特許第6981481号(P6981481)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 宇部興産株式会社の特許一覧

<>
  • 特許6981481-セメント組成物およびその製造方法 図000009
  • 特許6981481-セメント組成物およびその製造方法 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6981481
(24)【登録日】2021年11月22日
(45)【発行日】2021年12月15日
(54)【発明の名称】セメント組成物およびその製造方法
(51)【国際特許分類】
   C04B 7/19 20060101AFI20211202BHJP
   C04B 14/28 20060101ALI20211202BHJP
【FI】
   C04B7/19
   C04B14/28
【請求項の数】3
【全頁数】11
(21)【出願番号】特願2020-1459(P2020-1459)
(22)【出願日】2020年1月8日
(62)【分割の表示】特願2016-24390(P2016-24390)の分割
【原出願日】2016年2月12日
(65)【公開番号】特開2020-50586(P2020-50586A)
(43)【公開日】2020年4月2日
【審査請求日】2020年1月8日
(73)【特許権者】
【識別番号】000000206
【氏名又は名称】宇部興産株式会社
(74)【代理人】
【識別番号】110001508
【氏名又は名称】特許業務法人 津国
(72)【発明者】
【氏名】三隅 英俊
(72)【発明者】
【氏名】伊藤 貴康
(72)【発明者】
【氏名】高橋 俊之
【審査官】 永田 史泰
(56)【参考文献】
【文献】 特開2008−247715(JP,A)
【文献】 特開2016−3178(JP,A)
【文献】 特開2003−137618(JP,A)
【文献】 小野吉雄,「高炉スラグのガラス化率,塩基度と高炉セメントの強さとの関係」,セメント技術年報,1983年,第37巻,第77〜80ページ
【文献】 岩渕俊次,「高炉セメントコンクリートの強度と耐久性におよぼす石灰石粉末の影響」,セメント技術年報,1978年,第32巻,第297〜300ページ
【文献】 大原功,「高炉セメントの諸特性におよぼす石灰石粉末の影響」,セメント技術年報,第32巻,1978年,第104〜107ページ
(58)【調査した分野】(Int.Cl.,DB名)
C04B7/00−32/02
C04B40/00−40/06
C04B103/00−111/94
(57)【特許請求の範囲】
【請求項1】
高炉スラグを30〜60質量%含み、
前記高炉スラグの化学成分から下記式(1):
JIS塩基度=(CaO+MgO+Al)/SiO・・・(1)(式(1)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)である。)
によって求められるJIS塩基度が1.72以下であり、
前記高炉スラグの化学成分から下記式(2):
Bu(7日)=(CaO+0.43×MgO+0.28×Al)/SiO
−0.46×TiO−0.27×MnO・・・(2)
(式(2)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)であり、
TiOは高炉スラグ中の酸化チタンの含有率(質量%)であり、
MnOは高炉スラグ中の酸化マンガンの含有率(質量%)である。
但し、TiO含有率が0.8質量%以上の場合は、TiOを0.8質量%として計算する。)
によって求められる塩基度Bu(7日)が0.99〜1.5であり、高炉セメント中の石灰石微粉末の含有量が3.8〜5質量%(但し、5質量%を除く)であり、ブレーン比表面積が3000〜4800cm/gであるセメント組成物。
【請求項2】
高炉スラグを30〜60質量%含み、
前記高炉スラグの化学成分から上記式(1)によって求められるJIS塩基度が1.72以下であり、
前記高炉スラグの化学成分から下記式(3):
Bu(28日)=(CaO+0.42×MgO−0.16×Al)/SiO
−0.60×TiO−0.14×MnO・・・(3)
(式(3)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)であり、
TiOは高炉スラグ中の酸化チタンの含有率(質量%)であり、
MnOは高炉スラグ中の酸化マンガンの含有率(質量%)である。
但し、TiO含有率が0.7質量%以上の場合は、TiOを0.7質量%として計算する。)
によって求められる塩基度Bu(28日)が0.79〜1.3であり、高炉セメント中の石灰石微粉末の含有量が3.8〜5質量%(但し、5質量%を除く)であり、ブレーン比表面積が3000〜4800cm/gであるセメント組成物。
【請求項3】
前記高炉スラグのSiO量が33.5〜37質量%、Al量が12〜16質量%、CaO量が39〜44質量%、MgO量が4〜7.5質量%、Fe量が0.15〜1.5質量%、NaO量が0.1〜0.8質量%、KO量が0.2〜1質量%、TiO量が0.2〜1質量%、MnO量が0.1〜0.8質量%である請求項1又は2に記載のセメント組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高炉スラグを使用したセメント組成物およびその製造方法に関する。
【背景技術】
【0002】
セメント産業では、セメントの構成物であるクリンカーの製造時に、多量のCOを発生する。このクリンカー製造時のCOは、主にクリンカーの焼成エネルギーに由来するものと、クリンカーの原料である石灰石の脱炭酸反応に由来するものがある。
【0003】
セメント製造時のCO発生を抑制する技術として、従来技術では、特許文献1および非特許文献1に示すように、セメントに対して高炉スラグを多量に混合し、クリンカー含有量を低減したというものがある。これらのセメントに使用されている高炉スラグは、いずれもJIS塩基度((CaO+MgO+Al)/SiO)が高く(1.85〜1.91)、セメントの強度発現性にとって有利である傾向にある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−285302
【特許文献2】特願2015−101152
【非特許文献】
【0005】
【非特許文献1】安齋剛史ほか、高炉スラグ高含有セメントの水和反応解析、セメント・コンクリート論文集、No.63、pp.22−27(2009)
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、今後、CO削減の観点から、高炉スラグを利用したセメントの使用量が増加した場合、このようなJIS塩基度が高い高炉スラグを入手できなくなる可能性がある。このため、JIS塩基度が低い高炉スラグを使いこなして、強度発現性に優れる高炉スラグ高含有セメントを提供する技術は、セメント製造時のCO削減にとって非常に重要であると考えられる。
【0007】
一方で、特許文献2に示すように、JIS塩基度が同等でも改良塩基度Buが高いほど強度発現性が良いことがわかっており、セメントの強度発現性をより確保するにはJIS塩基度が低い中でもBuが高い高炉スラグを使用することが重要になる。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題に関し鋭意検討した結果、JIS塩基度が低くても、特定の塩基度Buを満たす高炉スラグを用い、石灰石を所定量添加することで、強度発現性に優れる高炉セメント組成物を提供できることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明により、以下が提供される。
[1]高炉スラグを30〜60質量%含み、
前記高炉スラグの化学成分から下記式(1):
JIS塩基度=(CaO+MgO+Al)/SiO・・・(1)
(式(1)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)である。)
によって求められるJIS塩基度が1.85未満であり、
前記高炉スラグの化学成分から下記式(2):
Bu(7日)=(CaO+0.43×MgO+0.28×Al)/SiO
−0.46×TiO−0.27×MnO・・・(2)
(式(2)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)であり、
TiOは高炉スラグ中の酸化チタンの含有率(質量%)であり、
MnOは高炉スラグ中の酸化マンガンの含有率(質量%)である。
但し、TiO含有率が0.8質量%以上の場合は、TiOを0.8質量%として計算する。)
によって求められる塩基度Bu(7日)が0.99〜1.5であり、高炉セメント中の石灰石微粉末の含有量が3〜6質量%であるセメント組成物。
【0010】
[2]高炉スラグを30〜60質量%含み、
前記高炉スラグの化学成分から上記式(1)によって求められるJIS塩基度が1.85未満であり、
前記高炉スラグの化学成分から下記式(3):
Bu(28日)=(CaO+0.42×MgO−0.16×Al)/SiO
−0.60×TiO−0.14×MnO・・・(3)
(式(3)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)であり、
TiOは高炉スラグ中の酸化チタンの含有率(質量%)であり、
MnOは高炉スラグ中の酸化マンガンの含有率(質量%)である。
但し、TiO含有率が0.7質量%以上の場合は、TiOを0.7質量%として計算する。)
によって求められる塩基度Bu(28日)が0.79〜1.3であり、高炉セメント中の石灰石微粉末の含有量が3〜6質量%であるセメント組成物。
【0011】
[3]前記セメント組成物において、高炉スラグのSiO量が33.5〜37質量%、Al量が12〜16質量%、CaO量が39〜44質量%、MgO量が4〜7.5質量%、Fe量が0.15〜1.5質量%、NaO量が0.1〜0.8質量%、KO量が0.2〜1質量%、TiO2量が0.2〜1質量%、MnO量が0.1〜0.8質量%であるセメント組成物。
【0012】
[4]高炉スラグの化学成分から上記式(1)によって求められるJIS塩基度が1.85未満であり、
前記高炉スラグの化学成分から上記式(2)によって求められる塩基度Bu(7日)が0.99〜1.5である高炉スラグを選別する選別工程と、
前記選別された高炉スラグとセメントと石灰石を混合しセメント組成物を製造する製造工程とを含む、高炉スラグを30〜60質量%含み、石灰石を3〜6質量%含むセメント組成物の製造方法。
【0013】
[5]高炉スラグの化学成分から上記式(1)によって求められるJIS塩基度が1.85未満であり、
前記高炉スラグの化学成分から上記式(3)によって求められる塩基度Bu(28日)が0.79〜1.3である高炉スラグを選別する選別工程と、
前記選別された高炉スラグとセメントと石灰石を混合しセメント組成物を製造する製造工程とを含む、高炉スラグを30〜60質量%含み、石灰石を3〜6質量%含むセメント組成物の製造方法。
【0014】
[6]前記セメント組成物の製造方法において、高炉スラグのSiO量が33.5〜37質量%、Al量が12〜16質量%、CaO量が39〜44質量%、MgO量が4〜7.5質量%、Fe量が0.15〜1.5質量%、NaO量が0.1〜0.8質量%、KO量が0.2〜1質量%、TiO2量が0.2〜1質量%、MnO量が0.1〜0.8質量%であるセメント組成物の製造方法。
【発明の効果】
【0015】
本発明によれば、JIS塩基度が低くても特定の塩基度Buを満たす高炉スラグを用い、石灰石を添加することによって、強度発現性に優れたセメント組成物およびその製造方法を提供することができる。
【図面の簡単な説明】
【0016】
図1】分離粉砕で作製した高炉セメント中の石灰石量と、基準に対する強度比との関係を示すグラフ。
図2】混合粉砕で作製した高炉セメント中の石灰石量と、基準に対する強度比との関係を示すグラフ。
【発明を実施するための形態】
【0017】
以下、本発明の好適な実施形態について詳細に説明する。
【0018】
<セメント組成物>
本実施形態のセメント組成物は、高炉スラグに加えて、セメントクリンカーと石膏と少量混合物などを含むことができる。
【0019】
本発明のセメント組成物における高炉スラグの含有量は30〜60質量%であり、好ましくは33〜57質量%であり、より好ましくは35〜55質量%である。高炉スラグ含有量が30質量%以上とすることでCO削減に対する寄与が大きくなり、60質量%以下とすることで良好な強度発現性を得る事が出来る。
【0020】
高炉スラグの化学成分から下記式(1):
JIS塩基度=(CaO+MgO+Al)/SiO・・・(1)
(式(1)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)である。)
で求められる高炉スラグのJIS塩基度は、1.85未満である。この範囲であれば、JIS塩基度が低い高炉スラグの有効利用に貢献することができる。
【0021】
本発明者らは、高炉スラグのTiO及びMnOとともに、JIS A 6206に定められている塩基度(JIS塩基度=(CaO+MgO+Al)/SiO)に示される各化学成分のセメントの活性度指数に及ぼす影響を見直すことで、高炉スラグを選別する指標となる塩基度が算出される式を導き出し、新たな塩基度としてBu(7日)およびBu(28日)を規定した(関連出願として、平成27年3月23日出願の特願2015−059996がある。なお、特願2015−059996記載の内容は、本明細書中に参考として援用される)。そして、高炉スラグが特定のBu(7日)またはBu(28日)を満たすことにより、強度発現性に優れる高炉スラグ高含有セメント組成物を製造できることを見出した。Bu(7日)は、モルタル材齢7日のセメントの活性度指数の指標ともなる。Bu(28日)は、モルタル材齢28日のセメントの活性度指数の指標ともなる。
【0022】
塩基度Bu(7日)は、下記式(2)により規定される。
Bu(7日)=(CaO+0.43×MgO+0.28×Al)/SiO
−0.46×TiO−0.27×MnO・・・(2)
式(2)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)であり、
TiOは高炉スラグ中の酸化チタンの含有率(質量%)であり、
MnOは高炉スラグ中の酸化マンガンの含有率(質量%)であり、
但し、TiO含有率が0.8質量%以上の場合は、TiOを0.8質量%として計算する。
本発明において、上記式(2)で求められる塩基度Bu(7日)は、0.99〜1.5であり、好ましくは1.00〜1.4であり、より好ましくは1.01〜1.3、さらに好ましくは1.02〜1.25である。この範囲であれば、JIS塩基度の低いスラグを有効活用しながら、強度発現性に優れる高炉セメントを提供することができる。
【0023】
本発明における石灰石の添加量は、3〜6質量%、好ましくは3.5〜5.5質量%、より好ましくは3.8〜5質量%、さらに好ましくは4.0〜4.5質量%である。この範囲であれば強度発現性に優れる高炉セメントを提供することができる。
【0024】
塩基度Bu(28日)は、下記式(3)により規定される。
Bu(28日)=(CaO+0.42×MgO−0.16×Al)/SiO
−0.60×TiO−0.14×MnO・・・(3)
式(3)中、
CaOは高炉スラグ中の酸化カルシウムの含有率(質量%)であり、
MgOは高炉スラグ中の酸化マグネシウムの含有率(質量%)であり、
Alは高炉スラグ中の酸化アルミニウムの含有率(質量%)であり、
SiOは高炉スラグ中の二酸化ケイ素の含有率(質量%)であり、
TiOは高炉スラグ中の酸化チタンの含有率(質量%)であり、
MnOは高炉スラグ中の酸化マンガンの含有率(質量%)であり、
但し、TiO含有率が0.7質量%以上の場合は、TiOを0.7質量%として計算する。
本発明において、上記式(3)で求められる塩基度Bu(28日)は、0.79〜1.3であり、好ましくは0.8〜1.2であり、より好ましくは、0.8〜1.1、さらに好ましくは0.8〜1.0である。この範囲であれば、強度発現性に優れる高炉セメントを提供することができる。
【0025】
本発明において、高炉スラグのSiO量が33.5〜37質量%、好ましくは33.8〜36.7質量%、より好ましくは33.5〜36.5質量%、さらに好ましくは34.4〜36.3質量%、Al量が12〜16質量%、好ましくは12.5〜15.5質量%、より好ましくは12.3〜15.3質量%、さらに好ましくは12.8〜15.0質量%、CaO量が39〜44質量%、好ましくは39.3〜43.5質量%、より好ましくは39.5〜43質量%、さらに好ましくは39.7〜42.5質量%、MgO量が4〜7.5質量%、好ましくは4.5〜7.3質量%、より好ましくは5〜7.1質量%、さらに好ましくは5.5〜6.9質量%、Fe量が0.15〜1.5質量%、好ましくは0.2〜1.2質量%、より好ましくは0.3〜1質量%、さらに好ましくは0.35〜0.8質量%、NaO量が0.1〜0.8質量%、好ましくは0.15〜0.7質量%、より好ましくは0.18〜0.6質量%、さらに好ましくは0.2〜0.55質量%、KO量が0.2〜1質量%、好ましくは0.25〜0.9質量%、より好ましくは0.3〜0.8質量%、さらに好ましくは0.35〜0.7質量%、TiO2量が0.2〜1質量%、好ましくは0.25〜0.9質量%、より好ましくは0.3〜0.8質量%、さらに好ましくは0.35〜0.7質量%、MnO量が0.1〜0.8質量%、好ましくは0.13〜0.7質量%、より好ましくは0.15〜0.6質量%、さらに好ましくは0.17〜0.5質量%である。この範囲であれば、強度発現性に優れる高炉セメントを提供することができる。
【0026】
本発明のセメント組成物に用いるセメントクリンカーは、下記<セメント組成物の製造方法>に記載のようなセメントクリンカーを用いることができる。
【0027】
本発明のセメント組成物に用いる石膏は、JIS R 9151「セメント用天然せっこう」に規定される品質を満足することが望ましい。具体的には二水石膏、半水石膏、不溶性無水石膏が好適に用いられる。
【0028】
本発明のセメント組成物に用いる少量混合成分は、JIS R 5211「高炉セメント」に規定される高炉スラグ、JIS R 5212「シリカセメント」に規定されるシリカ質混合材、JIS A 6201「コンクリート用フライアッシュ」に規定されるフライアッシュ、石灰石微粉末が好適に用いられる。
【0029】
<セメント組成物の製造方法>
次に、本発明の高炉セメント組成物の製造方法について説明する。なお、上記<セメント組成物>における説明と重複する部分については、説明を割愛する。
【0030】
一態様として、本発明の高炉セメント組成物の製造方法は、高炉スラグの化学成分から上記式(1)を用いて塩基度Bu(7日)が算出される指標算出工程と、前記算出された塩基度Bu(7日)が0.99〜1.5である高炉スラグを選別する選別工程と、前記選別された高炉スラグとセメントと石灰石を混合しセメント組成物を製造する製造工程とを含む。この製造方法により、たとえJIS塩基度が低い高炉スラグを含んでいたとしても、強度発現性に優れる高炉スラグ高含有(セメント組成物中の高炉スラグ含量が30〜60質量%)セメント組成物を製造することができる。また、JIS塩基度が低い高炉スラグの有効利用に貢献することができる。
【0031】
一態様として、本発明の高炉セメント組成物の製造方法は、高炉スラグの化学成分から上記式(2)を用いて塩基度Bu(28日)が算出される指標算出工程と、前記算出された塩基度Bu(28日)が0.79〜1.3である高炉スラグを選別する選別工程と、前記選別された高炉スラグとセメントと石灰石を混合しセメント組成物を製造する製造工程とを含む。この製造方法により、たとえJIS塩基度が低い高炉スラグを含んでいたとしても、強度発現性に優れる高炉スラグ高含有(セメント組成物中の高炉スラグ含量が30〜60質量%)セメント組成物を製造することができる。また、JIS塩基度が低い高炉スラグの有効利用に貢献することができる。
【0032】
本発明のセメント組成物の製造工程の実施形態としては特に限定されるものではなく、選別した高炉スラグを粉砕した後、セメントを混合して高炉セメントを製造する方法や、選別された高炉スラグとセメントの混合と粉砕とを同時に行い高炉セメントを製造する方法等が挙げられる。特に、選別した高炉スラグを粉砕した後、セメントを混合して高炉セメントを製造することが、強度発現性の観点から好ましい。セメント組成物製造工程において、セメントと混合する高炉スラグの量を調整することによって、モルタル活性度指数を調節することも可能である。
【0033】
本発明の高炉セメントの製造方法によって得られる高炉セメントは、ブレーン比表面積が、好ましくは3000〜4800cm/g、より好ましくは3100〜4700cm/g、さらに好ましくは3200〜4600cm/g、特に好ましくは3300〜4500cm/gである。
高炉セメントのブレーン比表面積は、強度発現性に影響し、本発明の製造方法によって得られる高炉セメントのブレーン比表面積がさらに好ましくは3200〜4600cm/gとなるように、十分粉砕することによって、活性度指数の良好な高炉セメントを得ることができる。
【0034】
本発明の高炉セメントの製造方法は、セメントクリンカーを製造する工程と、セメントクリンカーと石膏と高炉スラグ(本発明の高炉スラグを除く)とを混合し、粉砕してセメントを得る工程を含んでいてもよい。セメントを得る工程において使用される高炉スラグは、式(2)により算出された塩基度Bu(7日)又は式(3)により算出された塩基度Bu(28日)を指標として選別された高炉スラグを除く。
【0035】
セメントクリンカーを製造する工程は、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、銅からみ及び焼却灰からなる群より選ばれる原料を混合し、焼成してセメントクリンカーを製造する。
【0036】
セメントクリンカーは、SP方式(多段サイクロン予熱方式)又はNSP方式(仮焼炉を併設した多段サイクロン予熱方式)等の既存のセメント製造設備を用いて、製造することができる。
【0037】
本発明の高炉セメントの製造方法として、セメントクリンカーと石膏と高炉スラグを混合する工程において、さらに少量の混合材を添加してもよい。混合材は、JIS R 5211「高炉セメント」に規定される高炉スラグ、JIS R 5212「シリカセメント」に規定されるシリカ質混合材、JIS A 6201「コンクリート用フライアッシュ」に規定されるフライアッシュ、JIS R 5210「ポルトランドセメント」に規定される石灰石を利用することができる。
【0038】
本発明のセメントクリンカーと石膏と高炉スラグと少量混合物などを混合する方法としては、特に制限されるものではなく、セメントクリンカーと石膏と高炉スラグと石灰石を混合粉砕する方法や、セメントクリンカーと石膏とを混合粉砕後、別粉砕したスラグと石灰石を混合する方法等があげられる。
【実施例】
【0039】
以下に、実施例、比較例および参考例を挙げて本発明の内容を詳細に説明する。なお、本発明はこれらの例によって限定されるものではない。なお、以下において特に断りがない場合は、%は質量%を示す。
【0040】
1.セメント組成物の製造
【0041】
評価は、高炉スラグ粉とポルトランドセメントを別々に製造する分離粉砕と高炉スラグとクリンカー、石膏、石灰石を同時に粉砕する混合粉砕で評価した。
【0042】
本試験に使用した材料のキャラクターを表1〜4に示す。また、表5に分離粉砕および混合粉砕における材料の配合を示す。これらの材料に対して、粉砕助剤を添加し、所定のボールミルで粉砕した。なお、分離粉砕では、高炉スラグ微粉末44.5質量%とポルトランドセメント55.5質量%とを混合して高炉セメントを作製した。
【0043】
【表1】
【0044】
【表2】
【0045】
【表3】
【0046】
【表4】
【0047】
【表5】
【0048】
2.モルタル圧縮強さ試験
以上の作製した高炉セメントを使用して、モルタル圧縮強さを調べた。試験方法は、JIS R 5201:1997「セメントの物理試験方法」に準拠して、モルタル供試体の作製および圧縮強さの測定を行った。表6および7に結果を示す。なお、強度発現性は、分離粉砕と混合粉砕でそれぞれ基準(No.1とNo.3)に対する強さ比で評価した。
【0049】
3.結果
図1図2にそれぞれ分離粉砕と混合粉砕における石灰石添加の影響を示す。分離粉砕の場合、高炉スラグ粉製造工程で石灰石添加量を増加することで、強さ比は高まることがわかった。混合粉砕の場合も石灰石添加量を増加することで強さ比は高まる結果であった。また、高炉セメント中に添加した石灰石1質量%あたりの強度上昇(7日材齢)は、分離粉砕では9.0%、混合粉砕では2.5%となり、分離粉砕の場合でより大きくなった。このことから、JIS塩基度が低くても、塩基度Buが高い高炉スラグを用いると同時に石灰石を添加することで、強度発現性に優れるセメント組成物を提供することができる。
【0050】
【表6】
【0051】
【表7】
図1
図2