離または破壊が発生した場合を「X」として示している。また、図8中の保護シートなしとは、上記熱流測定装置1において保護シート30が備えられておらず、熱流測定装置1の他面1bが熱流束センサ10の裏面保護部材120と熱電対シート20の第2絶縁シート220とで構成されている熱流測定装置1のことである。つまり、保護シートなしとは、境界端部Aが他面1bに位置している熱流測定装置1のことである。
【0057】
図8に示されるように、保護シート30が配置されていない場合には、曲率Rが9.5mm以下となると剥離が発生していることが確認される。なお、曲率Rが9.5mmとは、約90°の折り曲げに相当するものである。つまり、曲率Rが9.5mmとは、表面保護部材110のうちの第1、第2層間接続部材130、140上に位置する部分と、表面保護部材110のうちの熱電対シート20上に位置する部分との成す角度が約90°となるように、熱流測定装置1が折り曲げられたことを意味している。
【0058】
一方、保護シート30が配置されている本実施形態の熱流測定装置1では、曲率Rが9.5mmとなっても剥離が発生していないことが確認される。また、本実施形態の熱流測定装置1では、曲率Rが6.5mmでも剥離が発生していないことが確認される。なお、曲率Rが6.5mmとは、約180°の折り曲げに相当するものである。つまり、曲率Rが6.5mmとは、表面保護部材110のうちの第1、第2層間接続部材130、140上に位置する部分と、表面保護部材110のうちの熱電対シート20上に位置する部分との成す角度が約180°となるように、熱流測定装置1が折り曲げられたことを意味している。
【0059】
そして、本実施形態の熱流測定装置1では、完全に折り曲げた際に母材破壊が発生することが確認された。つまり、本実施形態の熱流測定装置1では、保護シート30を配置したことにより、剥離が発生することを抑制できる。
【0060】
このような熱流測定装置1は、例えば、図9および図10に示されるように、測定対象物2の表面3に取り付けて使用される。なお、図9では、測定対象物2の内部の熱発生源4を模式的に破線で示している。
【0061】
例えば、図9および図10に示されるように、熱流測定装置1は、他面1bが測定対象物2側に向けられた状態で接合部材5を介して配置される。なお、接合部材5としては、両面テープや接着剤等が用いられる。
【0062】
そして、熱流束センサ10のパッド部124、125は、それぞれ配線部41、42と接続される。熱電対シート20のパッド部204、205は、それぞれ配線部43、44と接続される。そして、各配線部41〜44は、チューブ状のシールド線45の内側を通り、検出部40に接続されている。これにより、熱流束センサ10の出力信号と、熱電対シート20の出力信号とがそれぞれ検出部40に入力される。
【0063】
また、本実施形態では、シールド線45は、熱収縮チューブで構成されており、各パッド部124、125、204、205を収容するように、熱流測定装置1に固定されている。具体的には、熱流測定装置1におけるパッド部124、125、204、205付近の表面保護部材110や保護シート30等に固定されている。このため、熱流束センサ10と熱電対シート20との境界におけるパッド部124、125、204、205側の端部は、シールド線45によって押圧された状態となっており、剥離し難くなっている。
【0064】
また、本実施形態のシールド線45には、外部からの電磁波の侵入を防ぐための図示しない導体が配置されている。この導体は、シールド線45の内部で配線を囲うように筒状に形成されている。そして、導体は、配線部46を通じて測定対象物2に電気的に接続されていると共に、検出部40内のグランド47と接続される。これにより、熱流束センサ10および熱電対シート20が出力する電圧信号に対するノイズを低減することが可能となっている。
【0065】
検出部40は、CPU(Central Processing Unitの略)、RAM(Random Access Memoryの略)、ROM(Read Only Memoryの略)、フラッシュメモリ等を有している。そして、検出部40は、CPUがROM、フラッシュメモリに記憶されたプログラムを実行し、その実行の際にRAMを作業領域として使用する。検出部40は、このようなCPUの作動によってプログラムに記述された機能を実現する。なお、RAM、ROM、フラッシュメモリは、非遷移的実体的記憶媒体である。
【0066】
具体的には、検出部40は、測定対象物2の内部の熱発生源4で発生した熱が測定対象物2の内部から表面3に伝わるため、熱流束センサ10の出力信号と熱電対シート20の出力信号とに基づいて表面3を流れる熱流を測定する。なお、検出部40は、測定対象物2の表面3で測定される熱流に基づき、測定対象物2の熱発生源4で発生した熱量の算出を可能なものとしてもよい。
【0067】
ここで、検出部40において検出される熱流束センサ10の出力信号および熱電対シート20の出力信号の一例について、図11を参照しつつ説明する。なお、図11は、熱電対シート20の出力信号を実線Aで模式的に示し、熱流束センサ10の出力信号を実線Bで模式的に示している
【0068】
この例では、外気温が、時刻t0から時刻t4にかけて次第に上昇し、時刻t4から時刻t8にかけて次第に下降しているものとする。また、検出部40の温度は、時刻t0から時刻t8に亘りほぼ一定であるとする。
【0069】
測定対象物2の表面3の温度は、外気温の上昇に伴って上昇し、外気温の低下に伴って低下する。このため、実線Aに示すように、熱電対シート20の出力信号は、時刻t0から時刻t4にかけて次第に上昇し、時刻t4から時刻t8にかけて次第に下降している。
【0070】
一方、測定対象物2の表面3の熱流束は、外気温の上昇に伴って外気側から測定対象物2側に流れ、外気温の低下に伴って測定対象物2側から外気側に流れる。このため、実線Bに示すように、熱流束センサ10の出力信号は、時刻t0から時刻t4にかけて次第に下降し、時刻t4から時刻t8にかけて次第に上昇している。すなわち、熱電対シート20の出力信号と熱流束センサ10の出力信号とは、外気温の変化によって測定対象物2の表面3を流れる熱流に対して逆向きの挙動を示す。
【0071】
ここで、時刻t1から時刻t2の間、および、時刻t5から時刻t6の間に、測定対象物2の内部の熱発生源4で熱が発生したものとする。このとき、熱発生源4で発生した熱は測定対象物2の内部から表面3に伝わり、その表面3に熱流が流れる。このため、時刻t1から時刻t2の間で、熱電対シート20の出力信号と熱流束センサ10の出力信号とはいずれも上昇し、時刻t2から時刻t3の間で、熱電対シート20の出力信号と熱流束センサ10の出力信号とはいずれも下降している。また、時刻t5から時刻t6の間で、熱電対シート20の出力信号と熱流束センサ10の出力信号とはいずれも上昇し、時刻t6から時刻t7の間で、熱電対シート20の出力信号と熱流束センサ10の出力信号とはいずれも下降している。すなわち、熱電対シート20の出力信号と熱流束センサ10の出力信号とは、測定対象物2の内部の熱発生源4で発生した熱が測定対象物2の内部を伝わり、測定対象物2の表面3を流れる熱流に対して同じ向きの挙動を示す。
【0072】
したがって、検出部40は、熱流束センサ10の出力信号と熱電対シート20の出力信号とを比べることで、外気温の変化によって測定対象物2の表面3を流れる熱流を除くことができる。そして、検出部40は、測定対象物2の内部の熱発生源4で発生した熱によって測定対象物2の表面3を流れる熱流のみを検出することができる。
【0073】
次に、熱流測定装置1の製造方法について説明する。なお、以下では、複数の熱流測定装置1を同時に製造する方法について説明する。
【0074】
本実施形態の熱流測定装置1は、図12に示されるように、熱電対シート形成工程S10、熱流束センサ用部材用意工程S20、保護シート用意工程S30、積層体形成工程S40、および一体プレス工程S50を行うことによって製造される。
【0075】
まず、熱流測定装置1の製造方法のうちの熱電対シート形成工程S10について説明する。熱電対シート形成工程では、図13に示されるように、熱電対用意工程S11、熱電対積層体形成工程S12、プレス工程S13および切断工程S14を行うことにより、熱電対シート20を形成する。
【0076】
具体的には、熱電対用意工程S11では、互いに熱電能の異なる金属箔から構成される第1導体201および第2導体202を用意する。そして、第1導体201および第2導体202の先端同士を溶接等により接合して接合部203を形成する。これにより、熱電対200が用意される。
【0077】
続いて、熱電対積層体形成工程S12では、図14および図15に示されるように、所定のサイズに形成された治具ベース50の上に第1離型紙61および第1絶縁シート210を順に配置する。次に、第1離型紙61および第1絶縁シート210の上から治具ベース50に対して端部位置決め治具51および中央位置決め治具52をボルト53により固定し、第1離型紙61および第1絶縁シート210を治具ベース50に固定する。
【0078】
具体的には、第1離型紙61および第1絶縁シート210は平面矩形状とされている。そして、第1離型紙61および第1絶縁シート210における一対の向かい合う端部がそれぞれ治具ベース50に固定されるように、端部位置決め治具51を治具ベース50に固定する。つまり、本実施形態では、2つの端部位置決め治具51を治具ベース50に固定する。また、2つの端部位置決め治具51の間の中央部に中央位置決め治具52を配置し、当該中央位置決め治具52を治具ベース50に固定する。
【0079】
なお、本実施形態の端部位置決め治具51および中央位置決め治具52には、それぞれ熱電対200を位置決めするための複数の溝部54、55が形成されている。詳しくは、各端部位置決め治具51には、他方の端部位置決め治具51側に位置する部分に複数の溝部54が形成されている。中央位置決め治具52には、各端部位置決め治具51側に位置する部分に複数の溝部55が形成されている。また、本実施形態では、第1離型紙61は、例えば、アラミド樹脂等で構成される熱硬化性樹脂シートまたは熱可塑性樹脂シートが用いられる。第1絶縁シート210は、上記のように、熱硬化性ポリイミド、熱可塑性ポリイミド、熱硬化性ポリイミドが順に積層されたものが用いられる。
【0080】
そして、第1絶縁シート210上に、熱電対用意工程S11で形成した熱電対200を配置する。本実施形態では、端部位置決め治具51および上記中央位置決め治具52に複数の溝部54、55が形成されているため、各溝部54、55に合わせて、第1絶縁シート210の上に複数の熱電対200を配置する。なお、複数の熱電対200は、端部位置決め治具51および中央位置決め治具52にそれぞれ設けられた複数の溝部54、55が並ぶ方向に配置されると共に、中央位置決め治具52を挟んで向き合うように配置される。また、各熱電対200は、接合部203が中央位置決め治具52側に向けられて配置される。
【0081】
続いて、図16に示されるように、第1離型紙61、第1絶縁シート210、熱電対200の上から治具ベース50に対して押さえ治具56をボルト53により固定し、第1離型紙61、第1絶縁シート210、熱電対200を治具ベース50に固定する。具体的には、熱電対200の接合部203が中央位置決め治具52側に向けられて配置されているため、接合部203側と反対側の部分上に押さえ治具56を配置する。これにより、第1離型紙61、第1絶縁シート210、熱電対200の位置ずれが抑制される。その後、中央位置決め治具52を治具ベース50から取り外す。
【0082】
次に、図17に示されるように、第1離型紙61、第1絶縁シート210、熱電対200の上に、第2絶縁シート220を配置する。これにより、熱電対200の積層体が形成される。なお、第2絶縁シート220は、熱電対200の接合部203を覆いつつ、熱電対200の接合部203と反対側の端部が露出するように、第1絶縁シート210上に配置される。また、第2絶縁シート220は、上記のように、熱硬化性ポリイミド、熱可塑性ポリイミド、熱硬化性ポリイミドが順に積層されたものが用いられる。
【0083】
次に、プレス工程S13では、第1絶縁シート210、熱電対200、第2絶縁シート220の積層方向(以下では、単に積層方向という)に加圧しながら加熱することにより、これら第1絶縁シート210、熱電対200、第2絶縁シート220を一体化する。
【0084】
具体的には、図18に示されるように、第1絶縁シート210、熱電対200、第2絶縁シート220が積層された治具ベース50をプレス機70に設置する。この際、本実施形態では、第1絶縁シート210の上にさらに第2離型紙62と第1緩衝材81を配置する。なお、第2離型紙62は、例えば、アラミド樹脂などから形成される熱硬化性樹脂シートまたは熱可塑性樹脂シートが用いられる。また、第1緩衝材81は、例えば、テフロン(登録商標)やポリイミド樹脂が用いられる。
【0085】
そして、プレス機70により、積層方向に加圧しながら加熱し、これら第1絶縁シート210、熱電対200、第2絶縁シート220を融着して一体化する。例えば、この工程では、プレス機70の圧力が2MPa以上、温度が300℃以上とされる。これにより、第1絶縁シート210および第2絶縁シート220が有する熱可塑性樹脂(すなわち、融着層)同士が融着し、図19に示される複数の熱電対200を有する一体化シート20aが構成される。
【0086】
なお、このプレス工程S13は、加熱した状態で行われる。このため、第1絶縁シート210および第2絶縁シート220を構成する熱可塑性樹脂の結晶化が進む。このため、第1絶縁シート210および第2絶縁シート220は、プレス工程S13を行った後は、プレス工程S13を行う前より結晶化度が大きくなった状態となる。
【0087】
続いて、切断工程S14では、図19の一点鎖線で示した第1〜第4切断箇所C1〜C4で一体化シート20aを切断する。これにより、図20に示すように、所定の実装寸法に成形された熱電対シート20が形成される。なお、この熱電対シート20は、複数の熱電対200を有する構成となっている。
【0088】
以上が熱電対シート形成工程S10である。次に、熱流測定装置1の製造方法のうちの熱流束センサ用部材用意工程S20について説明する。熱流束センサ用部材用意工程S20では、図21Aに示されるように、表面配線パターン111が形成された表面保護部材110を用意する。本実施形態では、表面保護部材110に熱圧着等によって銅箔を形成し、当該銅箔をパターニングすることにより、表面配線パターン111が形成された表面保護部材110を用意する。なお、表面保護部材110は、銅箔が熱圧着等される際に加熱された状態となるため、結晶化が進む。また、表面保護部材110は、絶縁基材100よりも面方向の長さが長くされたものを用意する。
【0089】
また、熱流束センサ用部材用意工程S20では、図21Bに示されるように、絶縁基材100に、第1、第2層間接続部材130、140を構成する第1、第2導電性ペースト131、141が充填されたものを用意する。例えば、この工程では、まず、ドリルまたはレーザ等により、絶縁基材100に複数の第1ビアホール101を形成する。そして、適宜マスクを配置し、第1ビアホール101に対して第1層間接続部材130を構成する第1導電性ペースト131を充填する。
【0090】
次に、再びドリルまたはレーザ等により、絶縁基材100に複数の第2ビアホール102を形成する。なお、複数の第2ビアホール102は、隣合う第1ビアホール101同士の間に位置するように形成される。つまり、第2ビアホール102は、第1、第2ビアホール101、102が互い違いになるように形成される。そして、適宜マスクを配置し、第2ビアホール102に対して第2層間接続部材を構成する第2導電性ペースト141を充填する。
【0091】
なお、第1導電性ペースト131は、金属原子が所定の結晶構造を維持しているBi−Sb−Te合金の粉末をパラフィン等の有機溶剤を加えてペースト化したものが用いられる。第2導電性ペースト141は、第1導電性ペースト131を構成する金属原子と異なる金属原子が所定の結晶構造を維持しているBi−Te合金の粉末をテレピネ等の有機溶剤を加えてペースト化したものが用いられる。この場合、第2導電性ペースト141の有機溶剤として、パラフィン等を使用してもよい。
【0092】
また、熱流束センサ用部材用意工程S20では、図21Cに示されるように、裏面配線パターン121が形成された裏面保護部材120を用意する。本実施形態では、表面保護部材110と同様に、裏面保護部材120に熱圧着等によって銅箔を形成し、当該銅箔をパターニングすることにより、裏面配線パターン121が形成された裏面保護部材120を用意する。なお、裏面保護部材120は、銅箔が熱圧着等される際に加熱された状態となるため、結晶化が進む。また、裏面保護部材120は、絶縁基材100よりも面方向の長さが長くされたものを用意する。
【0093】
以上が熱流束センサ用部材用意工程S20である。次に、熱流測定装置1の製造方法のうちの保護シート用意工程S30を行う。保護シート用意工程S30では、熱可塑性樹脂で構成される保護シート30を用意する。具体的には、上記熱電対シート形成工程S10が行われた後の第1、第2絶縁シート210、220、および上記熱流束センサ用部材用意工程S20が行われた後の裏面保護部材120より、結晶化度が小さい保護シート30を用意する。例えば、このような保護シート30として、熱可塑性ポリイミドで構成され、加熱処理が行われていないものが用意される。
【0094】
また、本実施形態の保護シート30は、図22に示されるように、略矩形状とされている。そして、保護シート30には、後述する積層体形成工程S40において熱電対シート20の下方に配置された際、接合部203側となる端部にねじりに対する強度を向上させるための窪み部31が形成されている。
【0095】
続いて、熱流測定装置1の製造方法のうちの積層体形成工程S40を行う。積層体形成工程S40では、図23および図24に示されるように、一対の下側プレス板71aと上側プレス板71bとを有するプレス機71を用意する。そして、下側プレス板71aと上側プレス板71bとの間に、裏面保護部材120、絶縁基材100、表面保護部材110、熱電対シート20、保護シート30を配置する。なお、図23は、図24中のXXIII−XXIII断面にも相当している。
【0096】
具体的には、まず、下側プレス板71a上に、第3離型紙63を配置する。そして、第3離型紙63の上に、保護シート30を配置し、保護シート30上に、熱電対シート20を配置する。この際、保護シート30のうちの熱電対シート20におけるパッド部204、205側と反対側が熱電対シート20から突出するようにする。
【0097】
そして、第3離型紙63、保護シート30、熱電対シート20に渡るように、裏面配線パターン121が形成された裏面保護部材120を配置する。次に、裏面保護部材120のうちの保護シート30および熱電対シート20上に位置する部分と異なる部分に、絶縁基材100を配置する。そして、絶縁基材100上に、表面配線パターン111が形成された表面保護部材110を配置する。さらに、本実施形態では、表面保護部材110の上に第4離型紙64と第2緩衝材82を配置する。なお、第3、第4離型紙63、64は、例えば、アラミド樹脂などから形成される熱硬化性樹脂シートまたは熱可塑性樹脂シートが用いられる。また、第2緩衝材82として、例えばテフロンやポリイミド樹脂が用いられる。
【0098】
本実施形態では、このように裏面保護部材120、絶縁基材100、表面保護部材110、熱電対シート20、保護シート30が配置される。これにより、熱電対シート20は、表面保護部材110と裏面保護部材120とが絶縁基材100から面方向に延びた位置において、裏面保護部材120のうちの折り曲げられた部分を挟んで表面保護部材110と反対側に配置される。
【0099】
その後、熱流測定装置1の製造方法のうちの一体プレス工程S50を行う。本実施形態では、一体プレス工程S50では、プレス機71の下側プレス板71aと上側プレス板71bとの間に配置された積層体を真空状態の中で積層方向に加圧しつつ加熱する。なお、この工程では、例えば、プレス機の圧力が10MPa以上、温度が320℃以上とされる。
【0100】
これにより、絶縁基材100の第1、第2ビアホール101、102に埋め込まれた第1、第2導電性ペースト131、141は、固体焼結して第1、第2層間接続部材130、140となる。そして、第1、第2層間接続部材130、140は、表面配線パターン111および裏面配線パターン121と電気的、機械的に接続される。また、絶縁基材100、表面保護部材110、裏面保護部材120が互いに融着されると共に、裏面保護部材120と熱電対シート20における第1、第2絶縁シート210、220が融着される。さらに、保護シート30が裏面保護部材120および第2絶縁シート220と融着される。これにより、図2に示されるように、境界端部Aが保護シート30で覆われた構成となる。本実施形態では、このように、1回の一体プレス工程S50により、熱流束センサ10と熱電対200とが一体化されると共に、保護シート30が配置される。
【0101】
また、上記のように保護シート30を配置することにより、保護シート30には、加熱処理が一体プレス工程S50の際のみ施されることになる。このため、保護シート30は、裏面保護部材120および第2絶縁シート220より加熱処理時間が短くなり、結晶化度が小さい状態となる。したがって、保護シート30と裏面保護部材120および第2絶縁シート220との融着は、裏面保護部材120と第2絶縁シート220との融着より強固になる。
【0102】
その後は、特に図示しないが、一体プレス工程S50を行ったものが分割されることにより、単一の熱流測定装置1が製造される。
【0103】
以上説明したように、本実施形態では、熱流束センサ10と熱電対シート20とが一体化されている。そして、熱流測定装置1は、熱電対シート20が、表面保護部材110または裏面保護部材120が絶縁基材100から面方向に延びた位置に固定されている。このため、例えば、熱流束センサ10と熱電対シート20とを厚み方向に積み重ねて配置した構成と比較して、熱流測定装置1の厚みを薄くすることができる。これにより、測定対象物2の表面3に熱流測定装置1を取り付けたとき、その測定対象物2の表面3の近傍の気流の乱れが抑制される。したがって、熱流測定装置1は、熱流束センサ10の出力信号と熱電対200の出力信号とに基づき、外気温の変化等による温度ドリフトを低減し、測定対象物2の熱流を正確に検出できる。
【0104】
また、表面保護部材110または裏面保護部材120が絶縁基材100から面方向に延びた位置に熱電対シート20を固定することにより、熱流束センサ10と熱電対200とを面方向において近い位置に設けることが可能になる。このため、熱流束センサ10および熱電対シート20は、それぞれ測定対象物2のほぼ同じ位置の熱流および温度を検出する。したがって、熱電対シート20の出力信号と熱流束センサ10の出力信号とが対応したものとなる。その結果、熱流測定装置1は、熱流束センサ10の信号から温度ドリフトの影響を低減することができる。
【0105】
さらに、本実施形態では、熱流束センサ10と熱電対シート20との境界端部Aは、境界を構成する熱可塑性樹脂よりも結晶化度が小さくされた保護シート30で覆われている。つまり、境界端部Aは、境界を構成する部分の熱可塑性樹脂同士の融着強度よりも、当該境界を構成する部分の熱可塑性樹脂との融着強度が高くなる保護シート30で覆われている。このため、図8に示されるように、熱流束センサ10と熱電対シート20とが剥離することを抑制できる。
【0106】
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対し、熱電対シート20の形状を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
【0107】
本実施形態の熱流測定装置1では、図25に示されるように、熱電対シート20は、接合部203側の端部に、凹部206が形成されている。つまり、熱電対シート20における第1、第2絶縁シート210、220には、接合部203側の端部に凹部206が形成されている。そして、凹部206には、保護シート30が入り込んだ状態となっている。このため、熱電対シート20は、他面1bと交差する側面も保護シート30が融着された構成となっている。
【0108】
このような熱流測定装置1は、熱電対シート形成工程S10における切断工程S14において、切断箇所を変更すればよい。すわち、図26に示されるように、切断工程S14では、接合部203側の部分に凹部206が形成されるように、第2、第3切断箇所C2、C3を変更すればよい。このような熱電対シート20を形成することにより、一体プレス工程S50を行った際に凹部206内にも保護シート30が配置される。
【0109】
以上説明したように、本実施形態では、熱電対シート20に凹部206が形成されており、凹部206にも保護シート30が配置されている。つまり、熱電対シート20における側面にも保護シート30が配置されている。このため、保護シート30と熱電対シート20との融着面積を増加でき、保護シート30と熱電対シート20との融着強度の向上を図ることができる。
【0110】
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
【0111】
例えば、上記各実施形態では、熱流測定装置1は、測定対象物2の表面に配置する例について説明したが、測定対象物2の内部に埋め込まれるようにしてもよい。
【0112】
また、上記各実施形態において、保護シート30は、境界端部Aを覆う大きさとされていればよい。例えば、上記各実施形態において、第2絶縁シート220におけるパッド部204、205側の部分は、保護シート30から露出していてもよい。つまり、熱流測定装置1は、境界端部Aが保護シート30によって被覆されるのであれば、他面1bが裏面保護部材120、保護シート30、第2絶縁シート220を有する構成とされていてもよい。
【0113】
さらに、上記各実施形態において、保護シート30は、熱流束センサ10と熱電対シート20を一体化した後に配置するようにしてもよい。具体的には、熱流束センサ10と熱電対シート20を配置して一体プレス工程S50を行った後、さらに保護シート30を配置して再び一体プレス工程S50を行うことにより、保護シート30を配置するようにしてもよい。このように熱流測定装置1を製造したとしても、保護シート30の方が加熱処理される時間が短くなるため、保護シート30の結晶化度は、裏面保護部材120および第1、第2絶縁シート210、220より小さくなる。
【0114】
また、上記各実施形態において、熱流測定装置1は、熱流束センサ10と熱電対シート20との境界端部において、境界端部A以外の他の場所にも保護シート30が配置されていてもよい。例えば、保護シート30は、熱流束センサ10と熱電対シート20との境界端部の全てを覆うように配置されていてもよい。
【0115】
また、上記各実施形態において、例えば、絶縁基材100は、1種類の熱可塑性樹脂のみで構成されていてもよい。同様に、表面保護部材110および裏面保護部材120は、1種類の熱可塑性樹脂のみで構成されていてもよい。
【0116】
さらに、上記第1実施形態において、熱流束センサ10における裏面保護部材120が折り曲げられておらず、熱電対シート20が表面保護部材110と裏面保護部材120との間に配置されていてもよい。このような構成としても、熱流束センサ10と熱電対シート20との境界端部を保護シート30で覆うことにより、熱流束センサ10と熱電対シート20とが剥離することを抑制できる。同様に、熱流束センサ10と熱電対シート20とは、積層されていてもよい。
【0117】
また、上記各実施形態において、保護シート30の厚さは適宜変更可能である。但し、図9および図10に示されるように、熱流測定装置1の他面1bが測定対象物2側に向けられて配置される場合、保護シート30は、薄くされることが好ましい。これにより、保護シート30の熱抵抗が低くなり、測定対象物2の熱を高精度に検出できる。同様に、図9および図10に示されるように、熱流測定装置1の他面1bが測定対象物2側に向けられて配置される場合には、第2絶縁シート220も薄くされることが好ましい。つまり、熱流測定装置1は、熱電対200における接合部203と測定対象物2との間に配置される部材の熱抵抗が小さくなるように、膜厚等が調整されることが好ましい。このため、例えば、熱流測定装置1の一面1aが測定対象物2側に向けられて配置される場合には、第1絶縁シート210が薄くされることが好ましい。
【0118】
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、熱流測定装置は、板状の絶縁基材に厚さ方向に貫通する複数の第1、第2ビアホールが形成されていると共に、第1、第2ビアホールに互いに異なる金属で形成された熱電変換素子が埋め込まれており、絶縁基材の表面側に熱可塑性樹脂を含んで構成される表面保護部材が配置されていると共に、絶縁基材の裏面側に熱可塑性樹脂を含んで構成される裏面保護部材が配置されている熱流束センサを備えている。熱流測定装置は、熱電能が異なる金属から構成された第1導体と第2導体とが接続された接合部を有する熱電対が、第1導体と第2導体との配列方向に対して交差する方向の一方側から熱可塑性樹脂を含んで構成される第1絶縁シートで覆われると共に、交差する方向の他方側から熱可塑性樹脂を含んで構成される第2絶縁シートで覆われた熱電対シートを備えている。熱流束センサおよび熱電対シートは、互いの熱可塑性樹脂が融着することで一体化されている。そして、熱流束センサと熱電対シートとの境界における境界端部は、境界を構成する熱流束センサの熱可塑性樹脂および熱電対シートの熱可塑性樹脂よりも結晶化度が小さくされた保護シートで覆われている。
【0119】
また、第2の観点によれば、熱流束センサは、表面保護部材および裏面保護部材が絶縁基材より当該絶縁基材の面方向に沿った長さが長くされ、裏面保護部材のうちの絶縁基材より長くされた部分が表面保護部材側に曲げられて表面保護部材と融着している。熱電対シートは、裏面保護部材のうちの表面保護部材と融着している部分を挟んで表面保護部材と反対側に配置され、裏面保護部材の折り曲げられた部分と融着している。そして、保護シートは、境界のうちの表面保護部材から最も離れた境界端部を覆っている。
【0120】
これによれば、熱流束センサと熱電対シートとを積層した場合と比較して、熱流束センサと熱電対とを面方向において近い位置に設けることが可能になる。このため、熱流束センサおよび熱電対シートは、それぞれ同じ位置の熱流および温度を検出する。したがって、熱電対シートの出力信号と熱流束センサの出力信号とが対応したものとなり、熱流束センサの信号から温度ドリフトの影響を低減することができる。
【0121】
また、第3の観点によれば、熱電対シートは、境界側の部分に凹部が形成されており、保護シートは、凹部内にも配置されている。これによれば、保護シートと熱電対シートとの融着面積を増加でき、保護シートと熱電対シートとの融着強度の向上を図ることができる。
【0122】
また、第4の観点によれば、熱流測定装置の製造方法では、板状の絶縁基材に厚さ方向に貫通する複数の第1、第2ビアホールが形成され、第1、第2ビアホールに熱電変換素子を構成する導電性ペーストが充填されたものを用意することを行う。熱流測定装置の製造方法では、熱可塑性樹脂を含んで構成される表面保護部材を用意することと、熱可塑性樹脂を含んで構成される裏面保護部材を用意することと、を行う。熱流測定装置の製造方法では、熱電能が異なる金属から構成された第1導体と第2導体とが接続された接合部を有する熱電対が、第1導体と第2導体との配列方向に対して交差する方向の一方側から熱可塑性樹脂を含んで構成される第1絶縁シートで覆われると共に、交差する方向の他方側から熱可塑性樹脂を含んで構成される第2絶縁シートで覆われた熱電対シートを用意することを行う。熱流測定装置の製造方法では、裏面保護部材、絶縁基材、表面保護部材を順に積層すると共に、熱電対シートを配置する部材配置を行うことを行う。熱流測定装置の製造方法では、裏面保護部材、絶縁基材、表面保護部材の積層方向から加圧しながら加熱することにより、導電性ペーストから熱電変換素子を構成して熱流束センサを構成しつつ、熱流束センサを構成する熱可塑性樹脂と熱電対シートとを構成する熱可塑性樹脂とを融着させて熱流束センサと熱電対シートとを一体化することを行う。熱流測定装置の製造方法では、熱流束センサと熱電対シートとの境界を構成する熱流束センサの熱可塑性樹脂および熱電対シートの熱可塑性樹脂よりも結晶化度が小さくされた保護シートを用意することを行う。そして、熱流測定装置の製造方法では、境界における境界端部を保護シートで覆うことを行う。
【0123】
また、第5の観点によれば、表面保護部材を用意することでは、絶縁基材より当該絶縁基材の面方向に沿った長さが長くされた表面保護部材を用意する。裏面保護部材を用意することでは、絶縁基材より当該絶縁基材の面方向に沿った長さが長くされた裏面保護部材を用意する。そして、部材配置を行うことでは、表面保護部材と裏面保護部材とが絶縁基材から面方向に長くされた位置において、裏面保護部材が表面保護部材側に折り曲げられ、裏面保護部材のうちの折り曲げられた部分を挟んで表面保護部材と反対側に熱電対シートを配置する。
【0124】
これによれば、熱流束センサと熱電対シートとを積層する場合と比較して、熱流束センサと熱電対とを面方向において近い位置に設けた熱流測定装置を製造できる。このため、熱流束センサおよび熱電対シートがそれぞれ同じ位置の熱流および温度を検出するようになる。したがって、熱電対シートの出力信号と熱流束センサの出力信号とが対応したものとなり、熱流束センサの信号から温度ドリフトの影響を低減した熱流測定装置を製造できる。
【0125】
第6の観点によれば、部材配置を行うことでは、保護シート上に熱電対シートを配置する。一体化することでは、熱流束センサ、熱電対シート、および保護シートを同時に一体化する。これによれば、保護シートを別の工程で配置する場合と比較して、製造工程の簡略化を図ることができる。
【符号の説明】
【0126】
1 熱流測定装置
10 熱流束センサ
20 熱電対シート
30 保護シート
100 絶縁基材
101、102 第1、第2ビアホール
130、140 第1、第2熱電変換素子
110 表面保護部材
120 裏面保護部材
200 熱電対
201 第1導体
202 第2導体
203 接合部
210 第1絶縁シート
220 第2絶縁シート
A 境界端部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21A
図21B
図21C
図22
図23
図24
図25
図26